
Department for Computer Science

and Software Engineering

COMP 354:

INTRODUCTION TO SOFTWARE ENGINEERING

Daniel Sinnig, PhD

d_sinnig@cs.concordia.ca

21-May-14

Requirements Engineering

2

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Requirements Engineering

“Requirements engineering is the branch of software

engineering concerned with the real-world goals for functions of

and constraints on software systems. It is also concerned with the

relationship of these factors within precise specifications of

software behavior, and to their evolution over time and across

software families.” -- Pamela Zave

3

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

3

RE process - inputs and outputs

Agreed
requirements

System
specification

System
models

Requirements
engineering process

Stakeholder
needs

Organisational
standards

Domain
information

Regulations

Existing
systems

information

4

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Software Development Processes: Where do

‘Requirements’ fit?

• Where do ‘requirements’ fit into an overall SE process?

 (1 min)

5

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Unified Process (UP)

6

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

How Important are Requirements?

“Done well, requirements engineering presents an opportunity to

reduce costs and increase the quality of software systems. Done

poorly, it could lead to a software project failure.” -- Software

Engineering Institute (SEI)

7

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

How Important are Requirements?

“The hardest single part of building a software system is deciding

what to build. No other part of the conceptual work is so difficult

as establishing the detailed technical requirements, including all the

interfaces to people, to machines, and to other software systems.

No other part of the work so cripples the resulting system if done

wrong. No other part is more difficult to rectify later.” -- Frederick

P. Brooks (1975)

8

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Done well….

• Communicate and clarify the real needs of customers

• Ability to accommodate requirements changes

• Definition of a repeatable engineering process

• Development of quality software that is bound to the user’s

needs, on time and to budget

 Customer satisfaction

9

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Done Poorly…

• Cost and time explosion

• Requirements errors are extremely costly (budget + time) to fix

– Solution for the wrong problem

– Errors likely to be found during user testing

 Design and code re-work

10

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Building the Right System

vs.

Building the System Right

11

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Requirements vs. Design

• What vs. How

• Building the right system vs. Building the system right

• It is not the nature of the statement itself that makes it a
requirement or not. It (always) depends on the context

• It is not the level of detail

• Requirements or Design?
• “If the alarm system is ringing, then the elevators (lifts) will proceed to the

ground floor, open their doors and suspend further operations.”

• “The project will be implemented in Java.”

• “The system will use an array to hold the invoices.”

12

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Requirements Management: Of Course!

• “It’s difficult for anyone to argue rationally against the idea of

managing and documenting the requirements of a system in order

to ensure that we deliver what the customer really wanted.

However …” [Leffingwell and Widrig, 1999, p.28]

13

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

13

Requirements Management: Reality?

• “… data demonstrates that, as an industry, we often do a poor

job …”

© Dr. Patrice Chalin

14

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Requirements Management: Reality?

Mis-management due to

• Lack of stakeholder (esp. user) involvement =>

– Incomplete req. (lack of input)

– Inaccurate req. (lack of consultation/feedback)

• Change in requirements & specifications and ridged development

processes

15

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Requirements Management: Reality?

• Common attitude:

 “even if we’re not really sure of the details of what we want, it’s better to

get started with implementation now, because we’re behind schedule and

in a hurry. We can pin down requirements later.”

 Often leads to chaos: no one quite knows what user wanted or

system should do!

16

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Observations

Poor staffing

6%

Other

50%

Poor technical skill

7%

Poor user input

13%

Incomplete Req.

12%

Changing Req.

12%

Weitere

37%

• 52.7% of projects will cost 189% of the original estimates

Factors that cause projects

to be late or not meet expectations

• Most significant factor for (partial or total) failure is related to

mis-management of requirements.

17

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Road Map to Software Requirements

Problem

Problem Domain

Solution Domain

Needs

Features

S/W Requirements

18

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Stakeholder Needs

• Key High-level goals and problems of stakeholder [Larman]

• Reflection of business, personal, or operational problem (or

opportunities)

• Must be addressed to justify project

• Expressed independent from concrete solution

• Examples:

– Students need less overhead for course registration

– Professors need immediate access to student grades

19

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

System Feature

• Externally observable service or attribute provided by the system

• Directly fulfills a stakeholder need

• Should pass linguistic test [Larman, 2002]:

– The system shall do [Feature]

• Examples:

– System shall do payment authorization

– System shall ensure that courses are not overbooked

20

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Software Requirements

• A software capability needed by the user to solve a problem or to

achieve an objective

or

• A software capability that must be possessed by the system to

satisfy a contract, a standard or a specification

21

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Requirements Types

(most general classification)

22

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

FURPS+ Classification [Larman, 2002]

• Functional

– Functionality or services that the system is expected to provide

– Addresses the input-output behavior of a system

• Usability

– Human factors, help, documentation, etc.

• Reliability

– Frequency of failure, recoverability, predictability, etc.

• Performance

– Response time, availability, resource usage, etc.

• Supportability

– Maintainability, adaptability, configurability, etc.

23

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

FURPS+ Classification Cont.

 + indicates additional quality attributes such as:

– Interfaces

• i.e. user interface, component interfaces

– Implementation Constraints

• Resource limitations, languages and tools, hardware, etc.
•

– Etc.

24

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Requirements Engineering Steps

1. Analyzing the problem (and its root causes)

2. Requirements elicitation (understanding user and stakeholder

needs)

3. Requirements specification (defining the system)

25

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Why Do Problem Analysis?

• As engineers we feel compelled to solve a problem as soon as we

catch a glimpse of one.

• I.e. often our focus is on applying a solution, even before

understanding the real problem.

• But, you cannot effectively solve a problem unless you know

what it is!

• In fact, there might not even be a problem!

26

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Product Always Solve a Problem?

• Not every product solves a problem.

• Some target market opportunities.

• Often we can describe an opportunity in terms of a

problem (and vice versa).

• We will use the “problem” point-of-view.

27

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Analyzing the Problem – the Five Steps

1. Gain agreement on the problem definition.

2. Understand the root causes—the problem behind the problem.

3. Identify the stakeholders, especially users.

4. Define the solution system boundary.

5. Identify the constraints to be imposed on the solution.

28

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Steps in Problem Analysis: Order, … ?

• Order of the steps is not crucial.

• Doing all of the steps is important.

• Iterate among steps.

29

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Step 1: Agreement on Problem Definition

• Write it down!

• Make sure everyone(?) agrees.

• Do not try to get the perfect problem definition.

• Aim to capture the essence of the problem.

• Definition may be revised afterwards.

30

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Problem Definition “Template”

The problem of

 (describe the problem)

affects

 (the stakeholders affected by the problem).

The impact of which is

(what is the impact of the problem on stakeholders).

Benefits of a solution …

(list some key benefits of a successful solution).

31

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Step 2: Understand Root Causes

• Do not mistake a symptom for the problem.

• Distinguishing between real problem and symptoms.

• Domain experts can contribute best.

• What happens if one “solves” the symptom?

• E.g. headache: problem or symptom.

32

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Root Causes

• Generally multiple causes.

• We cannot solve all causes … (often difficult to resist).

• Choose most significant factor(s).

33

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Sample Problem: GoodsAreUs

• “… a mail-order catalog company … sells a variety of

inexpensive, miscellaneous items for home and personal use.”

• Problem: insufficient profitability.

34

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

GoodsAreUs Root Causes

• Inaccurate sales orders

• Damaged in shipment.

• Customer returns.

• Finished-goods obsolescence.

• Manufacturing defects.

• Other.

35

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

0

5

10

15

20

25

30

35

40

45

50

Inaccurate

orders

Damage

shipment

Customer

returns

…

36

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Problem Definition: GoodAreUs

The problem

 of inaccuracies in sales orders

affects

 sales order personnel, customers, manufacturing, shipping, and

customer service.

the impact of which is

 increased scrap, excessive handling costs, customer

dissatisfaction, and decrease in profitability.

37

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Problem Definition: GoodAreUs

Benefits of a new system

 to address the problem include

– Increased accuracy of sales orders at point of entry.

– Improved reporting of sales data to management.

– And, ultimately, higher profitability.

38

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Step 3: Identify stakeholders and users

• Stakeholder: anyone who could be affected by the new system or
has input to provide in the development of the new system.

• Different stakeholders that have different viewpoints on the
problem.
– Users.

– Managers.

– IT people.

– External regulators.

– System developers.

39

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Step 4: Define System Boundary

• World partitioned (i.e. no sharing) in two

– Our system

– Things that interact with our system

(its environment).

• How to determine if something is

– Within the system solution boundary?

– Outside of system boundary (e.g. an actor)?

40

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Step 4: Define System Boundary

• It is inside your solution boundary if the development

organization either creates or can modify the component.

41

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Actors

• “Things that interact” with the system are called Actors.

• Actors are external to the system.

• People or other systems can be Actors.

42

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Step 5: Identify Constraints on System

• Constraint: a restriction on the degree of freedom we have in

providing a solution.

• As important as requirements:

– what the system should not do, or what the system should not be.

43

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Potential Sources of Constraints [Leffingwell & Widrig, 2002]

44

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Problem Analysis

1. Gain agreement on the problem definition.

2. Understand the root causes—the problem behind the problem.

3. Identify the stakeholders, especially users.

4. Define the solution system boundary.

5. Identify the constraints to be imposed on the solution.

Problem

Domain

Solution

Domain

45

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Requirements Engineering Steps

1. Analyzing the problem (and its root causes)

2. Requirements elicitation (understanding user and

stakeholder needs)

3. Requirements specification (defining the system)

46

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Understanding user and stakeholder needs.

• “In doing so, we’ll also start to gain an understanding of

the potential requirements for a system that we will

develop to address these needs.”

also called Requirements Elicitation.

47

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Requirements Elicitation … Do:

• Elicit and/or propose.

• Document.

•Confirm!
Repeat.

48

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Requirements Elicitation

• More challenging than you might expect!

• Characterized by “syndromes”

– “Yes but …” is human nature. Stakeholders have difficulty envisioning

what they want.

– Search for req. is like search for

“undiscovered ruins” … always some remain.

– “User and the developer” are from different worlds; language, jargon,

background, motivation, … differ.

49

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Requirements Elicitation Techniques

• Storyboards

• Interviews & questionnaires.

• Requirements workshops.

• Brainstorming sessions and idea reduction.

• Contextual Inquiry

50

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Storyboarding

• Like for movies.

• Help elicit early “yes, but” reactions

• Kinds:

– Passive: tell a story using sketches, pictures, screenshots,

sample output.

– Active: Show an animated view of system behavior.

– Interactive: have the users interact with a throw-away

prototype.

51

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Storyboarding

Passive Active Interactive

Sketches,

pictures, screen

shots, …

Animated or

automated

slideshow, …

Mock-up,

simulations,

demos, …

Prototyping

Increasing complexity and cost

52

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Storyboarding Tips

• Create them early and iteratively improve them (often).

• Make storyboards easy to change … by stakeholders.

• Don’t invest too much in creating storyboard.

• Don’t make the storyboard too good.
– This is not meant to be UI design.

– Waste of time/effort on your part.

– Stakeholders might mistake for the real thing …

53

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Interviews

• Session of questioning of a person (stakeholder) during which

information (requirements) is elicited

• Can be used in most circumstances for

– Understanding the nature of the problem

– Exploring potential solutions

• Different types:

– Structured, semi-structured, unstructured, conversational

54

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Interviewing Tips
• Preparation

– Questions, problem statements, storyboards, use cases etc.

• Avoid bias
– Be careful not to bias the interviewees answers by prematurely providing possible

solutions

– Context-free questions
• About the nature of the user’s problem without context for a potential solution

• E.g. Who is the user? Who is the customer? Are their needs different?

– Solution-context questions
• Purpose: Exploration of possible solutions

• E.g. What if you could…? How would you rank the importance of…?

• Take notes

• Avoid technical jargon

• Follow-up

55

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

[Generic Interview Script]

56

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Requirements Workshop

• The requirements workshop is perhaps the most powerful

technique for eliciting requirements.

• It gathers all key stakeholders together for a short but intensely

focused period.

• The use of an outside facilitator experienced in requirements

management can ensure the success of the workshop.

• Brainstorming is the most important part of the workshop.

57

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Preparing for the workshop

• Selling the workshop concept to stakeholders

• Ensuring the Participation of the Right Stakeholders

• Logistics

– Includes travel, lighting, and even “afternoon sugar filled snacks.”

• Warm-up materials

– Project-specific information

58

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Role of the Facilitator

• Establish professional and objective tone to the meeting.

• Start and stop the meeting on time.

• Establish and enforce the “rules” for the meeting.

• Introduce the goals and agenda for the meeting.

• Manage the meeting and keep the team “on track.”

• Facilitate a process of decision and consensus making, but avoid

participating in the content.

• Make certain that all stakeholders participate and have their input

heard.

• Control disruptive or unproductive behavior.

59

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Workshop Agenda

• Set an agenda before the workshop and publish it along with the

other pre-workshop documentation.

• Balance is the key, try to stay on the agenda, but do not strictly

obey it, especially if good discussion is going on.

• Order lunch in, and have a light working lunch. :-)

60

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Running the Workshop
• Allow for human behavior, and have fun with it.

– Do not “attack” other members.

– Do not get on a soap box.

– Do not come back late from a break.

• Workshop tickets

– Give every stakeholder 3 workshop tickets

• 1 for being late

• 1 for “cheap shot”

• 1 for “soap box”

– Facilitator takes tickets when appropriate. If you do not have a ticket

create a fund to add to, like $1 to pot for after workshop activities.

61

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Contextual Inquiry

• Combination of an (user) interview and observation session

• Goal is to better understand users, their needs, and work
processes, and what supports or hinders them.

• Basic Technique:
– Observation of how the user performs a given task at the user’s

workplace

– While the user performs the task
• Ask questions

• Take notes

• Time, Video tape etc..

62

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Contextual Inquiry Tips

• Follow predefined role model

– Expert – Novice

– Interviewer – Interviewee

– Guest – Host

– Apprentice – Master

• Master / Apprentice Model

• User is master craftsman who explains his work to the apprentice (interviewer)

• Avoid other relationship models

• Avoid bias:

• Say what users should do, but not how they should do it

63

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Requirements Engineering Steps

1. Analyzing the problem (and its root causes)

2. Requirements elicitation (understanding user and stakeholder

needs)

3. Requirements specification (defining the system)

64

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Requirements Specification
 • Most important is not how you package your requirements information, but

that you document them

• But we need to use some packaging, we will follow RUP.

65

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Main UP Requirements Artifacts

Glossary Domain

Model

66

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Vision Document

• Captures:

– Problem statement

– Competitor analysis

– Stakeholder description

– High-level business requirements

– User needs and (prioritized) features

– In / Out list

– (Domain Model)

• UML Class Diagram capturing main concepts of problem domain

67

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Software Requirements Specification
• Capture all S/W system requirements

• Consists of:

– Domain Model

• UML Class Diagram capturing main concepts of problem domain

– Use Case Model

• Captures functional requirements in terms of

– Set of (textual) use cases

– Use case diagram (optional)

– System sequence diagram (optional)

– Supplementary Specification

• Captures non-functional requirements and design constraints

• Business Rules

• Additional information (references, licensing, legal requirements)

– Glossary

• Definitions, Acronyms and Abbreviations

68

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

The Domain Model

• “A domain model is a visual dictionary of
noteworthy abstractions, domain vocabulary … of the domain”.
[Larman, p.128-9]

• Representation of the problem domain in terms of
– Real-world conceptual classes

– Not of software components

• Typically represented by UML Class Diagrams

• Let’s imagine the problem of Course Management. Which domain concepts
exist?

69

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Example Domain Model: Course Management

id

course name

section

term

year

<<historical>>

Team

Course Offering

*

1

name

email

user name

password

Approver

Teaching Assistant

Instructor

Non-confirmed Team

*

first name

last name

email address

Student

*

1

1

Class List

*

Confirmed Team

1

*

Student RegistryRegistrar Employee

manages

1

teaches

approves
Concept or

Domain Object

Attribute

Association

Multiplicity

Reading Direction Arrow

Generalization

70

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Domain Modeling Principles

• Model the Problem Domain and NOT the (envisioned)

Software

*

Student Database

1
StudentRecord

stores

1

1

first name

last name

email address

print ()

clone ()

…..

 Avoid! Software Artifact and not part

 of the domain model

 Avoid! Software Class and not part

 of the domain model

71

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Domain Modeling Principles (cont.)

• Domain model is the result of refinement through several

iterations of

1.Find conceptual classes

2.Create corresponding class in UML class diagram

3.Add associations and attributes

• Mapmaker Metaphor (Larman, 2005]

– Use existing names in the territory (domain)

– Exclude irrelevant features

– Do not add things that are not there

72

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Domain Modeling Principles (cont.)

• Guidelines:

– Avoid: Methods, data types, foreign keys!

– Attribute vs. Association

• Attribute: If you think of it as a number or text

• Association: otherwise

73

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Example Domain Model: Point of Sale System

Register

Item
Store

Sale

CashPayment

Sales

LineItem

CashierCustomer

Product

Catalog

Product

Description

Stocks

*

Houses

1..*

Used-by

*

Contains

1..*

Describes

*

Captured-on

Contained-in

1..*

Records-sale-of

0..1

Paid-by Is-for

Logs-

completed

*

 Works-on

1

1

1

1 1..*

1

1

1

1

1

1

1

0..1 1

1

Ledger

Records-

accounts-

for

1

1

74

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

The Use Case Model

• Medium of choice for capturing functional requirements

• Grouped into use case packages

• Defines several use cases, which capture interaction between

actors and system under development as scenarios

• Use cases are organized into three parts:

Properties

Main Success Scenario (Normal Flow)

Extensions (Alternative Flow)

75

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

History

• 1986: Ivar Jacobson coined the term use case (result of his PhD thesis

“Concepts for Modeling Large Real Time Systems”)

• 1992: Ivar Jacobson defined the Use Case Driven Approach in his

book “Object-oriented Software Engineering: A Use-Case Driven

Approach”

• 2003: Use cases have been adopted by the Rational Unified Process

• Have become a key activity in mainstream software development

76

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Common Definitions of Use Cases

“A use case as a specific way of using the system by using some part of the functionality.”

(Ivar Jacobson)

“A use case is a collection of possible sequences of interactions between the system under

discussion and its Users (or Actors), relating to a particular goal. “ (Alistair Cockburn)

“A use case represents a series of interactions between an outside entity and the system, which

ends by providing a business value.” (Kulak and Guiney)

“Use cases represent the things of value that the system performs for its actors. […] Use cases

have a name and […] detailed descriptions, about how the actors use the system to do

something they consider important.” (Bittner and Spence)

77

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Main Success Scenario (Normal Flow)

• Denotes most common way that primary actor achieves use

case goal

• First step typically initiated by primary actor

• Last step typically performed by the system

 leads to the fulfillment of use case goal

78

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

• Specify alternative scenarios which may or may not lead to the
fulfillment of the use case goal

• Each extension starts with a condition and a reference to a use
case step

• Exhaustive modeling of Extensions is indispensable to
capturing full system behavior

“Bugs lurk in corners and congregate at boundaries.” — Boris Beizer

Extensions (Alternative Flows)

79

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Domain: Property Management

Portfolio
Building

Portfolio

Manager

Building

Manager

creates assigns building to

Assessor

Permissions

manages

Unlimited

Building User

Report

<<historical>>

manages

Section

Section

Owner

manages

Viewer

assigns

assesses

Question

Revision

History
Comment

Legend:

Generalization

* * * *

has has

Aggregation

(Qualified) Association

Reading direction

80

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Example Use Case: Delete Portfolio

81

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Example Use Case: Delete Portfolio (cont.)

82

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Example Use Case: Delete Portfolio (cont.)

83

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Example Glossary of Domain Concepts

84

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Example Business Rules

85

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

• Actors represent users or entities that interact with the system. By

definition, actors are outside of the system boundary.

• Primary Actor:

– Typically a user

– Initiates the use case in order to accomplish a pre-set goal

• Secondary Actor:

– Plays the role of supporting the execution of the use case

– Participates in the interaction later

Use Case Actors

86

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

• A use case may include sub-use cases or may extend an existing
use case

• Use Case «includes»:
– Invokes a sub-use case

– Often an extension is needed if the sub-use case terminates unsuccessfully

• Use Case «extends»:
– Expands an existing base use case with additional interactions

– This relationship is often used to model optional or seemingly unrelated
behavior relative to the goal of the base use case

Linking Use Cases

87

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Meaning:

 Base use case invokes a sub use case

Usages:

– Reuse of existing use cases

– Reduction of complexity

– Elimination of redundancies by grouping common sub flows

«includes» Relationship

88

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Examples:
– “Order Product” «includes» “Login”

– “Change Order Status” « includes » “Check Access Rights”

– “Withdraw Money” « includes » “Check PIN Code”

Important:

– To ensure reusability, the base use case is dependent on the (result of the
execution of the) included use case, but not the other way around

– Included use case must not depend on terminology, actors or business rules
stated in the base use case

«includes» Relationship (cont.)

89

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

«includes» Relationship: Example (Version 1)
Use Case: Order Product
Properties
…

Primary Actor: Customer
….

Main Success Scenario

1. Customer submits login coordinates.

2. System authenticates Customer.

3. System informs Customer that login was successful.

4. System grants access to Customer based on Access Levels.

5. Customer specifies desired Product Category.

6. System ….

…

Extensions

2a. Login coordinates are invalid (BR 1)

2a1. System informs Customer that login was not successful.

2a2. Use case terminates unsuccessfully

90

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

«includes» Relationship: Example (Version 1)
Use Case: Order Product
Properties
…

Primary Actor: Customer
….

Main Success Scenario

1. Customer submits login coordinates.

2. System authenticates Customer.

3. System informs Customer that login was successful.

4. System grants access to Customer based on Access Levels.

5. Customer specifies desired Product Category.

6. System ….

…

Extensions

2a. Login coordinates are invalid (BR 1)

2a1. System informs Customer that login was not successful.

2a2. Use case terminates unsuccessfully

91

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

«includes» Relationship: Example (Version 2)

Use Case: Order Product
Properties

…

Primary Actor: Customer

….

Main Success Scenario

1. Customer performs Login

2. System grants access to Customer based on Access Levels.

3. Customer specifies desired Product Category.

4. System ….

…

Extensions

1a. Login fails

1a1. Use case terminates unsuccessfully.

92

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

«includes» Relationship: Example (Version 2)

Use Case: Order Product
Properties

…

Primary Actor: Customer

….

Main Success Scenario

1. Customer performs Login

2. System grants access to Customer based on Access Levels.

3. Customer specifies desired Product Category.

4. System ….

…

Extensions

1a. Login fails

1a1. Use case terminates unsuccessfully.

93

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

«includes» Relationship: Example (Version 2 cont.)

Use Case: Login
Properties

…

Primary Actor: Customer

….

Main Success Scenario

1. Customer submits login coordinates.

2. System authenticates Customer.

3. System informs Customer that login was successful.

4. Use case terminates successfully.

…

Extensions

2a. Login coordinates are invalid (BR 1)

2a1. System informs Customer that login was not successful.

2a2. Use case terminates unsuccessfully.

94

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Base use case is extended (enriched) by the extending use case

Extension occurs at pre-defined extension point(s), which is defined in
the extending use case.

Examples
– “Re-stock Item” extends “Order Item”

– “Log Transaction” extends “Withdraw Money”

– “Product not in Stock” extends “Order Product”

«extends» Relationship

95

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Usages

– Expansion of an existing base use case (without changing the base use case)

– Introduction of new features after initial requirements has been signed off / reviewed

– Elimination of redundancies (grouping of common sub flows)

– Addition of features that conceptually are unrelated to use case goal (e.g., logging)

Important

– Extending use case is dependent on base use case and not the other way around

– As a result, an extending use case can be added to the model without affecting the base
use case

– One use case may extend several other use cases

«extends» Relationship (cont.)

96

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Use Case: Order Product

Properties

…
Primary Actor: Customer

….

Main Success Scenario

1. Customer performs Login

2. System grants access to Customer based on Access Levels.

3. Customer specifies desired Product Category.

4. …

5. System invoices the Order and updates the Inventory.

6. System informs Customer that Order has been invoiced

…

Extensions

…

«extends» Relationship: Example

97

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Use Case: Restock Item (abstract use case)

Properties:

Precondition: Number of items in stock is below threshold level (BR 2)

 Extends:

 Order Product @ Step 5

 …

Main Success Scenario

1. System submits restock order to Product Inventory System

2. System notifies Product Manager that a restock has been submitted

3. Use case terminates successfully.

…

Extensions

…

«extends» Relationship: Example

98

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Use Case: Restock Item (abstract use case)

Properties:

Precondition: Number of items in stock is below threshold level (BR 2)

 Extends:

 Order Product @ Step 5

 …

Main Success Scenario

1. System submits restock order to Product Inventory System

2. System notifies Product Manager that a restock has been submitted

3. Use case terminates successfully.

…

Extensions

…

«extends» Relationship: Example

99

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Basic Use Case Guidelines

• Use simple grammar:

– Subject … verb … direct object

– Use an expressive verb in present tense, for example: The system deducts the

amount from the account

• Specify whether the system or actor performs the use case step

• Write from a commentator’s view

• Show the process moving forward

• Keep UI details out! Show intent, not actions

100

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Use Case: Buy XYZ
• Level: user-goal

• Primary Actor: Customer

• Main Flow:
1. System presents ID and Password screen with two input fields.

2. Customer types ID and password into system and then clicks the “Okay” button at the

bottom of the screen.

3. System validates user.

4. Customer types last name first in the “last name” field, then first name

Common Mistake #1

• Use Cases should not contain UI details

• This is problematic because the UI is more prone to change compared to core

functionality

101

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Use Case: Buy XYZ
• Level: user-goal

• Primary Actor: Customer

• Main Flow:
1. Customer accesses system with ID and Password.

2. System validates user.

3. Customer provides name and address.

4. …

Solution

• Abstract the Use Case from UI Details

• Results in less clutter and redundancies, reduced maintenance overhead

102

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Common Mistake #2: Misuse of «extends»

Detection:
 Base use case is incomplete without extending use case

 Flow of extending use case replaces part of the base use case flow

103

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Common Mistake #2: Misuse of «extend»

Solution:
 Merge base use case with extending use case

 If appropriate, make use of «include» relationship

104

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Common Mistake #3: Communicating Use Cases

Detection:
 Two use cases are related by an association which is not «includes» or «extends»

Rationale:
 Use cases represent self-contained functionalities and do not communicate with each other

Solution:
 Merge both use cases

105

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Common Mistake #4: Micro Use Cases

Detection:
- Large number of use cases named after single (system) operations

- Each use case contains very little value for stakeholders

Solution:
- Group use cases according to user goals

- Raise abstraction level

106

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Common Mistake #5: Multiple Business Values

Detection:
- Use case addresses more than one use goal

Solution:
- Split use case into several user-goal use cases

107

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Other Mistakes

Mistakes Implication Solution

Use Case is not goal-oriented

Does not reflect user needs Make use of an actor – goal

list

Duplication of information Results in inconsistencies Use case refactoring

Incorrect abstraction level

(too many details)

Maintenance overhead Show process moving

forward

Conditional Statements

Clutter and poor readability Use alternative flows

(extensions)

108

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Basic Use Case Refactorings

• A refactoring is a change made to the internal structure of the use

case model without changing its meaning

• Examples are renaming, merging UCs, splitting UCs, etc…

• Leads to:

– less redundancies

– decreased maintenance overhead

– improved readability

– enhanced separation of concerns

109

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Use Case Refactoring #1: Factor out business rules
• Change:

– Extract information originating from policies, rules, and regulations of the

business from the flow

– Describe this information in a separate section as a collection of business

rules referenced from the use case description (e.g., numbered list text

document, or as a class model)

• Gain:

– Robustness towards change of business rules

– Business rules can be reviewed and updated separately, without changing

use case

– Use case becomes more maintainable, shorter and easier to handle.

– Separation of concerns

110

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Use Case Refactoring #2: Extract common step sequences

• Change:

– Use cases may overlap

– Extract a sequence of steps that appear in multiple places and express

them separately in sub use cases

– Make use of «includes» and «extends» relationships

• Gain:

– Less redundancies

– Avoidance of inconsistencies

– Maintainability

111

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Use Case Refactoring #3: Merging CRUD UCs

Change:

– Merge short, simple use cases, such as Creating, Reading, Updating, and

Deleting into a single use case forming a conceptual unit

Gain:

– Coherence

– Conciseness

Attention:

Only feasible if all CRUD UCs are performed in a similar manner

112

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Use Case Refactoring #4: Elimination of long and broad UCs

Change Long UCs (long scenarios):

 Introduction of sub-UCs to model parts of the base UC

 Raising level of abstraction

Change Broad UCs (many extensions):

 Introduction of sub-UCs to capture extensions

Gain:

– Readability

– Decreased cognitive load

113

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

[Use Case Writing Guidelines]

114

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

• Like a UC Model table of contents (ToC)

– A ToC is no substitute for the content of a book.

– Use Case Diagram(s) are no substitute for the content of a Use Case

model.

• UC diagrams show:

– Most important use cases (incl. UC inter-relationships)

– Actors involved (with each use case).

• Primary actors are displayed on the left hand side of the system boundary

• Secondary actors are displayed on the right hand side of the system boundary

– System name and System boundary

Use Case Diagrams

115

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Use Case Diagram Example: POS System
NextGen POS

Manage Users

. . .

Cashier

System

Administrator

actor

use case

communicationsystem boundary

Payment

Authorization

Service

«actor»

Tax Calculator

«actor»

Accounting

System

alternate

notation for

a computer

system actor

«actor»

HR System

Cash In

«actor»

Sales Activity

System

Manage Security

Analyze Activity

Customer

Manager

Process Sale

Handle Returns

116

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Use Case Relationships in Use Case Diagrams

117

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

System Behavior and UML Sequence Diagrams

• It is useful to investigate and define the behavior of the
software as a “black box”.

• System behavior is a description of what the system does
(without an explanation of how it does it).

• Use cases describe how external actors interact with the
software system. During this interaction, an actor
generates events.

• A request event initiates an operation upon the system.

118

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

System Behavior and System Sequence Diagrams (SSDs)

• A sequence diagram is a picture that shows, for a

particular scenario of a use case, the events that external

actors generate, their order, and possible inter-system

events.

• All systems are treated as a black box; the diagram

places emphasis on events that cross the system

boundary from actors to systems.

119

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

SSDs for Process Sale Scenario

change due, receipt

makePayment(amount)

total with taxes

endSale()

description, total

addLineItem(itemID, quantity)

makeNewSale()
:Cashier

:System

External actor

120

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

SSD and Use Cases

change due, receipt

makePayment(amount)

total with taxes

endSale()

description, total

addLineItem(itemID, quantity)

makeNewSale()
:Cashier

:System

Simple Process Sale Use Case Scenario

1. Customer arrives at a POS checkout

 with goods to purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier and quantity.

4. System records sale line item, and

 presents item description, price and

 running total.

5. System presents total with taxes

 calculated.

…

121

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

– Use Case Model

• Use case diagram(s)

• Use case descriptions

• System Sequence Diagrams

• UC diagrams are optional

• System Sequence Diagrams are optional

Book Metaphor

– Book

• Table of Contents (ToC)

• Book content

• Appendix

• ToC is optional.

• Appendix is optional

122

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Naming System Events and Operations

• The set of all required system operations is determined

by identifying the system events.

– makeNewSale()

– addLineItem(itemID, quantity)

– endSale()

– makePayment(amount)

123

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Operations Contracts

• Contracts are documents that describe system behavior.

• Contracts may be defined for system operations.

– Operations that the system (as a black box) offers in its
public interface to handle incoming system events.

• The entire set of system operations across all use cases,
defines the public system interface.

124

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

System Operations and the System Interface

• In the UML the system as

a whole can be represented

as a class.

• Contracts are written for

each system operation to

describe its behavior.

System

makeNewSale()

addLineItem(itemID, quantity)

endSale()

makePayment()

125

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Example Contract: addLineItem
Contract: addLineItem

Operation: addLineItem (itemID: ItemID, quantity: integer)

Cross References: Use Cases: Process Sale.

Pre-conditions: There is a sale underway.

Post-conditions:

 A SalesLineItem instance sli was created. (instance creation)

 sli was associated with the Sale. (association formed)

 sli.quantity was set to quantity. (attribute modification)

 sli was associated with a ProductSpecification, based on itemID match

(association formed)

126

COMP 354–Introduction to Software Engineering

Daniel Sinnig, PhD 21-May-14

Pre- and Postconditions

• Preconditions are assumptions about the state of the system

before execution of the operation.

• A postcondition is an assumption that refers to the state of

the system after completion of the operation.

– The postconditions are not actions to be performed during the

operation.

– Describe changes in the state of the objects in the Domain Model

(instances created, associations are being formed or broken, and

attributes are changed)

