COMP354

Software Engineering

Lecture 3 and 4

Requirements and Analysis

Requirements and Analysis

Analysis is the process of understanding a problem and
breaking it down into its constituent parts.

For software systems, the “parts” are the requirements,
both functional requirements concerned with the
behavior of the system in terms of responding to user
inputs, and

all other constraints on the system, the so-called
non-functional requirements.

Analysis concentrates on what is required

Communicating with customers and users is aided by
use cases, usage scenarios, and diagrams

Main product is the Software Requirements Document
(SRD)

but sometimes a user manual is used to capture require-
ments

and test cases and prototypes of user interface
are also produced during analysis

In OO methodologies the document produced may be
an Analysis Model, or Analysis Document with several
models.

Object-Oriented Analysis Document

This document describes the system from the users
perspective

Records WHAT, not HOW.

Problem Statement summarises the purpose of the
system

Context Diagram shows the external actors that inter-
act with the system. Places the system in context.

Use Cases capture what services the system provides
to users in a user-friendly text narrative, and orga-
nizes the use cases by identifying common services

Structural Models record the entities and their rela-
tionships. The entities are organised into classes.

Behavioral Models record when, and in what order,
events occur as the user interacts with the system.

Global collaboration diagram shows overview of
message-passing between structural elements.

Data Dictionary records definitions of terms used in
the above models

Context
The context captures where the software system is to fit

in the broader scheme of things, such as the operations
of the company.

Context diagram is often a use case diagram; often just
free-form picture

STATION
|:| VLR SWITCH
MOBILE /
STATION VLR
HLR
Mobile Telephony System Switching System

\&/ NS/

Switching System VLR

Home Location Register(HLR) is a database of sub-
scriber information

Visitor Location Register(VLR) is the local database of
information on subscribers roaming in the service area

of the Switch

Use Cases

Use cases capture the functionality of a system, called
the target system, as it is meant to behave in a given
environment called the host system.

A use case describes how a group of external entities,
called actors, make use of the target system.

The use they make is modeled by the passing of signals
or information between the actors and the system.

We will call these messages.
stimuli are messages from actors to the system

responses are messages from the system to actors

Several actors may participate in a use case.
the primary actor is the actor who initiates the use case

the other actors are called secondary

Use Cases

A use case is a description of a cohesive set of dialogues
that the primary actor initiates with a system.

The dialogues are cohesive in the sense that they are
related to the same task, or form part of the same trans-
action.

Cohesiveness is often determined by having a goal in
common for the tasks, or by having a common respon-
sibility that must be fulfilled.

Mobile Telephony System

%;%

Subscriber Oper ator
Callee

check
w call back

Switching System

Describing a Use Case

Textual Synopsis of a Use Case

Use Case # 1: Make a Call
Primary Actor: Subscriber
Secondary Actor: Callee, Operator
Goal: To connect to Callee and talk.

As a Collection of Scenarios
a scenario is

“a description of one or more end-to-end transactions
involving the required system and its environment”

e Mmain scenario

e Vvariant scenario

e exceptional scenario
e recovery scenario

e failure scenario

e alternative scenario

Kinds of Scenarios

main scenario describes the usual way in which the task
is successfully performed

Typically, in the main scenario, the simplest sequence
of interactions is described, and it is assumed that all
steps execute successfully.

One high-level way to describe a use case is to include
the main scenario with the textual synopsis.

Use Case # 1: Make a Call

Primary Actor: Subscriber
Secondary Actor: Callee, Operator
Goal: To connect to Callee and talk.
Main Scenario: The Subscriber dials
the Callee’s number, is connected, and
speaks with the Callee. The Subscriber
hangs up.

variant scenario describes another way of using the sys-
tem where it is assumed that all steps execute success-
fully

exceptional scenario describes a scenario where excep-
tional or error conditions may arise

recovery scenario is an exceptional scenario where it is
possible to recov er and to complete the task

failure scenario is an exceptional scenario where it is not
possible to re cover

alternative scenario is either variant or exceptional

Describing Scenarios

Narrative

The Subscriber dials the Callee’'s num-
ber, is connected, and speaks with the
Callee. The Subscriber hangs up.

Example of Variant Scenario as Narrative

The Subscriber calls the Operator and
requests a person-to-person call. The
Operator connects the Subscriber with
the Callee. They speak. The Sub-
scriber hangs up.

Example of Recovery Scenario as Narrative

The Subscriber dials the Callee’'s num-
ber. It is an old number and the Oper-
ator tells the Subscriber the new num-
ber. The Subscriber dials the Callee’s
new number, is connected, and speaks
with the Callee. The Subscriber hangs
up.

Example of Failure Scenario as Narrative

The Subscriber calls the Operator and
requests a person-to-person call. The
Callee is not answering.

Describing Scenarios

Script — Example of Variant Scenario

Subscriber dials Operator.

Subscriber requests person-to-person.
Operator connects Subscriber to Callee.
Subscriber talks to Callee.

Subscriber disconnects.

s wh =

Agent-Action Table — Example of Recovery Scenario

Agent Action

Subscriber Dials Callee (old number)
Operator Informs Subscriber of new number

Subscriber Dials Callee (new number)
System Connects Subscriber and Callee

Subscriber Talks to Callee

Subscriber Disconnects

c»mhooron—lg

Interaction Diagram — Example of Variant Scenario

Switching
System

Subscriber Operator Callee

dial(operator)

ringtone

offHook

request(person-person,#)

dial(callge#)

ringtone

offHook

talk

onHook

onHook

Episodes

Scenarios represent end-to-end executions of the system
(the dialogues) grouped together according to some cri-
teria. This is a horizontal gathering of dialogues.

It is also possible to divide a scenario vertically into a
sequence of episodes.

Each episode represents a subtask, or the parts of the
dialogues in the scenario that perform the subtask.

Episode 1: Failure to Connect
1.1 Subscriber dials Callee (old number)

Episode 2: Operator Intervention
2.1 Operator informs Subscriber of new number

Episode 3: Successful Call
3.1 Subscriber dials Callee (new number)
3.2 System connects Subscriber and Callee
3.3 Subscriber talks to Callee
3.4 Subscriber disconnects

The Analysis Process and Use Cases

A requirements use case is a use case that describes a
complete user task or activity.

For a requirements use case, the system performs a
meaningful unit of work of value to the primary actor.

An analysis use case describes a service, feature, or func-
tion that is offered by the system and is initiated by an
actor.

An actor may perform a requirements use case by initi-
ating a sequence of analysis use cases.

A requirements use case is a special kind of analysis use
case where the service being described is a complete
user task rather than simply a subtask.

An episode can give rise to an analysis use case.

These can be further refined until one is at the level of
atomic use cases, which represents a primitive unit of
interaction with the system.

i.e. an operation of the implemented system

Use Case Diagram

Summarizes all the use cases and their relationships.

O ey O
A

;

Data Feed

Class Diagram

Captures the entities and their relationships.

Database —] Schema
*? describes
Relation
* | \
Index - Table
aids access
J
Tuple
AttributeName 1 AttributeValue
map

Usually very little information on attributes or opera-
tions.

Behaviour

Behavioral Models record when, and in what order,
events occur

e interaction diagram for each scenario

e statechart diagram for each class (with significant
states)

e global collaboration diagram

Global Collaboration Diagram

The diagram summarises all the events that can flow
between all objects.

An overlay of a collaboration diagram for each scenario
but omitting sequence numbers, arguments, etc

:User File
string Cell Contents
Sove save CellContent
load Cell Contents load ontents
selectcell getContents
:User —_— : Spr eadsheet

I nter face —_
CellContents

Cell Contents T CellContents
getContents

%

getVaue
Cell\vvalue

NB events are both ‘“data” and “control”

Software Requirements Document (SRD)

What does it contain?

a complete description of WHAT the software product
will do (without describing HOW it will do it)

What is the purpose of the SRD?
agreement between the customer and the developer

clearly identifies what is needed and
what is to be developed

guidance for system testing and maintenance

Who are the users or beneficiaries of SRD?

customers/clients/users/end-users
supplier/developer/analyst
person who verifies the software

o
o
[
e person who maintains the software

Why requirements should be precisely stated
beforehand?

The later in the development lifecycle that an error is
detected the more expensive it is to correct

Many errors remain concealed until well after the stage
in which they are made.
(This is experienced in real life)

The requirements analysis can identify errors such as

e incorrectness
e inconsistency
e ambiguities

which if allowed would cause drastic effects later.

Industry EXxperience

After delivery, it is
100 times more expensive

to fix a
problem with the requirements

than to fix a
problem with the implementation

SRD production process

analysis to understand, organize, and document the
problem

learning the jargon of the problem domain
learning about the problem to be solved
identifying the real users of the product
understanding the needs of the real users
understanding the constraints on the solution,
such as existing resources and skill levels

e paraphrase requirements from domain/user
jargon to a mutually understandable notation

validate your analysis with the customer/user

write the SRD: a complete description of the external
behaviour of the product

e functional requirements : a description of how
various inputs map into outputs
(also called behavioral or operational require-
ments)
e non-functional constraints: attributes of the
system such as
— mandated hardware and software
— performance requirements
— reliability, portability, security, etc
e priorities
e anticipated or likely changes
also review your writing and its consistency with the
analysis

Properties of a good SRD

correct: every requirement stated in the SRD repre-
sents something required of the system

complete: everything that the software is supposed to
do is included in the SRD
no sections of the SRD contain the phrase
"To be determined” (TBD)

consistent: no conflicts between requirements

precise, unambiguous: every requirement stated in
the SRD has only one interpretation

verifiable: every requirement is testable by means of
some finite process which is cost effective

understandable: every requirement is easy to under-
stand by all who use the SRD

modifiable: it is easy to make changes to the require-
ments and to check that such requirements do not
lead to conflicts

annotated: annotations state the relative importance
or priority of features, especially the necessity or
optionality of functional features and the priority of
nonfunctional requirements

General Outline of an SRD

Introduction Purpose and context of system

The System Model Overview of the system compo-
nents and their relationship
(declarative point of view, from users perspective)

Functional Requirements Description of each func-
tionality in terms of required and optional inputs,
conditions on inputs, and effects on changing the
state of the system and producing outputs

Non-functional Requirements Description of con-
straints on the system that are not functional, eg
hardware and software platform: SUN, Unix, X
compatibility with external standards: GIF, ODE
performance constraints: speed, memory and disk
usage, availability/reliability

Fundamental Assumptions Aspects of the context
that are deemed unlikely to change

Anticipated Changes Aspects of the context that are
likely to change, and in what respect they will
change

Glossary Definition of terminology and acronyms
(for nontechnical users)

Bibliographic References to standards documents,
company policy documents, user/customer refer-
ence documents

Index Guide to location of definition and uses of terms

Information must be precise and easily found

unique label/number per requirement
unigue name for each concept and entity
table of contents

one or more indexes

glossary of terms

cross-references between requirements

