COMP354

Software Engineering

Lecture 14

Design Patterns



Design Patterns

Micro-architectures that resolve issues of design
offer tentative solutions in issue-driven design

Facade — simplifies interface to a subsystem
hides internal structure of subsystem

Example: most subsystems

Observer — decouples depender from dependee
allows multiple, dynamic dependency
provides protocol for change notification

Example: visual widgets in Java Swing are updated
when notified

Composite — makes a compound object look like a sin-
gle object

especially useful for recursive compound object

Example: document trees (as in XML)

Mediator — manages complicated dependencies

when no one dependee is responsible
for change notification



Design Patterns Descriptions

1. The motivation or context that this pattern applies
to.

2.Prerequisites that should be satisfied before deciding
to use a pattern.

3.A description of the program structure that the pat-
tern will define.

4 A list of the participants needed to complete a pattern.

5.Consequences of using the pattern...both positive and
negative.

6.Examples!



Design Patterns — Gang of Four Catalog — Creational

The Abstract Factory is a type of design pattern that
is used for creating groups of dependent instances of
classes without specifying their concrete classes.

The Singleton Design Pattern makes sure that at any
point of time, there is one and only one instance of a
class present and also provides a global point of access
to the object.

The Factory Design Pattern delegates the work of ob-
ject creation to derived classes of the interface.

The Builder Design Pattern separates the creation of an
instance of a class from its representation so that the
same creation pattern can be used for creating different
representations of the object.

The Prototype Design Pattern creates new instances
of classes by copying its prototype. Micro-architectures
that resolve issues of design



Design Patterns — Gang of Four Catalog — Structural

The Bridge Design Pattern separates an abstract inter-
face from its implementation so that both the interface
and its implementation can change without any depen-
dency between each other.

The Decorator Design Pattern is used when additional
functionality needs to be added to objects dynami-
cally. T his pattern provides an alternative to subclassing
for extending an object’s functionality.

The Flyweight Design Pattern is used to share a large
numbers of small objects efficiently.

The Adapter Design Pattern is a type of design pattern
that is used for converting the interface of a class into
an interface that its clients expect to see. This pattern
allows incompatible interfaces to work together.

The Composite Design Pattern is used to compose ob-
jects so that they can be represented in part-whole hi-
erarchies in tree-structures. This pattern allows clients
to treat individual objects equally.

The Facade Design Pattern is used to provide a high-
level interface that makes the subsystem easier to use.
It helps create a unified interface to a set of interfaces
in the subsystem.

The Proxy Design Pattern is used is used when it is
required to use another object as a substitute to control
access to this object.



Design Patterns — Gang of Four Catalog — Behavioral

The Command Design Pattern helps to encapsulate
each request as an object. This helps in queing or log-
ging requests and helps perform difficult operations.

The Iterator Design Pattern is used to access elements
of an aggregated object sequentially without exposing
its representation.

The Memento Design Pattern helps design how to cap-
ture an object’s internal state so that an object can be
restored to that state later.

The Mediator Design Pattern is used to design encap-
sulation for interaction among objects. It helps design
a loose coupling by preventing objects from referring to
each other directly. This allows to vary their interactions
independently.

The Interpreter Design Pattern helps interpret sentences
in any given language, provided that the grammar for
the language is provided.

The Chain of Responsibility Design Pattern avoids tying
the sender of a request tightly to its receiver. It helps
design chains of receiving objects and pass the request
along the chain until an object handles the request.

The Observer Design Pattern is used to design and de-
fine a one-to-many relationship between objects so that
when one object changes state, all its dependents are
notified and updated automatically.



