COMP354

Software Engineering

Lecture 19—21

Validation and Verification, Testing

Outline
What is V&V?7
What must be verified?
Static and dynamic verification

Testing = verifying correctness

e Aim of testing
Phase-driven testing
Top-down vs bottom-up
Test plan, test data, test cases
Designing tests: black-box, white-box
When to stop testing

Reviews, walkthroughs, inspections

Debugging

Validation and Verification

validation: Does the product satisfy the users’ needs?
“building the right product”

verification: Does a product, say the code, conform to
another product, say the SRD?
“building the product right”

What must be verified?

EVERY quality of the product (and deliverables)
correctness, performance, reliability,
robustness, portability, maintainability,
user friendliness, ...

Results may be Yes/No
Results may be quantity : eg percentage of tests passed
Results may be subjective : eg how portable is a system

Static and dynamic verification

Static verification: analyzing the product to deduce its
correct operation as a logical consequence of the
definition (document)

eg reviews, walkthroughs, inspections, compiler and
cross reference checking

Dynamic verification: experimenting with the behaviour
of a product to see whether it performs as expected

eg testing

Note partial dynamic nature of symbolic execution, hand
execution, walkthroughs

Testing

Testing is verifying the quality of correctness

Aim of testing: To discover the presence of errors!!!

Main problem: testing can never be complete!

Varieties of Testing

1. Goal-driven testing.

(a)

(b)

(c)

(d)

Requirements-driven testing. Develop a test-
case matrix (requirements vs tests) to insure
that each requirement undergoes at least one
test.

Structure-driven testing. Construct tests to
cover as much of the logical structure of the
program as possible. A test coverage analyzer
is a tool that helps to ensure full coverage.

Statistics-driven testing. These tests are run to
convince the client that the software is work-
ing by running typical applications. Results are
often statistical.

Risk-driven testing. These tests check “worst
case’” scenarios and boundary conditions. They
ensure robustness.

2. Phase-driven testing.

Phase-Driven Testing

Design Testing
System I ntegration
Subsystem Subsystem
Module M odule
Unit Unit

Stages of Testing during Development

Unit Testing testing an individual unit or basic com-
ponent of the system
eg testing a function SQRT

Module Testing testing a module consisting of several
units, to check that their interaction and interfaces
are ok
eg testing that pop and push in a stack module
provide a last-in-first-out behaviour

Subsystem Testing testing a subsystem consisting of
several modules, to check module interaction and
module interfaces are ok
eg an output subsystem writing to a database, and
keeping an audit trail, and providing rollback ser-
vices

Integration Testing testing the entire system once all
the subsystems have been integrated

More Terminology of Testing

Acceptance Testing testing with real data for the cus-
tomer to satisfy the customer that the system
meets the requirements

in customer environment

Stress Testing (Overload Testing) check the capabil-
ity of the system to perform under “overloaded”
conditions

eg full tables, memory, filesystem more simultane-
ous users than expected

done after integration testing

Regression Testing testing old features again when
new features are added or changes are made

to make sure you fully understood the changes to
be made and did not impact parts of the system
supposedly isolated from the changes

regression is degradation in level of correctness (of
old features)

Testing for Robustness testing the system with un-
expected situations like wrong user commands

Top-down vs Bottom-up Testing

Top-down testing: test subsystems, then modules,
then units

need a STUB (prototype) for each non-completed mod-
ule or unit

a stub simulates the behaviour of the module/unit
may do nothing; may always exhibit the same default
behaviour; may only handle those cases needed for tests

Advantages:
catches high-level design errors early: saves cost

Disadvantages:

not so easy to devise tests at this level; additional cost
of implementing stubs

(high-level design errors can be caught in design walk-
throughs)

Bottom-up testing: test units, then modules, then
subsystems

need a DRIVER to supply necessary input, output, data
structures to test the unit, module, subsystem

Advantages:

every component is tested before integration into a
larger component; makes location of errors easier, since
we first assume it is in the integration/interaction of
subcomponents rather than within the subcomponents

Disadvantages:
delays detection of high-level errors: more costly to fix;
additional cost of writing drivers

Test plan, test data, test cases

test data: a set of inputs devised to exercise a test

test case consists of

1.

2.
3.

the purpose of the test in terms of the system re-
quirements it exercises

an input specification (ie test data)

a specification of the expected output

test plan: the major components are

a description of the major phases of testing (eg unit
testing, module testing, ...)

objectives (acceptance criteria) for the testing pro-
cess

an overall testing schedule and resource allocation
(when, who, time and machine resources)

a description of the relationship between the test
plan and other project plans (eg implementation
schedule)

a description of how traceability of test results to
system requirements is to be demonstrated

a description of how tests results are recorded (It
must be possible to audit the testing process to
guarantee that tests have been carried out on latest
versions of the software.)

a description of how the test cases were designed,
and how the test data was generated

a description of all the test cases, including all test
data

The test schedule should allow for slippage

Designing Tests

Ideal: completely test for each requirement in the SRD
“cover” the SRD

Suppose the SRD contains the following requirement:
When the user enters X and Y, the program
displays X + Y.

X and Y are 32-bit numbers = 204 tests!

In practice, assume some form of continuity:

If the program adds a few numbers correctly,
and it works at the boundaries,
we assume that it adds all numbers correctly.

There are two possibilities:

Black box testing: choose tests without knowledge
of how the program works,
i.e. based on requirements only.

White box testing: choose tests based on our
knowledge of how the program works.

Black-Box Testing
also called Functional Testing

based on our view of the program as a function from
inputs to outputs

use “equivalence partitioning” of input space:

partition the domain of inputs into disjoint sets
such that inputs in the same set exhibit

similar/identical /equivalent
properties with respect to the test being
performed

Example 1: function which takes a 5-digit number as input
set 1 = { integers < 10000 }
set 2 = { integers in the range 10000 .. 99999 }
set 3 = { integers > 99999 }

Example 2: function which takes a linked list as input
set 1 = { empty list }

set 2 = { lists of length 1 } first node = last node

set 3 = { lists of moderate length }

set 4 = { very long lists } might be space problems
Guidelines:

e Test for success and failure.
e [est boundary conditions.
e [est as many combinations as feasible.

White-Box Testing
also called Structural Testing or Glass-Box Testing

based on the structure of the code:
e the control flow graph, and
e the conditions controlling if-statements and loops

general idea is to ensure “coverage’” of every component

all statements Every statement in the program must
be exercised during testing.

all edges All edges of the control graph must be
exercised.

all branches Each possibility at a branch point
(if or case statement) should be exercised.

all paths Exercise all paths: usually intractable.

White-Box Testing Example

|

X =07

z>17

continue

Consider the following tests:

Test X Z
1 0O 1
2 1 3
3 O 3
4 1 1

use either {1,2} or {3,4} to cover all edges

{3,4} reveals the “divide by zero” error,
whereas {1,2} does not

use {1,2,3,4} to cover all paths

When to Stop Testing

Ideal: stop when all tests succeed.

Practice: stop when the cost of testing exceeds the
cost of shipping with errors.

Microsoft: let the customer find the errors :).

Cost

Shipping with errors
Finding errors

Time

As the number of errors gets smaller, the cost of finding
errors increases.

Shipping with errors has a cost, because customer
support is needed, but this cost falls with the number
of remaining errors.

Problem: hard to know when Ty has been reached!

Reviews, Walkthroughs, Inspections

Aim: discovery of errors — NOT fixing errors

Basic idea: team examines a software document during
a meeting

Why: a group of people are more effective

Common features include:

a small group of people;

the person responsible for the document (analyst,
designer, programmer, etc) should attend;

one person records the discussion;

managers must not be present, because they inhibit
discussion;

errors are recorded, but are not corrected.

Some general rules:

Teams prepare in advance, e.g. read the document
Meetings are not long — at most 3 hours — so
concentration can be maintained.

A moderator is advisable to prevent discussions
from rambling.

The author may be required to keep silent except to
respond to questions. If the author explains what
s/he thought s/he was doing, others may be
distracted from what is actually written.

All members must avoid possessiveness and ego-
tism, cooperating on finding errors, not defending
their own contributions.

During a review:
e the author of the document presents the main
themes;
e oOthers criticize, discuss, look for omissions,
inconsistencies, redundancies, etc.
e faults and potential faults are recorded.

During a walkthrough:
e Each statement or sentence is read by the author;
e others ask for explanation or justification if
necessary.

Example:
“Since n > 0, we can divide"”
“How do you know that n > 07"

During an inspection:
e code is carefully examined, with everyone looking
for common errors.

Note that various authors and companies use the terms
review, walkthrough, inspection differently.

Sample Checklist of Common Errors

use of uninitialized variables

have all constants been named

confusing = with == in C boolean expression

for each conditional statement, is the condition
correct

jumps into loops

incompatible types in an assignment
nonterminating loops

for each array,

should the lower bound be 0, 1, or something else
should the upper bound be Size or Size-1

array indexes out of bounds

are delimiters \0 explicitly assignhed for character
strings

improper storage allocation/deallocation
actual-formal parameter mismatches in procedure
calls: correct number of parameters; matching
types of each formal-actual parameter pair
comparison for equality of floating point values
are compound statements correctly bracketted

if links/pointers are used, are link assignments
correct when updating data structures using links
have all possible error conditions been taken into
account

Debugging

Steps:

1. locate error
verification has discovered presence of an error
Locating errors is difficult!
Reviews etc often give location of error.
Debugger tools help immensely (xxgdb)

2. ascertain how to correct error

Is it a mistake in
e coding?
e design?
e requirements?

3. fix it, or report a change request (CR)
fix it if it is a coding error

fix should explain all symptoms of the error

4. re-run all tests (regression testing)

once all reported errors have been located,
explained fully, and coding errors fixed

