
Software Engineering Notes

Dr Greg Butler

Outline
• Software Architecture

• Layered Architecture

• Model-View-Control

 P. Molli 3

Software Architecture
 A software architecture is a description of the subsystems

and components of a software system and the relationships
between them.

 Subsystems and components are typically specified in
different views to show the relevant functional and non-
functional properties of a software system.

 The software system is an artifact. It is the result of the
software design activity.

 P. Molli 4

Component

 A component is an encapsulated part of a software system.
A component has an interface.

 Components serve as the building blocks for the structure
of a system.

 At a programming-language level, components may be
represented as modules, classes, objects or a set of related
functions.

 P. Molli 5

Subsystems

 A subsystem is a set of collaborating components
performing a given task. A subsystem is considered a
separate entity within a software architecture.

 It performs its designated task by interacting with other
subsystems and components…

Software Architecture

Formal definition IEEE 1471-2000

▫ Software architecture is the fundamental
organization of a system, embodied in its
components, their relationships to each other
and the environment, and the principles
governing its design and evolution

Software Architecture

Software architecture encompasses the set of
significant decisions about the
organization of a software system

▫ Selection of the structural elements and their
interfaces by which a system is composed

▫ Behavior as specified in collaborations
among those elements

▫ Composition of these structural and
behavioral elements into larger subsystems

▫ Architectural style that guides this
organization

Need for Software Architectures
Scale
Process
Cost
Schedule
Skills and development teams
Materials and technologies
Stakeholders
Risks

Why is Software Architecture Important

Representations of software architecture are an enabler for
communication between all parties (stakeholders) interested in the
development of a computer-based system.

The architecture highlights early design decisions that will have a
profound impact on all software engineering work that follows and, as
important, on the ultimate success of the system as an operational
entity.

Architecture “constitutes a relatively small, intellectually graspable
model of how the system is structured and how its components work
together” -- L. Bass

UP: Software Architecture is Early

Architecture represents the set of
earliest design decisions

Hardest to change
Most critical to get right

Architecture is the first design artifact
where a system’s quality attributes are
addressed

UP: Software Architecture is Early

UP: Inception, Elaboration, Construction, Transition

UP Inception is feasibility phase
Develop architecture addressing all high risks

UP Elaboration
Full description of Architecture

 Working prototype of architecture

Software Architecture Drives

Architecture serves as the blueprint for the
system but also the project:

Team structure
Documentation organization
Work breakdown structure
Scheduling, planning, budgeting
Unit testing, integration

Architecture establishes the communication
and coordination mechanisms among
components

Software Architecture versus Design

Architecture: where non-functional decisions
are cast, and functional requirements are
partitioned

Design: where functional requirements are
accomplished

System Non-Functional Quality Attributes

End User’s view

Performance

Availability

Usability

Security

Developer’s view

Maintainability

Portability

Reusability

Testability

Business Community view

Time To Market

Cost and Benefits

Projected life time

Targeted Market

Integration with Legacy System

Roll back Schedule

Modularization
The principal problem of software systems is
complexity.

It is not hard to write small programs.

Decomposing the problem (modularization)
is an effective tool against complexity.

The designer should form a clear mental
model of how the application will work at a
high level, then develop a decomposition to
match the mental model.

Modularization
Cohesion within a module is the degree to
which communication takes place among
the module’s elements.

Coupling is the degree to which modules
depend directly on other modules.

Effective modularization is accomplished by
maximizing cohesion and minimizing
coupling.

Developing a Software Architecture

Develop a mental model of the application.
As if it were a small application, e.g., personal finance
application ...

“works by receiving money or paying out money, in
any order, controlled through a user interface”.

Decompose into the required components.
Look for high cohesion & low coupling, e.g., personal
finance application ...

decomposes into Assets, Sources, Suppliers, &
Interface.

Repeat this process for the components.

A Classification of Software Architectures

Common Software Architectures
Layered architecture

Eg, client-server, 3-tier

Model-View-Control architecture

Broker

Interpreter

Pipeline

Typical Software Architecture Layers

UI
(AKA Presentation, View)

Application
(AKA Workflow, Process,
Mediation, App Controller)

Domain
(AKA Business,

Application Logic, Model)

Technical Services
(AKA Technical Infrastructure,
High­level Technical Services)

Foundation
(AKA Core Services, Base Services,

Low­level Technical Services/Infrastructure)

width implies range of applicability

0 GUI windows
B reports
B speech interface
B HTML, XML, XSLT, JSP, Javascript, ...

B handles presentation layer requests
B workflow
B session state
B window/page transitions
B consolidation/transformation of disparate

data for presentation

> handles application layer requests
> implementation of domain rules
> domain services (POS, Inventory)

­ services may be used by just one
application, but there is also the possibility
of multi­application services

9 (relatively) high­level technical services
and frameworks

9 Persistence, Security

9 low­level technical services, utilities,
and frameworks

9 data structures, threads, math,
file, DB, and network I/O

more
app

specific

de
pe

n
de

nc
y

Business Infrastructure
(AKA Low­level Business Services)

> very general low­level business services
used in many business domains

> CurrencyConverter

Typical Software Architecture Layers (Simplified)

Domain

UI

Swing
not the Java
Swing libraries, but
our GUI classes
based on Swing

Web

Sales Payments Taxes

Technical Services

Persistence Logging RulesEngine

 P. Molli 25

Layers: Structure

 P. Molli 26

Layers: Structure

 P. Molli 27

Layers and Components

 P. Molli 28

Layers: Known Uses
• virtual machines: JVM and binary code format

• API: layer that encapsulates lower layers

• information systems
– presentation, application logic, domain layer, database

• operating systems (relaxed for: kernel and IO and hardware)
– system services,
– resource management (object manager, security monitor, process

manager, I/O manager, VM manager, LPC),
– kernel (exception handling, interrupt, multiprocessor

synchronization, threads),
– HAL (Hardware Abstraction Layer, e.g. in Linux)

Layered Architectures

 P. Molli 33

Applying Layers Architecture

Play View High Score

File or RDB

UI

Core

Persistence

MVC

MVC
model, view, and controller communicate regularly

for example:

model notifies the view of state changes

view registers controller to receive user interface events
(e.g., "onClick()"

controller updates the model when input is received

MVC Responsibilities
model responsibilities

store data in properties

implement application methods

methods to register/unregister views

notify views of state changes

implement application logic

view responsibilities

create interface

update interface when model changes

forward input to controller

controller responsibilities

• translate user input into changes
in the model

• if change is purely cosmetic,
update view

Digression: MVC

MVC dates back to Smalltalk, almost 30 years ago.

...in fact MVC actually exhibits a mix of three GoF
design patterns: Strategy, Observer and Composite.

 P. Molli 39

Observer

When an object's value is updated, observers watching it are
notified that the change has occurred.

 P. Molli 40

Observer: Applicability
 A change to one object requires changing an unknown set

of other objects.

 Object should be able to notify others that may not be
known from the beginning.

 Metaphor = newspaper or magazine subscription:
 A publisher goes into business and starts printing a periodical.

 You subscribe.

 Every time a new edition is printed, you receive a copy in the mail.

 You unsubscribe when you want to stop receiving new copies.

 New copies stop being delivered to you — but other people can still
subscribe and receive their own copies.

 P. Molli 41

Observer: Formal Structure

 P. Molli 42

Observer: Pros and Cons
 promotes loose coupling between subject and observer
 the subject only knows that an observer implements an interface

 new observers can be added or removed at any time

 no need to modify the subject to add a new type of observer

 subject and objects can be reused independently of each other

 support for broadcast communication

 may become expensive if many observers, especially for
small changes to a large data area (i.e., broadcasting
redundant information)

 P. Molli 43

Observer in Java
• In Java, Observer will usually be an interface rather than an abstract base class

(no surprise, right? :-).

• In fact, the Java library already includes an Observer interface and an Observable
class (in the java.util package).

• ...but the Observable class has some drawbacks:

• it is a class, rather than an interface, and it doesn't even implement an interface
— so it can't be used by a class that already inherits from something else (no
multiple inheritance in Java)

• ...and some key methods in it are protected, so it can't be used unless you can
extend it; so much for favouring composition over inheritance :-/

For these reasons, even in Java it's often preferable to write your own Subject
interface and class(es).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

