COMP354

Software Engineering

Lecture 6

Principles



Definitions for Software Engineering

Product — what we are trying to build.
Process — the methods we use to build the product.
Method — a guideline that describes an activity.

Methods are general, abstract, widely applicable.
Example: top-down design.

Technique — a precise rule that defines an activity.
Techniques are precise, particular, and limited.
Example: loop termination proof.

Tool — a mechanical/automated aid to assist in the
application of a methodology.
Examples: editor, compiler, . . .

Methodology — a collection of technigques and tools.

Rigor — careful and precise reasoning.
Example: an SRD should be rigorous.

Formal — reasoning based on a mechanical set of rules
(“formal system™).
Example: prog. language, predicate calculus.

Use rigor as much as possible.
Use formality when suitable tools are available
(compilers, parser generators, proof checkers, . . .



Software Qualities

We need to be concerned with quality of products and
process from an internal and external perspective.

qualities have different importance depending on project
— maintainability is generally the most important

Correctness: software is functionally correct if it
behaves according to the specification

Reliability: Can the user can depend on it?
eg what is the probability of error in a given time unit

Robustnhess: behaves ""reasonably” even in circum-
stances not anticipated in the requirements specification

Performance: The software should have good
space/time utilization, fast response times, and the
worst response time should not be too different from
the average response time.

Predicting performance
e measurement — monitor/profile actual product
e analysis — Big-Oh, queuing models
e simulation — run a physical simulation model

Friendly: The software should be easy to use, should
not irritate the user, and should be consistent.



More Software Qualities

Maintainable: How easy is it to perform the following

corrective maintenance removal of residual defects in

product

adaptive maintenance adapting product to changes in

the environment

perfective maintenance improving the product

For

— better performance
— higher quality code and documentation
— requests from user/customer

maintainability, software needs
Easy to correct or upgrade.

Code traceable to design; design traceable to re-
quirements.

Clear simple code: no hacker’s tricks.
Good documentation.
Simple interfaces between modules.

More later — DESIGN FOR CHANGE.



More Software Qualities

Verifiable: It should be easy to verify properties of the
product such as correctness and performance

Reusable: How easy is it to reuse the software (in whole
or in part) for other applications

AlsO reuse

e software libraries, eg scientific, Unix utilities
window interfaces, eg X, Motif
experience of engineer — application domain, tools
design of components
specifications
components of methodologies and processes

Portable: software is portable if it can run in different
environments eg hardware platforms, operating systems

Portability and efficiency are incompatible. Highly
portable systems consist of many layers, each layer
hiding local details. Recent achievements in portability
depend on fast processors and large memories.

Interoperable: The software should be able to cooper-
ate with other software (word-processors, spread-sheets,
graphics packages, . . .).

Productivity: efficiency of the software development
process

Timeliness: the ability to deliver a product to market
on time



Principles of Software Engineering

People are Human

Separation of Concerns
Modularity
Incrementality

Abstraction
Generality

Anticipation of Change

Rigor and Formality



People are Human
People make mistakes

Human intellect can handle only limited amounts of
information (unless it is structured")

Change is inevitable

Main Obstacles to Software Engineering
Re-work
Complexity

Change



Separation of Concerns
Very important principle with many applications in SE

To deal with complexity, separate concerns and look
at each concern separately.
e Separation in time

— do requirements analysis before design

— creative design in the morning, meetings in af-
ternoon

— do study during the week, personal interests on
weekends

e Separation by qualities
— deal with correctness, then deal with efficiency
e Separation by views

— data flow through a system

— control/decision making within system
— concurrency and synchronization

— timing restrictions of a real time system

each view highlights different concerns
e Separation into parts — modularity, abstraction



Examples of Separation of Concerns

Specification (what) vs implementation (how).
This applies to program modules, procedures, func-
tions, statements, ADTSs,

Correctness vs efficiency. Get it working first, then
attend to performance.

Functional vs non-functional requirements.
Spreadsheet design: cell manipulation vs display.
Application code vs user interface code.

In-memory processing vs disk access.
A typical sequence is logical data — blocked data
— disk buffers — disk controller.

In DOS: file name (user level) — file descriptor
(DOS level) — disk address (BIOS level) — driver
routines.

Form vs content in word processing.
Example: Latex style files.



Abstraction

concentrate on general aspects of the problem while
carefully removing detailed aspects

concentrate on important aspects and downplay the
unimportant

NB what is important or general varies
eg “person’” record in medical database vs payroll vs
sports performance analysis

e ''How' abstracts to “what”.
e Memory addresses abstract to variable names.

e Code performing a task abstracts to a procedure
name.

e Bit string (C) abstracts to set (Pascal).

e In concurrent programming, we abstract away from
linear time: given events E and E’, we need to know
only which must occur first. If delay is important,
we have abstracted too much!

e Mathematics is the language of abstraction! Sets,
functions, relations, graphs, trees, logic . . . are
used because they provide models of things that we
need.



Anticipation of Change
Change will occur!

write all documents and code under the assumption that
they will subsequently be corrected, adapted, or changed
by somebody else.

requires special effort to prepare for change/evolution

e Of software: documentation, modularization,
configuration management

e Of processes: document the process, modularize the
process

e Of personnel: documentation, training



Rigor and Formality
rigour is achieved by conforming to given constraints

Examples of constraints
e using a given format for the requirements document
e documenting input and output of each proce-
dure/function
e |limits on number and size of modules
e following company standards for the development
process

rigour is a necessary complement to creativity in SE

— it provides shape, direction, precision, and the ability
to compare and measure

there are many levels of rigour

formality is highest degree of rigour:

it requires the process to be driven and evaluated by
mathematical laws



Modularity
product or process composed of components/modules

greatly aids separation of concerns
— better understandability

— easier to change

— modules reusable

high cohesion within a module if all its elements are
strongly related: ie there is a very good reason why
they are together

low coupling between modules if the communication
between them is simple

Incrementality
increment = a small step/change

It is easier to make small changes to a working system
than to rebuild the system. Why? Because if the mod-
ified system does not work, the errors must have been
introduced by the small changes

incremental prototyping

Generality
more general = able to handle more cases
use of general purpose tools, eg awk

more general program may be simpler and reusable
— fewer special cases in specification
— able to handle a broader range of inputs/uses



