
Department for Computer Science
and Software Engineering

Daniel Sinnig, PhD
d_sinnig@cs.concordia.ca

04-June-2014

COMP 354:
INTRODUCTION TO SOFTWARE ENGINEERING

OO Fundamentals

2

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

OO Fundamentals

• Objects vs Classes
• Interface vs. Implementation
• Static (compile-time) vs. Dynamic (run-time).
• Types

– Type Hierarchy

• Runtime representation of OO programs.

3

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Classes
• Hold data.
• Offer services to other objects and classes in its

community through its methods.
• Are the only means of creating objects.

4

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Objects
• Hold data.
• Offer services to other objects in its community

through its methods.

5

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

A Class in a Class-based language …
• Defines four

kinds of feature

Data

Methods

Class Object

static field

non-static
method

static method

non-static
field

6

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Class: Interface vs. Implementation

• Interface (or type):
– publicized services made available to others.

7

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014 6/15/2014 SOEN 343, © P.Chalin, p. 7

8

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Class: Interface vs. Implementation

• Interface (or type):
– publicized services made available to others.

• Implementation (generally hidden).

9

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014 6/15/2014 SOEN 343, © P.Chalin, p. 9

10

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Class: Interface vs. Implementation
• Interface (or type):

– publicized services made available to others.

• Implementation (generally hidden).

11

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Two sides of an object
• Private features

– Hidden
– Help realize

“information hiding”
– Can be data or

algorithm details

• Non-private features
– Public
– Package (or friend)

12

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

OO Programs are …
At Compile-time

• Collection of classes …
organized into packages.

(static point of view)

At Runtime
1. collaborating community of

objects …
2. using class features:

– data
– methods

http://images.google.com/imgres?imgurl=http://steves.blogharbor.com/Collaborationnotsomuchabouttechnoloogy_F196/collaboration5.jpg&imgrefurl=http://steves.blogharbor.com/blog/IT/Collaboration&h=240&w=273&sz=106&hl=en&start=1&tbnid=SjyT55kWSYwKQM:&tbnh=117&tbnw=133&prev=/images?q=collaboration&gbv=2&svnum=10&hl=en&sa=G

13

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Question
• What are the different kinds of feature visibilities that

can be used in Java?

14

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

OO Feature Visibility
• Private features
• Public features

– Defines an interface

• Package features

15

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Types
• In Java, C++, … every

– Declaration
– Expression

 has a type.

16

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Two kinds of type (Java)
• Basic (primitive):

– int,
– long,
– double, …
– void.

• Reference:
– Class
– Interface
– Array

17

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Types vs. Classes

• A class (in either C++ or Java) defines
– a type and
– an implementation.

18

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Types vs. Interfaces

• A Java interface defines
– a type and
– without an implementation.

19

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Flash Question

• Can a type (without an implementation) be defined in
any other way?

20

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Type can be defined by means of

• Pure abstract class (C++, Java)
• Interface (Java)

21

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Runtime Representation of OO Programs

• Stack and Heap.
• Runtime types of object.

22

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Variables and the Stack
• Local variables (including

method parameters) are
allocated on the runtime stack.

Stack

a

b

s

t

…

top

bottom

3

null

23

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Stack Frames and Method Calls
• Method call causes a stack

frame to be pushed on the
stack. Approximately as
is shown: e.g. a call: m(5)
where
void m(int n) {

 int x = …

 …

}

m

n

a

b

s

t

… top

bottom

5

3

null

24

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Variables and Types

• Every variable has a declared type that is either
– Primitive type (int, char).
– Reference type (int [], String, any class type).

25

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Types, Values and the Stack & Heap
• Variables of

– Primitive types contain values.
– Reference types contain references to objects that are stored in the system

heap.

26

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Stack and Heap Heap

t

greeting

alice

b

a

x
alice: Person
name = “Alice”

greeting: String
 “hello”

: int[]
[342,343]

course

…

0

3

?

null

Stack

27

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Stack and Heap
• Stack: each stack cell can hold

– The value of a primitive type.
– The special value null.
– A reference (pointer) to an object allocated in the heap.
– (Objects cannot be held in the stack)

• Heap:
– Only contains objects that were created via “new”.

28

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Object and Variables: Run-time Initialization
• Local variables:

– Are not implicitly initialized.
– Must be explicitly initialized.

• Object fields always initialized by default to
– Integral types (including char): 0.
– Floating point types: 0.0.
– Reference types: null.

29

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Object Creation and Variable Declarations
• Basic declaration (no object creation):

Animal a;

• null initialized declaration (no object creation):

Animal a = null;

• Only using new will create (instantiate) objects

a = new Duck();

30

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Exercise:
Illustrate the state of the stack and heap after the following
local variable declarations have been processed.

int i = 6;

int j;

int a[] = {1,2,3};

int[] b = new int[2];

String s = “abc”;

String t = null;

31

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Compile-time vs. Runtime type
• Any expression can have two types:

– Compile-time (or static) type;
– Runtime (or dynamic) type.

• For variables, the compile-time type is also called its
declared type.

• E.g. consider a small Animal hierarchy …

32

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Each Expression: Two Types, Example

 Animal a = new Cat();

• a has two types:
– Declared type: Animal.
– Run-time type: Cat.

33

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

How can I “recover” the dynamic type?

 Animal a = new Cat();

 Cat c = a; // ?

34

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

How can I “recover” the dynamic type?

 Animal a = new Cat();

 Cat c = (Cat)a; // ?

35

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Type Casting (in Statically Typed OO Languages)

• Purpose of Casting
– Inform compiler of (assumed) subtype of an object.
– Compiler can then perform better type checking.

• Type cast
– Like an assertion, it may fail; e.g.
 Object i = new Integer(0);
String s = (String) i;
//  ClassCastException

36

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Type Hierarchy (Java)
• Every class is a subclass of Object.
• If S is a subclass of T then we can use an instance of S

where ever a T is expected:

T t = new S();

Object o = new S();

// Do not do this (it is wasteful):
Object o = new String(“abc”);

Type Hierarchy: Object, the root of all

Object

A

B

X

K

Type Hierarchy: Supertypes, Subtypes

Object

A

B

X

K

Supertypes of A

Subtypes of A

Unrelated Sub-hierarchies are Not Compatible (for
assignment, cast).

Object

A

B

X

K

• Cannot
– Assign, or
– Cast

 A to K

‘Declared Type’ Fixes Bounds

• Declared type – e.g. A.
• Run-time type – can change at run-time ...

– … within bounds of declared type subhierarchy.

A

B

X

Type Checking: Assignment

• Always done relative to declared type.
A a = some-expression-of-type-X

• Legal? (or will cause a compile-time error?)
• Assignment is legal iff
X is
– A,
– Subtype of A.

A

B

X

42

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Exercise:
Given the declarations below, what will be the value of b?
Is this actually legal code; will an exception be thrown?

String s = “abc”;

Object o = “abc”;

boolean b = o.equals(s);

43

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Static Methods (& Fields)

• Consider the call of a static method m():
receiver.m()

• The declared type of the receiver expression determines
which method m() gets called.

• Like a “global” procedure and/or variable.

44

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Non-Static Methods & Fields

• Let m() be a non-static method, then call:
receiver.m()

• The method m() can be implemented in several classes
(achieved by method overrides).

• Which implementation gets called depends on the run-
time type of the receiver expression.

• This technique is called dynamic dispatching.

45

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Small Animal Type Hierarchy

46

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Subtype Polymorphism & Dynamic Dispatching

• Given
Animal a = new Cat();

a.sleep();

• Which sleep method gets called … ?

47

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Subtype Polymorphism & Dynamic Dispatching

Animal a =
new Cat();

a.sleep();

48

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Polymorphism
• “poly” – many
• “morphism” – forms
• How does the meaning of this term apply to OO?

– Run-time type of a given expression can vary.

• Different types: our concern
– Subtype polymorphism.

49

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Dynamic Dispatching
• Also called: dynamic method lookup.
• Only happens for non-static methods.
• NOT for any other method, field or constructor.

50

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Dynamic Dispatching
Given a.m(), which implementation of m() will be called?
1. Determine the compile-time type of a. Let us called it

A.
2. Look for a method m() with the appropriate signature

in A or any supertype of A.
3. Not found? Then: Compiler-time error.
4. Found? And …

51

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Dynamic Dispatching

Found, and it is a non-static method, then: …
• Determine the run-time type of a. (Call it X)
• Start looking up implementations of m():

– Does X contain an implementation of m()?
If yes, then use it.

– Otherwise, move up the supertype hierarchy rooted at X one
level at a time.

52

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

FYI – Vtables
• vtable lookup, involves a single table lookup.

– Constructor initialized vtable entries appropriately.

• Contrast this with static methods where no lookup is
needed.

53

Introduction to Software Engineering

Daniel Sinnig, PhD 04-June-2014

Exercise:
Consider the given code (note that println represents
System.out.println). What will the output be after running main()?

 class P {
 static int rate = 1;
 static String m1() {
 return "P.m1";
 }
 static String m2() {
 return "P.m2";
 }
 String r1() {
 return "P.r1: " + rate;
 }
 String r2() {
 return "P.r2: " + rate;
 }
}

class C extends P {
 static int rate = 2;
 static String m1() {
 return "C.m1";
 }
 String r1() {
 return "C.r1: " +
rate;
 }
}

class Main {
 static public void main(String args[]) {
 P p = new C();
 println(p.m1());
 println(p.m2());
 println(p.r1());
 println(p.r2());
 println(p.rate);
 C c = new C();
 println(c.m1());
 println(c.m2());
 println(c.r1());
 println(c.r2());
 println(c.rate);
 }
}

	Slide Number 1
	OO Fundamentals
	Classes
	Objects
	A Class in a Class-based language …
	Class: Interface vs. Implementation
	Slide Number 7
	Class: Interface vs. Implementation
	Slide Number 9
	Class: Interface vs. Implementation
	Two sides of an object
	OO Programs are …
	Question
	OO Feature Visibility
	Types
	Two kinds of type (Java)
	Types vs. Classes
	Types vs. Interfaces
	Flash Question
	Type can be defined by means of
	Runtime Representation of OO Programs
	Variables and the Stack
	Stack Frames and Method Calls
	Variables and Types
	Types, Values and the Stack & Heap
	Stack and Heap
	Stack and Heap
	Object and Variables: Run-time Initialization
	Object Creation and Variable Declarations
	Exercise:
	Compile-time vs. Runtime type
	Each Expression: Two Types, Example
	How can I “recover” the dynamic type?
	How can I “recover” the dynamic type?
	Type Casting (in Statically Typed OO Languages)
	Type Hierarchy (Java)
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Exercise:
	Static Methods (& Fields)
	Non-Static Methods & Fields
	Small Animal Type Hierarchy
	Subtype Polymorphism & Dynamic Dispatching
	Subtype Polymorphism & Dynamic Dispatching
	Polymorphism
	Dynamic Dispatching
	Dynamic Dispatching
	Dynamic Dispatching
	FYI – Vtables
	Exercise:

