Software Design Patterns

Greg Butler

Computer Science and Software Engineering
Concordia University, Montreal, Canada

Email: gregb@cs.concordia.ca

Software Design Patterns

“Gang of Four” Book 1994

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1994.

What is a Design Pattern

A design pattern describes

a commonly-recurring structure of communicating components
that solves

a general design problem within a particular context.

What is a Design Pattern
An example of “best practice” in OO design.

What is a Design Pattern

Design patterns are a “vocabulary” for designers
to better communicate design ideas.

Description of a Design Pattern

Essentials for Design Pattern Description
problem that the pattern addresses
context in which the pattern is used

the suggested solution

consequences of choosing that solution, e.g. strength and weakness

Template for Gang of Four Book

Name, Motivation, Context, Problem
Pattern Name (Scope, Purpose)

Intent

Also Known As

Motivation

Applicability

Solution
Structure
Participants
Collaborations
Consequences
Implementation

Other

Sample Code and Usage
Known Uses

Related Patterns

Name, Motivation, Context, Problem

Pattern Name (Scope, Purpose)
The pattern’s name conveys the essence of the pattern succinctly. A
good name is vital, because it will become part of your design vocabulary.

Intent

A short statement that answers the following questions: What does the
design pattern do? What is its rationale and intent? What particular
design issue or problem does it address?

Also Known As
Other well-known names for the pattern, if any.

Motivation

A scenario that illustrates a design problem and how the class and object
structures in the pattern solve the problem. The scenario will help you
understand the more abstract description of the pattern that follows.

Applicability

What are the situations in which the design pattern can be applied?
What are examples of poor designs that the pattern can address? How
can you recognize these situations?

Solution

Structure

Participants
The classes and/or objects participating in the design pattern and their
responsibilities.

Collaborations
How the participants collaborate to carry out their responsibilities.

Consequences

How does the pattern support its objectives? What are the trade-offs and
results of using the pattern? What aspect of system structure does it let
you vary independently?

Implementation
What pitfalls, hints, or techniques should you be aware of when
implementing the pattern? Are there language-specific issues?

Other

Sample Code and Usage
Code fragments that illustrate how you might implement the pattern in
C++ or Smalltalk.

Known Uses
Examples of the pattern found in real systems. We include at least two
examples from different domains.

Related Patterns

What design patterns are closely related to this one? What are the
important differences? With which other patterns should this one be
used?

Organization of Design Patterns

By Purpose
Creational Structural Behavioral
o Adapter o Interpreter
Lliess m | ok Mo (class) ¢+ Template Method
¢ Chain of
« Adapter Responsibility
(object) « Command
By Scope s Abstract Factary | « Bridge + lterator
. o Builder s Composite +« Mediator
Uhject + Prototype » Decorator + Memento
* Singleton + Facade + Observer
¢ Flyweight +« DState
s« Proxy + Strategy
o Visitor

WhatVaries
| Design Pattem ~ | What Can Vary
Abstract Factony Families of product objects
Adapter Interface 1o an object
Bridge Imnp lementation of an object
Builder How a composite object gets created

Chain fo Respensioiity | © bject that can fill a request

Command When and how a request is fulfiled

Composite Structure and composition of an object

Deocorator Responsibiities of an object without subclassing

Facade Interface to a subsy stem

Factory Mathod Subclass of object that is instantiated

Flyweight Storage cost of objects

Interpreter G and i ienof a

Iterator How an aggregate's elements ane accessed, trav ersed

Mediator How and which objects interact with each cther

Memento What priavie information is stored outside an object, and when

Obserner Number of abjects that depend on another abject; how the dependent objects stay up to date
Prototy pe Class of object that is instantiated

Proxy How an object is accessed; its location

Singlaton The scle instance of a class

State States of an O bject

Strategy An algorithm

Template Steps of an algorithm

Visitor O permations that can be applied to objects(s) without changing their class(es)

Memento

— 5!;57"0 state
of torati
Builder aten
avoiding
creating hysteresis
composites.
enumerating
children

adding composed

responsibilities using ‘Command

fo objects
Decorstor i o

feining P
Sdding defining flining
operations raversas the chain
defining
changing skin
versus guts
adding
sharing Interpreter operations Chain of Responsibility
strategies

sharing

terminal
Strategy shaing symbols
states: Mediator
o sond
ndency

algorithm’s
step:

Template Method often uses
Factory Method

configure factory
dynamically implement using
Abstract Factory
single
instance
single
instance

Singleton

Figure 1.1: Design pattern relationships

l[terator Pattern

Intent: An lterator provides a way to access the elements of an
aggregate object sequentially without exposing its underlying
representation.

Aggregate - i # Iterator
Createlterator() First()
Next()
IsDone()
Currentltem()

ConcreteAggregate

Concretelterator

Createlterator() ¢

L

return new Concreleltarator(th\slbj

Example — lterator Pattern

SkipList L5

AbstractList + | Iterator

Createlterator) First()

Count() Next()

Append(item) IsDone()

Remove(item) Currentitery)
List [~ ~""""mmTmmTTC Listiterator

SkipListiterator

Strategy Pattern

Intent: A strategy object encapsulates an algorithm, so that the
algorithm can vary independently from the clients that use it.

Context -strategy Strategy

+execute() 1 1 +algorithm()

N\
AN
N
\

N

strategy.algorithm()

ConcreteStrategy1 ConcreteStrategy2

+algorithm() +algorithm()

Strategy Pattern — Example

Document -alignment Alignment
+format() « 1 1 +align()
N
N 2\
alignment.align()
Left Center Justify
+align() +align() +align()

Composite Pattern
Intent: Composite lets clients treat individual objects and
compositions of objects uniformly.

aPicture

N

[aPicture j

(auie)

aRectanglej

Add(Graphic g} ©-
Remove(Graphic)
GelChild(int)

aText aLine aRectangle
Graphic
Draw(}
Add{Graphic)
Remove(Graphic)
GetChild(int)
| | | | graphics
Line Rectangle Text Picture
forall g in graphics ™
[R SO
Draw() Draw() Draw() Draw() gmeg

--‘| add g to list of graphics H

Structure — Composite Pattern

| Client I—-

Component

o

Operation()

Add{Companent)
Remove(Component)

GatChild(int)

A

children

Leaf

Composite

Operation()

Operation(y ©------
Add{Component)
Remove(Component)
GetChild(int)

forall g in children
q9.Operation();

Facade Pattern

Intent: A facade provides a uniform interface to a set of interfaces
in a subsystem. The Facade defines a higher-level interface that
makes the subsystem easier to use.

client classes | ‘

AR
subsystem classes L g g \{_,J

Facade Pattern
Structure

Compiler Example

Compile()

P
—'ﬂwumNWtBullmrI» ProgramNode

ExpressionNode

] [variableNode |

Proxy Pattern

Intent: A proxy is an object used as a substitute or placeholder for
an object in order to control access to it.

Client Subject
1 * |[+request()
real.request()
-real
RealSubject Proxy -7
— -
1 1 -
+request() +request()~

Proxy Pattern — Example

DocumentEditor

Element

. |+draw()

+getExtent()

T

Text

-extent
-content

+draw()
+getExtent()

-image
Image ImageProxy
-imagelmp 1 :leetzre:tme
+draw() " —=
draw
+getExtent() +getE>((:ent()
+load() T~

if (image == null)
image = load(fileName)
image.draw()

T =~ if (image == null)

return extent
else
return image.getExtent()

Observer Pattern
Intent: Define a one-to-many dependency between objects so that
when one object changes state, all its dependents are notified and
updated automatically.
that is, a subscription service, or event notification service.

Subject observers Observer
Attach(Observer) Update)
Detach(Observer))
forall 0 in observers |
Notiyl) 0-----1-1 "~ o->Updatel)
}
4 ConcreteObserver
. subject ‘ .
0--F-4{ ObserverState =
ConcreteSubject Update subject->GetState(
GetState() ©---F- , observarState
SelSt() retum subjectState
subjectState

Command Pattern
Intent: A Command object encapsulates a request as an object,
thereby allowing you to parameterize clients with different
requests, queue or log requests, and support undoable operations.

Action() 166" | GoncreteCommand
Execute() ©--------| 1 receiver->Action();
""""""""""""""""""" *1 state §
aReceiver aClient aCommand aninvoker

new Command :
StoreCommand(aCommand)

A(Action() Execute()

