COMP354

Software Engineering

Lecture 10—11

Design Overview

Outline

Design process
Design phases
Deliverables

Activities

DESIGN FOR CHANGE
The nature of change

Information hiding, Modularization

How to review designs

Architectures

Design patterns

Design produces a solution meeting the functional and
non-functional constraints of the requirements.

This is called “fitness for purpose”
The solution describes how to do the task.

A “good"” design should provide
e fitness for purpose (correct, reliable, robust)
e maintainable (design for change)
e ‘“positive’” qualities important to user

Design Phases

Architectural Design looks at structural issues
e oOrganization into subsystems and modules
e assignment of functionality to components
e distribution of control
e protocols for communication, synchronization,
and data access
e physical allocation of components to processors

Deliverables: Architectural Design (AD);
Interface Specifications (IS)

Detailed Design provides internal details of each mod-
ule in the design, including
e ecach routine of interface,
e parameters for each routine,
e format of any input/output,
e the data structures and algorithms used,

Deliverables: Detailed Design (DD)

Terminology

Subsystem is subset of the modules making up a system.

Can think of a subsystem as a high-level module,
SO a subsystem is a provider of services

Module is a provider of computational resources or
services

Can think of a class as a module.

Unit is an individual routine, procedure, function

USES relation: M1 uses M2 if, in order for M1 to provide
its services, M1 uses the services of M2

IS COMPONENT_OF relation: M1 is_component_of
M2 if M1 is physically part of M2

also called is_part_of relation
inverse of aggregation relation

IS _A relation: M1 is_a M2 if M1 can be substituted for
M2 wherever M2 is used

also called inherits_from or specialization relation
inverse of generalization

Design Deliverables

Architectural Design (AD) provides

a subsystem and module diagram,

a brief description of the role of each module,
collaboration between modules, and

traceability information between requirements and
the module functionality.

Interface Specifications (IS) describes each service pro-
vided by each module.
To specify a function, give:

name;
argument types;

a requires clause — a condition that must be true
on entry to the function (pre-condition);

an ensures clause — a condition that will be true
on exit from the function (post-condition);

further comments as necessary.

The requires and ensures clause constitute a contract
between the user and implementor of the function.

Detailed Class Design (DD) has the same structure as
the IS of the class, but adds:

data descriptions (e.g. binary search tree);

data declarations (types and names);

a description of how each function will work (pseu-
docode, algorithm, narrative, . . .).

Design Activities

Basics: iterate the following steps
1. propose a tentative design
2. describe as rigorously as necessary
3. trace scenarios to find pitfalls in proposal
4. propose solutions to pitfalls, discuss pros and cons

Informal |) Informal /], / Moreformal |, | Finished
idea design design design

| |

Brainstorming is team discussion to toss around ideas
— free unconstrained flow of ideas

— no criticism of ideas allowed

— collect as many ideas as possible

Follow-up meeting examines, criticises, and selects ideas

Issue-driven design carefully documents rationale for
design by examining issues

For each issue/problem with proposed design:
e describe issue fully
e |ist alternative solutions
e argue pros and cons of each solution
e propose new solution combining best ideas
from all solutions offered
iterate
e decide on solution to the issue/problem

Sometimes issue ‘“remains on the table”
while further investigation is done, eg prototypes

Design Activities Overview

decompose system into subsystems and modules
“execute’” scenarios of software use cases, to clarify

which module does what

which modules are needed

the use they make of each other
their raison d’etre

their responsibilities

iterate until AD document is stable

develop a tentative desigh of module interfaces
“execute’” scenarios of software use cases, to clarify

iterate until IS has a complete elegant interface for each

what is the sequence of calls to the interface
what information is passed (in either direction)
are interfaces complete?

ie each task can be performed

are interfaces elegant?

ie can each task be performed easily

module
(may have to change AD, redistribute responsibilities)

choose the class internal design to meet design trade-
offs using knowledge of data structure and algorithm

trade-offs

(may impact IS, require more info passed in interfaces)

May do all activities at once
— work at different levels of abstraction

Design for Change

A maintainable system should be

understandable A design must be understood before
it can be changed.

Keep things as simple as possible.

Document well. Document top-down. Document
rationale.

modular Want a loosely coupled system of cohesive
modules.

Ideal: A (anticipated) change to a module should
not impact other modules at all.

Cohesion is a property of modules.
A cohesive module provides a small number of
closely related services.

Coupling is a property of systems.
Modules are loosely coupled if the communication
between them is simple.

traceable Design changes may come from changes in
requirements, or from defect reports of code.

It must be easy to find all parts of the design that
correspond to a requirement, or to a piece of code.

The Nature of Change
What can change? Everything and Anything!

change of algorithms — best understood type of
change
eg, sort algorithm

change of data representation — about 17
eg, linked list to hash table
Use abstract data types!

change of underlying abstract machine
eg machine defined by system interface to OS,
DBMS, Windows
Use layers!

change of peripheral devices — especially for em-
bedded systems
eg, device drivers for terminals, disks, LAN
eg, image recognition input devices
eg, sensor input to process control system

change of social environment
eg, changes in tax legislation, accounting obliga-
tions
eg, changes in interest rates
eg, changes in “business rules”

Information Hiding

Information hiding is the main strategy for design for
change.

Encapsulate a module by only allowing access to mod-
ule services via the interface.

The implementation details are hidden.
No other module depends on these details,
so they can change without impacting other modules.

What should be visible in interface?
— as little as possible

What should be hidden?
— as much as possible, especially things likely to change

Module secrets
— data representation, eg symbol table module
— details of abstract machine
eg, interface to X windows, or to file system
eg, details of input formats, syntaxes
— etc

Examples of Modules

Example: a utility module for geometry.
Secret: Representations of geometric objects and
algorithms for manipulating them.
Interface: Abstract data types such as Point, Line,
Circle, etc. Functions such as:
Line makeline (Point p1, p>)
Point makepoint (Line 11, I») Circle
makecircle (Point ¢, float r)
Implementation: Representations for lines, circles,
etc. (In C, these may be exposed in .h files. This
is unfortunate but unavoidable.) Implementation of
each function.

Example: a stack module.

Secret: How stack components are stored (array/list).

Interface: Functions Create, Push, Pop, Empty, Full.

Implementation: For the array representation, Full
returns true if there are no more array elements
available. The list representation returns false
always (assuming memory is not exhausted — but
that is probably a more serious problem).

Example: a screen manager.
Secret: relationship between stored and displayed
data.
Invariant: The objects visible on the screen
correspond to the stored data.
Interface:
Display: add object to store and display it.
Delete: erase object and remove it from store.
Hide: erase object (but keep in store).
Reveal: display a hidden object.
Implementation: An indexed container for objects (or
pointers to objects) and functions to draw and erase

objects.

A Recipe for Module Design

. Decide on a secret.

. Review implementation strategies to ensure
feasibility.

. Design the interface.

. Review the interface.

Is it too simple or too complex? Is it cohesive?

. Plan the implementation.
E.g. choose representations.

. Review the module.

e Is it self-contained?

e Does it use many other modules?

e Can it accommodate likely changes?

e Is it too large (consider splitting) or too small
(consider merging)?

How to Review Designs
Aim: to discover errors, not fix them

Design Review
e panel members study the design document(s) (or
sections)
e Mmark items on checklist that seem incorrect or need
clarification
e panel meets with designers and discuss marked
items

Design Walkthrough
e designer explains logic of the design step by step to
a panel of peers
e panel asks questions, point out errors, seek
clarification

more informal than review

much benefit for designer in the process of articulating
and explaining design

Automated cross checking
eg compiler type-checking procedure calls

Metrics
e number of modules
e fan-in, fan-out
e number of variables, routines, and parameters in
interface

General Design Checklist
Is each requirement taken into account?

Are all assumptions explicitly stated?
— are the assumptions acceptable?

Are there any limitations and constraints in the design
beyond those in the requirements?

Is the design modular?
— and does it conform to local standards (PDL etc)?

Does each rationale for each module provide a clear
strong basis for high cohesion?

Are interfaces of each module completely specified?
Have exceptional conditions been handled?

Are the sizes of data structures estimated?
—are there provisions to guard against overflow?

Are there analyses to demonstrate that performance
requirements can be met?

AD Checklist
Is each requirement taken into account?

Is the design modular?
— and does it conform to local standards (PDL etc)?

Does each rationale for each module provide a clear
strong basis for high cohesion?

IS Checklist
Are interfaces of each module completely specified?
Have exceptional conditions been handled?

Are all pre- and postconditions explicitly stated?
— do they only refer to parameters of the routine?
(and not to global variables or events)

Does IS conform to AD?
Does IS conform to local standards (PDL etc)?

Is the format of data consistent with externally specified
input/output formats?

DD Checklist
Does each module in the design exist in the DD?
Are interfaces in DD consistent with IS?
Is each statement in the DD easily codable?
Are the loop termination conditions clearly stated?
Are conditions in loops and if-statements OK?
Is the module logic too complex?
Is the nesting proper?

Do references to routines and variables in the same
module indicate high cohesion?

Do references to routines and variables in the each other
module indicate low coupling?

Are the sizes of data structures estimated?
— are there provisions to guard against overflow?

Are there analyses to demonstrate that performance
requirements can be met?

COMP354

Software Engineering

Lecture 12

Design Documents

OO Arcitectural Design Document
This document describes the architecture of the system.

The models of this document extend those of the OO
Analysis Document by adding “solution-specific’ classes
and providing more detail (= the design decisions).

Rationale summarises the main issues and their se-
lected solutions.

Architecture is a high-level decomposition of the
system into subsystems, with the system topology
describing the client-supplier and peer-to-peer rela-
tionships between subsystems.

Object Model records the entities and their relation-
ships. The entities are organised into classes, and
allocated to subsystems.

There is an overview diagram, followed by several
diagrams detailing attributes and interfaces of
major classes.

Dynamic Model records when, and in what order,
events occur as the user interacts with the system.
Events may be calls to interface of a class.

Functional Model records the dependencies between
each function (or process) of the system and the
dataflows which are the inputs and outputs of the
functions.

Data Dictionary records definitions of terms used in
the above models.

Architecture

User Interface Event Handler SpreadSheetM odel
@ quit IconBar | load SpreadSheset
Handler

) CellContents
string

User InputLine tring [nﬁgrt]laligre |
select
string string formula ’7Ceﬂ—‘
CellCantents| Q
= :

CellContents

. CellvVaue i
ceoro Handlr
sdect SetDependency
| g | | MessageLine caculate
Handler
error T Dependency
M anager
File CellContents File

Manager

Subsystem: a major component of a system;
provides a service; a package of interrelated classes,
associations, ...; has a small well-defined interface
Client/Supplier: C uses S

Peer-to-Peer: P2 uses P2 N P2 uses P1
direct or indirect use; cycles = hard to understand

Layer: supplier to layer above/client to layer below
Partition: loosely-coupled peer-to-peer subsystems

System Topology: the structure of the dependen-
cies (including uses relation and information flow
and control flow) between subsystems

Object Model

Event Handler

CellName selected
String currentFile
{Edit,Load,Save} mode
DoSelect(CellName)
DoEnterString()

Dol oad()
DoSave()
DoQuit()

Icon Bar Handler Cell Grid Handler Message Line Handler
Dol oad() DoSelect(CellName) DisplayM essage(String)
DoSave() DisplayChanges()

DoQuit()
File Manager
bool IsValid(String)

Input Line Handl Par ser bool IsReadable(String)

bool IsWritable(String)
. bool IsFormula(String) DoL oad(String)
DoEnterString() Formula Parse(String) DoSave(String)

Note description of attributes and interface

SpreadSheet

$create()

$delete()

Clear()

CellContents Get(CellName)
SetCell Contents(Cell Contents)
Set<CellValues> GetChangedCells()
bool HasArithmeticError()

bool HasCircularity()

String GetErrorM essage()

$create and $delete are language-dependent constructor
and destructor routines respectively

Set<CellValues> iS instance of template class Set
is a type representing ‘“set of CellValues”

Dynamic Model

=

e K I
Active

DoSdlect(n)

DoSave Editting
LSaving L oadi @

DoSave DoSelect(n) DoL oad

Dol oad

Nested state: Active
composed of substates Editting, Saving, Loading

transition can go directly to a substate:
ed Idle — Saving

transition can go from any substate by starting at
boundary of nested state:

eg DoSave from edge of Active tO Saving

is abbreviation for three (3) transitions, one from each
substate of Active

Note automatic transition from boundary to Idle

when activity of Editting, Saving, Loading terminates,
we transition automatically to Idle

For next diagram: transition to boundary of nested state
is a transition to the initial substate of the nested state

State Diagram (Completed)

DoEnterString [isvalid]
P EditSelect CédllContents UpdateSS Display @
entry/ GetString do: SS::SetCellContents do: DisplayChanges
itti [~isvalid] @
Editting IDisplayM o)
/loadi con::highlight(T) DoEnterString [isVaid&isReadable] /loadl con::highlight(F)

FileName

entry/ GetString

LoadFile
do: FM::Dol oad
[~(isValid&isReadable)] @

Display
do: DisplayChanges

Saving

Loading IDisplayMessage(..)
/savelcon::highlight(T) DoEnterString [isvalid&iswritable] /savel con::highlight(F)
o | Savesdect FileName SaveFile <:>
entry/ GetString do: FM::DoSave

[~(isValid&iswritable)] @

/DisplayM essage(...)

transition
the initial

to boundary of nested state is a transition to

substate of the nested state

SO Idle — Saving in previous digram

is really a

Entering
substate

transition Idle — SaveSelect

a final state terminates the *“activity” of the

SO automatic transitions are then able to occur

eg entering one of the above final states allows the
automatic transition from boundary of Active to Idle to

occur

Documenting Interfaces

The Architectural Design Document usually specifies
interfaces too.

At least for subsystems, and major modules, even if not
all class interfaces.

Interface should

e indicate exported types
e specify functions
— name, arguments, return results
— pre- and post-conditions
— exceptions (eg divide-by-zero)
— informal comments to complement formal spec.
e avoid exporting constant (use function instead)
e avoid exporting variable (use function instead)

Pre-conditions should mention only
— arguments
— “state” of module (eg module variables)

Post-conditions should mention only
— arguments

— return result

— Ystate” of module

IS should conform to the standard for design notation

Hints of Specifying Interfaces

When there are several cases,
use several pairs of requires/ensures

void Line (Point p, Point q)
ensures if p and g are in the workspace
then a line joining them is displayed

else nothing happens.

is better as

void Line (Point p, Point q)
requires p and q are in the workspace
ensures a line joining p and q is displayed

requires either p or q is outside the workspace
ensures Nothing

In general

requires nothing
ensures if P then X else Y

can be more clearly expressed in the form

requires P
ensures X
requires — P
ensures Y

