Software Engineering Notes

Dr Greg Butler

Outline

e Software Architecture
* Layered Architecture
* Model-View-Control

Software Architecture

® A software architecture is a description of the subsystems
and components of a software system and the relationships
between them.

® Subsystems and components are typically specified in
different views to show the relevant functional and non-
functional properties of a software system.

® The software system is an artifact. It is the result of the
software design activity.

P. Molli 3

Component

® A component is an encapsulated part of a software system.
A component has an interface.

® Components serve as the building blocks for the structure
of a system.

B At a programming-language level, components may be
represented as modules, classes, objects or a set of related
functions.

P. Molli 4

Subsystems

® A subsystem is a set of collaborating components
performing a given task. A subsystem is considered a
separate entity within a software architecture.

® |t performs its designated task by interacting with other
subsystems and components...

P. Molli

Software Architecture

Formal definition IEEE 1471-2000

- Software architecture is the fundamental
organization of a system, embodied in its
components, their relationships to each other
and the environment, and the principles
governing its design and evolution

Software Architecture

Software architecture encompasses the set of
significant decisions about the
organization of a software system
> Selection of the structural elements and their
interfaces by which a system is composed

- Behavior as specified in collaborations
among those elements

> Composition of these structural and
behavioral elements into larger subsystems

- Architectural style that guides this
organization

Need for Software Architectures

Scale

Process

Cost

Schedule

Skills and development teams
Materials and technologies
Stakeholders

Risks

Why Is Software Architecture Important

Representations of software architecture are an enabler for
communication between all parties (stakeholders) interested in the
development of a computer-based system.

The architecture highlights early design decisions that will have a
profound impact on all software engineering work that follows and, as
important, on the ultimate success of the system as an operational
entity.

Architecture “constitutes a relatively small, intellectually graspable
model of how the system is structured and how its components work

together” -- L. Bass

UP: Software Architecture Is Early

Architecture represents the set of

earliest design decisions
Hardest to change
Most critical to get right

Architecture is the first design artifact

where a system’s quality attributes are
addressed

UP: Software Architecture Is Early
UP: Inception, Elaboration, Construction, Transition

UP Inception is feasibility phase
Develop architecture addressing all high risks

UP Elaboration

Full description of Architecture
Working prototype of architecture

Software Architecture Drives

Architecture serves as the blueprint for the

system but also the project:
Team structure
Documentation organization
Work breakdown structure
Scheduling, planning, budgeting
Unit testing, integration

Architecture establishes the communication
and coordination mechanisms among
components

Software Architecture versus Design

Architecture: where non-functional decisions

are cast, and functional requirements are
partitioned

Design: where functional requirements are
accomplished

System Non-Functional Quality Attributes

End User’s view

Performance
Availability
Usability
Security

Developer’s view

Maintainability
Portability
Reusability
Testability

Business Community view

Time To Market

Cost and Benefits

Projected life time

Targeted Market

Integration with Legacy System
Roll back Schedule

Issues Addressed by an
Architectural Design

Gross decomposition of a system into interacting components
* Twypically hierarchical
* Using rich abstractions for “glue™

* Often using common design idioms/stvles

Emergent system properties

* Performance, thronghput, latencies
* Rehability, security, fault tolerance, evolvability

Rationale

* Relates reguirements and implementations

Envelope of allowed change
* “Load-bearing walls™

* Design idioms and styvles

Modularization

The principal problem of software systems is
complexity.
It is not hard to write small programs.

Decomposing the problem (modularization)
Is an effective tool against complexity.

The designer should form a clear mental
model of how the application will work at a

high level, then develop a decomposition to
match the mental model.

Modularization

Cohesion within a module is the degree to
which communication takes place among
the module’s elements.

Coupling is the degree to which modules
depend directly on other modules.

Effective modularization is accomplished by
maximizing cohesion and minimizing
coupling.

Good Properties of an Architecture

+ Good architecture (like much good design):

+ Result of a consistent set of principles and techniques, applied
consistently through all phases of a project

¢ Resilient in the face of (inevitable) changes
+ Source of guidance throughout the product lifetime

+ Reuse of established engineering knowledge

Developing a Software Architecture

Develop a mental model of the application.

As if it were a small application, e.q., personal finance
application ...

“works by receiving money or paying out money, in
any order, controlled through a user interface”.

Decompose into the required components.

Look for high cohesion & low coupling, e.q., personal
finance application ...

decomposes into Assets, Sources, Suppliers, &
Interface.

Repeat this process for the components.

A Classification of Software Architectures

0 Data Flow w\
o Data flowing between functional elements [——[]

O Independent Components
0 -- executing in parallel, occasionally communicating
0 Virtual Machines £

0 Interpreter + program in special-purpose language

O Repositories
0 Primarily built around large data collection —
O Layered

0 Subsystems, each depending one-way on another
subsystem

Common Software Architectures

Layered architecture
Eg, client-server, 3-tier

Model-View-Control architecture
Broker
Interpreter

Pipeline

Typical Software Architecture Layers

0 GUI windows
B reports ul
B speech interface (AKA Presentation, View)
B HTML, XML, XSLT, JSP, Javascript, ...
more
: app.

B hanlilflles presentation layer requests specific
B workflow Application I A
B sessionstate (AKA Workflow, Process, N
B Wlndovy/pgge transitions)) Mediation, App Controller) 2
B consolidation/transformation of disparate g !

data for presentation S |

el

> handles application layer requests s :
> implementation of domain rules Domain e
> doma!n services (POS, Invgntory) (AKA Business,

- services may be usgd by just one . Application Logic, Model)

application, but there is also the possibility

of multi-application services

|

> very general low-level business services Busi Infrastruct

used in many business domains usiness fnirastructure
> CurrencyConverter (AKA Low-level Business Services)

and frameworks (AKA Technical Infrastructure,
9 Persistence, Security High-level Technical Services)

9 low-level technical services, utilities,
and frameworks

9 data structures, threads, math,
file, DB, and network I/O

Foundation
(AKA Core Services, Base Services,
Low-level Technical Services/Infrastructure)

—
9 (relatively) high-level technical services } Technical Services

width implies range of applicability
»

Typical Software Architecture Layers (Simplified)

ul
not the Java
Swing ¢ | Swing libraries, but Web
our GUI classes
based on Swing \
\\
/// \\
/)
/ |
i |
Domain \I(|
I
*‘ *‘ *‘ /I
/
Sales Payments Taxes /
/
/ //
/ Pid
[-
Technical Services 4 el
— — P
Persistence Logging RulesEngine

Layered Systems

“A lavered svstem is organised hierarchically, each laver
providing service to the laver above it and serving as a client to
the layer below.” (Garlan and Shaw)

Each laver collects services at a particular level of abstraction.

In a pure lavered svstem: Lavers are ludden to all except
adjacent lavers.

« ““Onion Skin model™. ..

Components Useful Systess

Composites of T ..

vanouws elements Bn%".:_ Utalrtges
e h //— \

— F oo L1

- Core |
[
| | ™ L:x‘cl/'l .l !
CG"““*‘“T}; \"\}\——- +« corresponds to a stack of lavers.
Usuallwy e
procedure I
calls —

Useful Systems

Basic Tnlities

Core Level

Layers: Structure

Class Collaborator
Layer J e Layer J-1

Responsibility
* Provides services
used by Layer J+1.

* Delegates subtasks
to Layer J-1.

P. Molli

Client

uses

Layers: Structure

Layer N

Layer N-1

|

Layer 1

P. Molli

highest level of abstraction

lowest level of abstraction

26

Layers and Components

Component_3.1 Component_3.2 Component_3.3
B uses

Component_2.1 Layje:j 2 Component_2.2 : Component_2.3

Component_1.1 | 'Ldyer 1 Component_1.2 Component_1.3

P. Molli

27

Layers: Known Uses

virtual machines: JVM and binary code format

AP

|: layer that encapsulates lower layers

information systems

presentation, application logic, domain layer, database

operating systems (relaxed for: kernel and 10 and hardware)

system services,

resource management (object manager, security monitor, process
manager, I/0O manager, VM manager, LPC),

kernel (exception handling, interrupt, multiprocessor
synchronization, threads),

HAL (Hardware Abstraction Layer, e.g. in Linux)

P. Molli 28

Layered Systems

+ Applicability
*+ A large system that is characterised by a mix of high and low level issues,
where high level issues depend on lower level ones.

+ Components

+ Group of subtasks which implement a *virtual machine® at some layver in
the hierarchy

+« Connectors

+ Protocols / interface that define how the lavers will interact

¢ Invariants

+ Limit layer (component) interactions to adjacent layvers (in practice this
may be relaxed for efficiency reasons)

+ Twypical variant relaxing the pure style

*+ A layver may access services of all lavers below it

+ Common Examples

+ Communication protocols: each level supports communication at a level of
abstraction, lower levels provide lower levels of communication, the lowest
level being hardware communications.

Layered System Examples

Example 1: ISO defined the OSI 7-layer architectural model with layers:
Application. Presentation. Data. Physical.
+ Protocol specifies behaviour at each level of ahstraction (layer).

+ [Each layer deals with specific level of communication and uses services of the next
lower level.

Example 2: TCP/IP 1s the basic communications protocol used on the internet.
POSA book describes 4 layers: ftp, tep. ip, Ethernet. The same layers mn a network
communicate “virtually’.

Example 3: Operating systems e.g. hardware layer, ..., kernel, resource
management, ... user level “Onion Skin model™.

Sample Implementation

Policy |
. <<interface>>
Palicy o Folicy Servce
Lanyer Interface

Pechanism]

<<interface>>
¥ Mechanism Service
Interface

Mechanism
Layer

I itility]

Fepmm e

LAl iy
Layer

Layered Systems

+ Strengths
+ Increasing levels of abstraction as we move up through layers —
partitions complex problems
*+ Maintenance - in theory, a laver only interacts with lavers above
and below. Change has minimum effect.

+ Reuse - different implementations of the same level can be
interchanged

+ Standardisation based on lavers e.g. OSI
Weaknesses
+ Not all systems are easily structured in layers (e.g., mobile robotics)

+ Performance - communicating down through layers and back up, hence
bypassing may occur for efficiency reasons

Similar strengths to data abstraction / OO but with multiple levels of
abstraction (e.g. well-defined interfaces, implementation hidden).

Similar to pipelines, e.g., communication with at most one component at
either side. but with richer form of communication.

A layer can be viewed as aka “virtual machine™ providing a standardized
interface to the one above it

Layered Architectures

The Unix Layered Architecture

System Call Interface to Kernel

. Cooked
Pl
Socket HT: TTY
Cooked Block Raw Block RawTTY .
- Interface Interface Interface L}ne
Protocols Syslt:m Disc.
Network
. . Character
Interface Block Device Driver Device Driver

Hardware

Applying Layers Architecture

Ul

Play View High Score

Persistence -

P. Molli 33

Model-View-Controller

A decomposition of an interactive system into three components:
+ A model containing the core functionality and data,
+ Omne or more views displaying information to the user, and

+ One or more controllers that handle user input.

A change-propagation mechanism (1.e., observer) ensures consistency
between user interface and model. e.g.,

+ If the user changes the model through the controller of one view, the other
views will be updated automatically

Sometimes the need for the controller to operate in the context of a given
view may mandate combining the view and the controller into one
component

The division into the MVC components improves maimntamability

MVC

Model-View-Controller

viewl | dantroller] view2 | cbhntroller? view3
Je ey

e Change notification __ _':_

— FEGUEsts, modifications //_, ‘-/\\
subject \ model /

MVC

model, view, and controller communicate regularly
for example:
model notifies the view of state changes

view registers controller to receive user interface events
(e.g., "onClick()"

controller updates the model when input is received

MVC Responsibllities

model responsibilities controller responsibilities
. translate user input into changes
store data in properties in the model
. if change is purely cosmetic,

implement application methods update view
methods to register/unregister views
notify views of state changes
implement application logic
view responsibilities
create interface

update interface when model changes

forward input to controller

Digression: MVC

MVC dates back to Smalltalk, almost 30 years ago.

...In fact MVC actually exhibits a mix of three GoF
design patterns: Strategy, Observer and Composite.

Observer

When an object's value is updated, observers watching it are
notified that the change has occurred.

observers
. vilndaw |!ﬂ| . e |!ﬂ|
al|lb C
w| 60| 30110
y| 60| 30|20
2| B0 1010
d G

—— change notification
———-= requests, modification

subject

P. Molli 39

Observer: Applicability

A change to one object requires changing an unknown set
of other objects.

Object should be able to notify others that may not be
known from the beginning.

Metaphor = newspaper or magazine subscription:

A publisher goes into business and starts printing a periodical.
You subscribe.

Every time a new edition is printed, you receive a copy in the mail.
You unsubscribe when you want to stop receiving new copies.

New copies stop being delivered to you — but other people can still
subscribe and receive their own copies.

P. Molli 40

Observer: Formal Structure

Subject observers wa Observer
AttachiObserver) Undate)
JetachiObserver) , _
Detach{Observer A — Eh
Notify() ¢p------ == o-sUpdate()
J
ConcreteQbserver

. slibject heanvarState =
ConcreteSubject Update 0-- - DDServeraialg =

ot prate) subject->GelStatel)
(etstatel) ©---r-) ahserverstate

subjectState

SetStatel) refumn subjectStale
subjectstate

Observer: Pros and Cons

promotes loose coupling between subject and observer
the subject only knows that an observer implements an interface
new observers can be added or removed at any time

no need to modify the subject to add a new type of observer
subject and objects can be reused independently of each other

support for broadcast communication

may become expensive if many observers, especially for
small changes to a large data area (i.e., broadcasting
redundant information)

P. Molli 42

Observer In Java

* In Java, Observer will usually be an interface rather than an abstract base class
(no surprise, right? :-).

In fact, the Java library already includes an Observer interface and an Observable
class (in the java.util package).

...but the Observable class has some drawbacks:

it is a class, rather than an interface, and it doesn't even implement an interface
— S0 it can't be used by a class that already inherits from something else (no
multiple inheritance in Java)

...and some key methods in it are protected, so it can't be used unless you can
extend it; so much for favouring composition over inheritance :-/

For these reasons, even in Java it's often preferable to write your own Subject
interface and class(es).

P. Molli 43

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

