COMP354

Software Engineering

Lecture 15—18

Formal Specifications

Formal Specifications Overview

Aim: to be able to read formal specifications

Z — a model-based specification

system = state space + operations
schema, Delta schema, Xi schema
invariants, pre- and post-conditions
notations: ’> ? !

deriving properties

error states and combining schemas
implementation/refinement

Larch — an algebraic specification

e abstract data types
—operations and their behaviour
e jargon:
— sort, defines type for parameters and results
— signature (=syntax), is operation “prototype”
— equations (=semantics), define constraints on
operations
e generic ADT'’s
e equations as axioms, conditional equations
deriving properties via proof:. rewriting, induction

Summary of formal specification

Z Specification Language
Z is a model-based specification language

Z separates system into static and dynamic aspects

static part is a description of the state space

a schema describes the components of a state space
and the invariant properties of states

dynamic part is described in terms of operations

operations change state and/or map input to output

an operation is described by a Delta schema
or Xi schema

these schemas describe the relation of inputs to outputs
and changes of state

Z uses mathematical data types — sets, sequences, map

Z uses predicate logic

Z Example: The Birthday Book

1. introduce basic types

[INAME, DATE]

2. define state space by a schema

e Nname of schema: BirthdayBook
e components: known, birthday
e types of values of components
— a set of NAME
— a partial function from NAME to DATE
e state invariant
a birthdate is recorded for each known name, and
only those names

__ BirthdayBook

known : P NAME
birthday : NAME —+— DATE

known = dom birthday

Example of a state satisfying the schema

known = { John, Mike, Susan }

birthday = {John +— 25—Mar,
Mike +— 20—Dec,
Susan — 20—Dec }.

3a. Define operations
An operation to add a birthday to the book

__AddBirthday
ABirthdayBook
name? : NAME
date? : DATE

name? & known

birthday’ = birthday U {name? — date?}

A BirthdayBook indicates a possible state change
before state: known, birthday
after state: knownr’, birthday’

NB they satisfy the state invariant of BirthdayBook

they also satisfy the predicates in AddBirthday schema
pre-condition: name is not already known

postcondition: name is in the birthday book

? indicates that a variable is an input

3b. Reason about specification:

A sample proof
Can we deduce an expected fact:

known' = known U {name?}.

Yes, using the invariants on the state before and after
the operation:

known'

= dom birthday’ [invariant after]
= dom(birthday U {name? — date?}) [spec. of AddBirthday]
= dom birthday U dom {name? — date?} [fact about dom]
= dom birthday U {name?} [fact about dom]

= known U {name?}. [invariant before]

3a. Another operation

~_FindBirthday

=BirthdayBook
name? : NAME
date! : DATE

name? € known

date! = birthday(name?)

=BirthdayBook indicates no state change, so

known = known’

birthday = birthday’

I indicates an output variable

3a. Another operation

returns the set of cards to send on a particular day

~ Remind
=BirthdayBook
today? : DATE
cards! : P NAME

cards! = { n: known | birthday(n) = today? }

4. The initial state of the system

__InitBirthdayBook
BirthdayBook

known = &

Incremental development: Adding error conditions

5. Add error conditions
5a. An extra output to report errors

declare enumerations by listing the alternatives

REPORT ::= ok | already_known | not_known

___Success
result! : REPORT

result! = ok

5b. Add error handling operation

__AlreadyKnown
=BirthdayBook
name? : NAME
result! : REPORT

name? € known

result! = already_known

5c. Define robust version of AddBirthday: compose
schemas

RAddBirthday = (AddBirthday A Success) V AlreadyKnown.

Composition of Schemas

Logical connectives combine entire specifications

A robust specification handles all cases

RAddBirthday = (AddBirthday A Success) V AlreadyKnown.

The schema RAddBIrthday in full:

 RAddBirthday
ABirthdayBook
name? : NAME
date? : DATE
result! : REPORT

(name? ¢ known A
birthday’ = birthday U {name? — date?} A
result! = ok) Vv
(name? € known A
birthday’ = birthday A
result! = already_known)

Robust versions of FindBirthday and Remind

~ NotKnown
=BirthdayBook
name? : NAME
result! : REPORT

name? & known

result! = not_known

Robust FindBirthday checks that the name is known

RFindBirthday = (FindBirthday A Success) V NotKnown.

The Remind operation can be called at any time

RRemind = Remind AN Success.

Refinement of the Specification

A more concrete description of the system using arrays
of names and dates.

Remember an array is just a map

names : Ny — NAME
dates : N7 — DATE.

1. Define the more concrete state space
(hwm stands for “high water mark™)

_ BirthdayBook1

names : N7 — NAME
dates : N1 — DATE
hwm : N

Vi,j:1..hwme
i = j = names(i) # names(j)

2. Define the abstraction homorphism relating the two
models

~_Abs

BirthdayBook
BirthdayBook1

known = {i:1.. hwm e names(i) }

Vi:1l..hwme
birthday(names(i)) = dates(i)

3. Define concrete operations
To add a new entry, we increment the array index.
fe{xw— y}is the same as f except that f(x) =y

—_AddBirthday1

ABirthdayBook1
name? : NAME
date? : DATE

Vi:1l..hwm e name? %= names(i)

hwm' = hwm + 1
names’ = names @ {hwm' — name7?}
dates’ = dates @ {hwm' — date?}

We can show:

1. Whenever AddBirthday is legal in some abstract
state, the implementation AddBirthdayl1 is legal in
any corresponding concrete state.

2. The final state which results from AddBirthdayl
represents an abstract state which AddBirthday
could produce.

It is now a simple matter to write code to implement
the specification.

procedure AddBirthday (Name: NAME; Date: DATE);

begin
hwm := hwm + 1;
names [hwm] := Name;
dates[hwm] := Date

end;

A search is abstracted by existential quantification.

_ _FindBirthday1
=BirthdayBook1
name? : NAME
date! : DATE

di:1..hwme
name? = names(i) N\ date! = dates(i)

procedure FindBirthday (Name: NAME; var Date: DATE);
var i: integer;

begin
i:=1;
while names[i] <> Name do
i:=1+ 1;
Date := dates[i]
end;

Initialization is straightforward:

__InitBirthdayBook1
BirthdayBook1

hwm =20

Initialization leaves the set of known names empty:

known

={i:1.. hwm e names(i)} [from Abs]
={i:1..0enames(i)} [from InitBirthdayBook1]
= . [since 1..0 =]

procedure Initialize;
begin
hwm := 0
end;

Summary of Z

precise

separation of concerns
e static vs dynamic
e Mmodularization into schemas

e decomposition of schemas
eg normal behaviour and error conditions

abstraction homomorphism aids traceability

supports refinement — in several steps, if necessary —
from specification to implementation

Larch — Algebraic Specifications

An algebraic specification views an ADT as

an abstract algebra of values

a set of operations that manipulate those values

axioms/rules that spcify the “meaning” of the operation

Larch Shared Language

algebra StringSpec

introduces

sorts String, Char, Nat, Bool;

operations
new: O -> String;
append: String, String -> String;
add: String, Char -> String;
length: String -> Nat;
isEmpty: String -> Bool;

equal: String, String -> Bool;
constrains new, append, add, length, isEmpty, equal so that
for all [s, s1, s2: String; c: Char]

isEmpty(new()) = true;

isEmpty(add(s,c)) = false;

length(new()) = 0;

length(add(s,c)) = length(s) + 1;

append(s, new()) = s;

append(s1, add(s2,c)) = add(append(s1l,s2), c);

equal(new(), new()) = true;

equal(new(), add(s,c)) = false;

equal(add(sl,c), new()) = false;

equal(add(sl,c), add(s2,c)) = equal(s1l, s2);
end StringSpec.

Larch — Implementing from Algebraic Specifications

Larch Shared Language (LSL)

specify ADTs independent of implementation language

Larch Interface Language, eg Larch/Pascal
connect between LSL ADTs and the implementation

it uses Pascal types
it defines Pascal routines for the operations

specifies interfaces like the MIS document

also includes traceability information by documenting
the mapping (called an abstraction homomorphism)
between the algebraic specification (in LSL) of ADT
and the implementation representation (in Pascal)

Larch/Pascal Example

type String exports isEmpty, add, append, length
based on Boolean, integer, char

function isEmpty(s: String): Boolean
modifies at most [] {ie it has no side-effects}
requires true {ie no precondition, usually omit}
ensures result = isEmpty(s) {refers to StringSpec::isEmpty}

procedure add(var s: String; c: char)

modifies at most [s] {ie the only side-effects are
to maybe modify s}
ensures s’ = add(s, c) {prime ’ indicates post-value of s}

function length(s: String): integer
modifies at most []
ensures result = length(s)

procedure append(var sl, s2, s3: String)
modifies at most [s3] {ie the only side-effects are
to maybe modify s3, although
all of s1, 2, s3 are passed
by reference}
ensures s3’ = append(s1, s2)

end String.

symbols in pre- and post-conditions refer to LSL
they are “abstract” values

! refers to final value, eg s3/

Summary of Formal Specifications

“formal” means the notation used has a precisely defined
syntax and semantics

usually notation is based on
logic 4+ set theory + algebra ...

NB A formal specification should include
an informal English description
to help the user understand the formal specification

operational specification describes behaviour of system
eg finite state machines, petri nets, data flow diagrams

declarative specification describes properties of system
eg logic, Z

NB There is a close interaction between
e requirements analysis and specification
e architectural design
e formal requirements specification

Advantages of Formal Specifications

The development of a formal specification provides in-
sights into and understanding of the software require-
ments and the software design.

Given a formal specification and a complete formal def-
inition of a programming language, it may be possible
to prove that a program conforms to its specification.

automatic processing of formal specifications

basis for tools

animate a formal specification and provide a prototype

Formal specifications are mathematical entities, and can
be studied and analysed using mathematical techniques.

can guide the tester to identify test cases

Obstacles to Adoption of Formal Specifications

Management is inherently conservative and unwilling to
adopt new techniques whose payoff is not obvious.

Most software engineers have not been trained in
techniques of formal software specifications.

System procurers are unwilling to fund development
activities they cannot readily influence (because they do
not understand the notations etc).

Some classes of software are very difficult to specify
e user interfaces
e interrupt-driven systems
e real-time systems

Widespread ignorance of formal methods and their
applicability.

Lack of tools

Poor public relations by academics (in formal methods)
who do not understand practical software engineering.

Verification of Formal Specifications

1. by observing dynamic behaviour

e simulation, using prototypes

e animation of specifications, using symbolic
execution

2. by analysing properties
eg, deduce properties from the specification

e by hand

e uUsing theorem provers

