
Software Design Patterns

Greg Butler

Computer Science and Software Engineering
Concordia University, Montreal, Canada

Email: gregb@cs.concordia.ca



Software Design Patterns

“Gang of Four” Book 1994

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

What is a Design Pattern
A design pattern describes

a commonly-recurring structure of communicating components
that solves

a general design problem within a particular context.

What is a Design Pattern

An example of “best practice” in OO design.

What is a Design Pattern

Design patterns are a “vocabulary” for designers
to better communicate design ideas.



Description of a Design Pattern

Essentials for Design Pattern Description

problem that the pattern addresses

context in which the pattern is used

the suggested solution

consequences of choosing that solution, e.g. strength and weakness



Template for Gang of Four Book

Name, Motivation, Context, Problem
Pattern Name (Scope, Purpose)
Intent
Also Known As
Motivation
Applicability

Solution
Structure
Participants
Collaborations
Consequences
Implementation

Other
Sample Code and Usage
Known Uses
Related Patterns



Name, Motivation, Context, Problem
Pattern Name (Scope, Purpose)
The pattern’s name conveys the essence of the pattern succinctly. A
good name is vital, because it will become part of your design vocabulary.

Intent
A short statement that answers the following questions: What does the
design pattern do? What is its rationale and intent? What particular
design issue or problem does it address?

Also Known As
Other well-known names for the pattern, if any.

Motivation
A scenario that illustrates a design problem and how the class and object
structures in the pattern solve the problem. The scenario will help you
understand the more abstract description of the pattern that follows.

Applicability
What are the situations in which the design pattern can be applied?
What are examples of poor designs that the pattern can address? How
can you recognize these situations?



Solution

Structure

Participants
The classes and/or objects participating in the design pattern and their
responsibilities.

Collaborations
How the participants collaborate to carry out their responsibilities.

Consequences
How does the pattern support its objectives? What are the trade-offs and
results of using the pattern? What aspect of system structure does it let
you vary independently?

Implementation
What pitfalls, hints, or techniques should you be aware of when
implementing the pattern? Are there language-specific issues?



Other

Sample Code and Usage
Code fragments that illustrate how you might implement the pattern in
C++ or Smalltalk.

Known Uses
Examples of the pattern found in real systems. We include at least two
examples from different domains.

Related Patterns
What design patterns are closely related to this one? What are the
important differences? With which other patterns should this one be
used?



Organization of Design Patterns







Iterator Pattern

Intent: An Iterator provides a way to access the elements of an
aggregate object sequentially without exposing its underlying
representation.



Example — Iterator Pattern



Strategy Pattern

Intent: A strategy object encapsulates an algorithm, so that the
algorithm can vary independently from the clients that use it.



Strategy Pattern — Example



Composite Pattern
Intent: Composite lets clients treat individual objects and
compositions of objects uniformly.



Structure — Composite Pattern



Facade Pattern

Intent: A facade provides a uniform interface to a set of interfaces
in a subsystem. The Facade defines a higher-level interface that
makes the subsystem easier to use.



Facade Pattern
Structure

Compiler Example



Proxy Pattern

Intent: A proxy is an object used as a substitute or placeholder for
an object in order to control access to it.



Proxy Pattern — Example



Observer Pattern
Intent: Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified and
updated automatically.
that is, a subscription service, or event notification service.



Command Pattern
Intent: A Command object encapsulates a request as an object,
thereby allowing you to parameterize clients with different
requests, queue or log requests, and support undoable operations.


