COMP354

Software Engineering

Lecture 13

Software Architectures



Software Architecture

Basics — do not forget these!

encapsulation, information hiding

decomposition into subsystems, modules

layers

client-supplier relationship

clear clean interfaces

hierarchical uses relationship in module diagram

Architecture looks at structural issues

organization into subsystems and modules
assignment of functionality to components
distribution of control

protocols for communication, synchronization, and
data access

physical allocation of components to processors



Using Known Architectures

There are several well-known architectures
eg, interactive interface, continuous transformation

One or more may match your system requirements.
see Characteristics

Select an appropriate architecture
eg, interactive interface

Focus the architecture to your context
physical events — mouse clicks, keys
physical events — draw, dialog box, file write
user interface — spreadsheet Ul
rest of system — spreadsheet model subsystem
functionality — update and re-calculation

Concentrate on the issues important to that architecture
understanding user protocol
event handler to isolate UI from spreadhseet model

The architecture will give general guidelines on how to
resolve the issues

see Steps in Designing ...



Interactive Interface Architecture
Characterisation

An interactive system is dominated by the interactions
with external agents, such as users, sensors, and IO
devices, over which it has no control.

Events and interactions occur independently of the sys-
tem, (but they may be in response to system prompts).

Design Principles

Isolate the interactive interface from rest of the system.
Understand the protocol of the interaction.
The dynamic model of behaviour is very important.

User Interface
(X Windows)
phyS| cal Event Rest
events Handler of
hvs logical
e weris | Y3
Ussr ———
prompts
"state
machine"
A
" Wel-Defined
Protocol of
Interaction

Steps in Designing an Interactive Interface

e Isolate the objects which form the interface from
the objects that define the application semantics.

e Use predefined objects to interact with external
agents, if possible. eg, a toolbox like XR11.

e Use the dynamic model to structure the pro-
gram. Use concurrent control (multi-tasking), or
use event-driven control (interrupts or callbacks).

e Isolate physical events from logical events.

e Fully specify the application functions invoked by
the interface. Make sure the information to imple-
ment them is present.



Continuous Transformation Architecture
Characterisation

A continuous transformation system has outputs that
actively depend on changing inputs, and severe time
constraints means that the complete output cannot be
recomputed each time the input changes.

New output values must be computed incrementally.

Design Principles

Functional model, together with object model, defines
the values being computed.

Transformation can be implemented as a pipeline.
Input increments propagate down pipeline.

Incremental change needs intermediate objects holding
intermediate values.

Redundant values may be introduced for performance
reasons.

Synchronization of pipeline may be important for high-
performance systems.

Spreadsheet Mediator
M odel data structure

, changed
cell
Spreadshest update mediate contents Spre_adsheet
Model onecell cell changes / cg| view
sequence

Steps in Designing a Continuous Transformation

e Draw data flow diagram. Input and output actors
correspond to data structures whose values change
continuously. Data stores show parameters that
affect input-to-output mapping.

e Define intermediate objects Dbetween pipeline
stages.

e Define incremental version of each pipeline stage,
to be able to propagate incremental changes

e Optimize with additional intermediate objects.



Dynamic Simulation Architecture
Characterisation

A dynamic simulation models or tracks objects in the
real world.

Events and interactions may result from the behaviour
of the objects in the simulation model, as well as there
being user interactions.

Design Principles

Identify and understand the behaviour of the real-world
object in the simulation model.

Control can be either by an explict external controller,
or by message passing between the active objects in the
simulation model.

The dynamic model of behaviour is very important.
There may be complex functional model too.

Steps in Designing an Dynamic Simulation

e Identify the active real-world objects in the simula-
tion model. These have attributes that are period-
ically updated.

e Identify the discrete events, and the corresponding
interactions. Discrete events can be implemented
as operations on the objects.

e Identify continuous dependencies, and model these
approximately as discrete incremental upadtes.

e Generally, there is a timing loop at a fine time scale,
that manages events.



Architectural Styles

An architectural style describes a family of architectures.

An architectural style is described in terms of

components
connectors
configurations
ports

roles

Example: Pipe-and-Filters

unix processes, like grep sort are components
unix pipes are connectors

may only allow linear configuration of pipeline
stdin and stdout are the ports

source, sink, filter are roles

A description of an architectural style provides

e a vocabulary of the basic design elements
(components and connector types),

e a set of configuration rules which constrain how
components and connectors may be configured,

e a semantic interpretation which defines when suit-
ably configured designs have a well-defined meaning
as an architecture, and

e analyses that may be performed on well-defined
designs.



Examples of Architectural Styles

Batch Transformation architectures transform the
entire input data set once.

Continuous Transformation architectures transform
the input data continuously in response to incre-
mental changes in the input.

Interactive Interface architectures are dominated by
external interactions.

Dynamic Simulation architectures simulate evolving
real-world objects.

Real-time System architectures are dominated by
strict timing constraints.

Transaction Manager architectures process trans-
actions on data stores that are being accessed in a
concurrent and distributed fashion.

Hybrid systems combine architectural styles.



Shaw and Garlan

Pipe-and-Filters architectures, like that supported
by the Unix shell, connect filters in a linear fashion.
Each filter has one stream of inputs and one stream
of outputs.

Data Abstraction and Object-Oriented Organiza-
tion architectures promote the decomposition of
the system into entities (data type variables or ob-
jects) that encapsulate their implementation details
and present an interface that completely describes
their behaviour or functionality.

Event-based, Implicit Invocation architectures are
based on componen ts that register an interest in
(a class of) events. The components are invoked
in response to the occurrence of an event implicitly
rather than being called directly by another compo-
nent.

L_ayered System architectures are organized as a hi-
erarchy of layers,each layer providing services to the
layers above it and each layer being a client for the
services provided by layers below it.

Repository architectures have distinct components
for acentral data store (the repository) and those
components which operate upon the repository.
Table Driven Interpreter architectures implement a
software virtual machine (the interpreter) by sepa-
rating the interpretation engine from a table that
describes the machine behaviour.

Heterogeneous architectures combine architectural
styles.



Buschmann et al

Structural

— Layers

— Pipes-and-Filters

— Blackboard
Distributed Systems

— Brokers

Interactive Systems

— Model-View-Controller
— Presentation-Abstraction-Control
Adaptable Systems

— Microkernel

— Reflection



Layered Architecture
The modules of the architecture are assigned to layers
arranged from the least to the most abstract

— |low layers close to machine-level abstractions,
high layers close to user-level abstractions —

A module may use only modules in its own layer and the
layer immediately below.

Example: Client Server



Walkthrough for Object-Oriented Design Quality
Alistair Cockburn

1. Data Connectedness Test
Whether a (domain) model supports the use cases: can
objects access the data they need.

2. Abstraction Test

Does the name of the object convey its abstraction?
Does the abstraction named have a natural meaning and
use in the language of the experts?

Very many objects do not do well in this test.

It is highly subjectivel

3. Responsibility Alignment Test

Do the name, main responsibility statement, and data
and functions align?

During design evolution, usually the latter fattens up
way past the point of what the name or primary respon-
sibility call for.

That is often time to split the object, but sometimes
it is time to rethink what abstraction you really have in
front of you.

4. Variations Test Two parts:

Data Variations Test that the design naturally han-
dles all the sorts and shapes of data the system will
encounter.

Evolution Test What changes are likely in the business
rules, assumptions, use cases, etc. How does the design
handle these?

5. Communications Patterns Test
Run-time communications patterns. Particularly looks
for cycles, but possibly other odd shapes.



Kruchten’s 441 View Model

End-User Programmers
Functionality Software management

Logical View Development View

L
< Scenarios >
v
Process View Physical View
Integrators System Engineers
Performance Topology
Scalability Communications

The logical view describes the design’s object model.

The process view describes the design’s concurrency and
synchronization aspects.

The physical view describes the mapping of the software
onto the hardware and reflects its distributed aspect.

The development view describes the software’s static
organization in its development environment.

The software designers illustrate their architectural
decisions with a few selected scenarios.

The architecture is partially evolved from these
scenarios.



