COMP354

Software Engineering

Lecture 22—23

Quality, Measurement, Metrics

Outline

Quality Factor, Criteria, Metric

e internal vs external
e utility vs life-cycle view
e Of product, resources, process

Measurement Theory

Common Metrics

lines of code (LOC)
Halstead
McCabe

o
o
L
e function points

Do's and Don't’'s for Metrics

A Software Quality Program

Quality Factor, Criteria, Metric
management-oriented view
of product quality
.‘@. softwar e-oriented attributes
which provide quality

Metric quantitative measur es of
those attributes

Quality Factor is a property of a system that impacts
its “quality” from a management point of view

eqg, reliability, usability, maintainability, ...
These are external quality characteristics of the system.

Quality Criteria is a property of the software that
impacts a quality factor

eg, modularity, simplicity, traceability
These are internal quality characteristics of the system.

Quality Metric is a quantitative measure of an attribute
of the software that relates to a quality criteria

eg, lines of code, number of tests passed, score on a
checklist

The Problem: Are they related?

objective

measur es empirical

of metrics results
Link?
assess? — assess?
quality quality

criteria factor

Utility vs Life-cycle View

Some qualities concern the final product,
others the maintenance of the product

Life-Cycle View

M aintainability I nter oper ability
Canl fixit? Will | be able to interface it with another system?
Flexibility Reusability
Can | changeit? Will | be able to reuse some of the software?
Testability Portability
Can | test it? Product Product Will | be able to use it on another machine?
Revision Transition

Product
Operation

Correctness Doesit dowhat | want?
Reliability Doesit do it accurately all the time?

Efficiency Will it run on my hardware as well asit can?
Integrity Isit secure?
Usability Canl runit?

Product Utility View

Product, Resource, Process

Measurements can be made of different entities.

e SE products: the code and documents

code metrics: LOC, etc
design metrics: coupling, cohesion?
requirement metrics?: function points?

e SE resources: the inputs to the process

measures of task: requirements for system
measures of available computer resources

measures of available human resources
quantity, skill set

e SE process: the activities of the process

measure time, cost, effort of activity

measure effectiveness of activity in terms of
measures on its products and efficiency

Measurement Theory
Fenton offers a scientific basis for software metrics.

Measurement theory provides framework for Link?
between metrics and empiricism.

empirical relation system (C, R)
C is a set of entities and R is a set of relations

C = the set of people
R = the relation ‘is taller than”

numerical relation system (N, P)
N is a set of numbers and P is a relation on N

N = the set of real numbers in [0, 120]
P = the relation >

A numerical relation system is a representation of an
empirical representation system if the representation
condition is satisfied.

x is taller thany < h(x) > h(y)

where h(x) is the height of person x in inches

A relation R is a strict weak order if:
e it is asymmetric (xRy implies - yRx), and
e it is negatively transitive (there are no values x, YV,
and z such that xRy, yRz, and zRXx).

Cantor’s Theorem The empirical relation system
(C, R) has a representation in R,< if and only if R is a
strict weak order. (R is the set of real numbers.)

Measurement Theory — Student Example

empirical system: Students, with relation

“X is smarter than Y
numerical system: Students, with relation

“X has a higher GPA than Y”

But the representation condition is no longer so clear

Student Grades
X B B B B
Y A C A C
Z A A C C

All three students have the same GPA,
but do they have the same “smartness’ ?

Common Metrics — Lines of Code
Simple, common metric

Illustrates difficulties of using metrics:

Clearly defined?

Do we count blank lines, lines with comments, lines that
contain just “begin’” or just “{"7

Jones identified eleven different ways of counting lines
with 500% variation.

Easily interpreted?
What is being measured?
Is a long program better or worse than a short program??

Is the amount of effort required to write a program
proportional to the LOCs in the program?

Standard for comparison across projects?

LOCs clearly depend on the programming language we
use, but how?

Common Metrics — Halstead’s Software Science

Count
a = the number of distinct operators in the program
b = the number of distinct operands in the program
X = the total number of operators in the program
Y = the total number of operands in the program
Define

V. = a4+ b = the vocabulary of the program

S = X+4Y = thesize of the program

Halstead argues that the program must contain all of
the 25 ordered subsets of S elements. Thus

2° = Vv.a?.pP,
Thus we can obtain the following estimate S of S:

~

S =1logo, V + alogs a+ blog» b.

The reasoning seems dubious.

Nevertheless, experiments show the actual size and
Halstead's estimate agree within 10%

Common Metrics — McCabe’s Cyclomatic Complexity

Count entities of the control flow graph of the program:

e = the number of edges
n = the number of nodes
p = the number of connected components (usually 1)

Define the cyclomatic complexity of the graph, C,
C=e—n++2p.

McCabe says that well-structured modules should have
a cyclomatic complexity between 3 and 7, with 10 as
the upper limit.

Problem: if we ask programmers to rank flowgraphs,
according to “simplicity”, the programmers do not agree
with cyclomatic complexity rankings.

s
N

C(x) =2 C(y) =3 C(z)=2

Common Metrics — Function Points

Function points attempt to quantify the functionality of
a system

metric has been empirically derived from IS applications
Calculation:

FP = cl1 * wl + c2 *x w2 + c3 * w3 + c4 * w4 + cb * wb

cl = number of inputs weight wl = 4
c2 = number of outputs weight w2 = 5
c3 = number of inquiries weight w3 = 4
c4 = number of files weight w4 = 10
c5 = number of interfaces weight wb =7

inputs: distinct number of items that the user provides
to the system

outputs: distinct number of items that the system
provides to the user
only count each screen or file of items as one item

inquiries: distinct number of interactive queries by the
user that require action by the system

files: any group of information maintained by the system
on behalf of the user
does not include temporary files used only for one run

interfaces: external interfaces to other systems
may include files — counted twice — if shared between
applications

Do’s and Don’t’s for Metrics

Measurement is likely to succeed if measurement results:

e are used to make decisions;

e are communicated and accepted outside the
measuring department;

e are accumulated for at least two years.

Measurement is likely to fail if:

e the purpose is not clearly defined;

e Mmeasurement is perceived to be irrelevant;

e programmers perceive measurement as critical of
their performance;

e overworked staff are given additional work;

e management ignores the results of measurement;

Summary
Big Question: Can we measure program complexity?

Halstead’s theory: based on statistical expectations;
some quite good predictions; pseudoscience.

McCabe’s theory: based on flowgraph properties; a few
predictions; pseudoscience.

Function points: based on detailed study of IS programs;
quite useful; semiscience.

Big Question: How important is it to measure
software?

According to Glass, the major problem — and the cause
of many software “failures” — is the failure to estimate
accurately

i.e. late delivery and budget excesses are not really a
failure of software engineering but rather a failure to
estimate the amount of work required to complete a
project.

Are poor estimates due to inability to measure/estimate
complexity?

A Software Quality Program
Training programming staff in new techniques, methods,
and tool use

Evaluation of effectiveness of current development
methods and tools

Project, quality program, and test program planning as
policy or standards dictate

Use of reviews, analysis tools, and tests to find defects
at the earliest possible time

Library control, change control, distribution, and
storage as per project plan and relevant policies or
standards

Recording of all defects found and follow-up to make
certain they are corrected

Collection of defect data and subsequent analysis of
defect, fault detection, and failure modality

Use of defect data to improve process

Generation and analysis of various data for early
indication of adverse product or project control trends

Product qualification
Gathering, analysing, and evaluating user feedback

Survey of potential software vendors and surveillance of
their performance

Objective evaluation of the fidelity with which plans and
applicable standards are followed

Empowerment of staff to prevent defective code,
artifacts of development, and user documentation from
being entered into the system or delivered

