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OO Fundamentals 

• Objects vs Classes 
• Interface vs. Implementation 
• Static (compile-time) vs. Dynamic (run-time). 
• Types 

– Type Hierarchy 

• Runtime representation of OO programs. 
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Classes 
• Hold data. 
• Offer services to other objects and classes in its 

community through its methods. 
• Are the only means of creating objects. 
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Objects 
• Hold data. 
• Offer services to other objects in its community 

through its methods. 
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A Class in a Class-based language … 
• Defines four  

kinds of feature 

Data 

Methods 

Class Object 

static field 

non-static  
method 

static method 

non-static  
field 
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Class: Interface vs. Implementation 

• Interface (or type): 
– publicized services made available to others. 
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Class: Interface vs. Implementation 

• Interface (or type): 
– publicized services made available to others. 

• Implementation (generally hidden). 
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Class: Interface vs. Implementation 
• Interface (or type): 

– publicized services made available to others. 

• Implementation (generally hidden). 
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Two sides of an object 
• Private features 

– Hidden 
– Help realize 

“information hiding” 
– Can be data or  

algorithm details 

• Non-private features 
– Public 
– Package (or friend) 
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OO Programs are … 
At Compile-time 

• Collection of classes … 
organized into packages. 

(static point of view) 

At Runtime 
1. collaborating community of 

objects … 
2. using class features: 

– data 
– methods 

http://images.google.com/imgres?imgurl=http://steves.blogharbor.com/Collaborationnotsomuchabouttechnoloogy_F196/collaboration5.jpg&imgrefurl=http://steves.blogharbor.com/blog/IT/Collaboration&h=240&w=273&sz=106&hl=en&start=1&tbnid=SjyT55kWSYwKQM:&tbnh=117&tbnw=133&prev=/images?q=collaboration&gbv=2&svnum=10&hl=en&sa=G
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Question 
• What are the different kinds of feature visibilities that 

can be used in Java? 
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OO Feature Visibility 
• Private features 
• Public features 

– Defines an interface 

• Package features 
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Types 
• In Java, C++, … every 

– Declaration 
– Expression 

 has a type. 
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Two kinds of type (Java) 
• Basic (primitive): 

– int, 
– long, 
– double, …  
– void. 

• Reference: 
– Class 
– Interface 
– Array 
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Types vs. Classes 

• A class (in either C++ or Java) defines 
– a type and 
– an implementation. 
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Types vs. Interfaces 

• A Java interface defines 
– a type and 
– without an implementation. 
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Flash Question 

• Can a type (without an implementation) be defined in 
any other way? 
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Type can be defined by means of 

• Pure abstract class (C++, Java) 
• Interface (Java) 
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Runtime Representation of OO Programs 

• Stack and Heap. 
• Runtime types of object. 
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Variables and the Stack 
• Local variables (including 

method parameters) are 
allocated on the runtime stack. 

Stack 
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null 
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Stack Frames and Method Calls 
• Method call causes a stack 

frame to be pushed on the 
stack.  Approximately as 
is shown: e.g. a call: m(5) 
where 
void m(int n) { 

  int x = … 

  … 

} 

m 

n 

a 

b 

s 

t 

… top 

bottom 

  
  

5 

# 
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# 

null 
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Variables and Types 

• Every variable has a declared type that is either 
– Primitive type (int, char). 
– Reference type (int [], String, any class type). 
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Types, Values and the Stack & Heap 
• Variables of 

– Primitive types contain values. 
– Reference types contain references to objects that are stored in the system 

heap. 
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Stack and Heap Heap 

t 

greeting 

alice 

b 

a 

x 
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name = “Alice” 

greeting: String 
    “hello”   

: int[] 
[342,343] 

course 

… 
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3 

? 

null 

Stack 
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Stack and Heap 
• Stack: each stack cell can hold 

– The value of a primitive type. 
– The special value null. 
– A reference (pointer) to an object allocated in the heap. 
– (Objects cannot be held in the stack) 

• Heap: 
– Only contains objects that were created via “new”. 



28 

Introduction to Software Engineering 

Daniel Sinnig, PhD 04-June-2014 

Object and Variables: Run-time Initialization 
• Local variables: 

– Are not implicitly initialized. 
– Must be explicitly initialized. 

• Object fields always initialized by default to 
– Integral types (including char): 0. 
– Floating point types: 0.0. 
– Reference types: null. 
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Object Creation and Variable Declarations 
• Basic declaration (no object creation): 

Animal a; 

 
• null initialized declaration (no object creation): 

Animal a = null; 

 
• Only using new will create (instantiate) objects 

a = new Duck(); 



30 

Introduction to Software Engineering 

Daniel Sinnig, PhD 04-June-2014 

Exercise: 
Illustrate the state of the stack and heap after the following 
local variable declarations have been processed. 
 
int    i = 6; 

int    j; 

int    a[] = {1,2,3}; 

int[]  b = new int[2]; 

String s = “abc”; 

String t = null; 
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Compile-time vs. Runtime type 
• Any expression can have two types: 

– Compile-time (or static) type; 
– Runtime (or dynamic) type. 

• For variables, the compile-time type is also called its 
declared type. 

• E.g. consider a small Animal hierarchy … 
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Each Expression: Two Types, Example 

 

 Animal a = new Cat(); 

 

• a has two types: 
– Declared type: Animal.   
– Run-time type: Cat.   
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How can I “recover” the dynamic type? 

 

 Animal a = new Cat(); 

 Cat c = a;           // ? 
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How can I “recover” the dynamic type? 

 

 Animal a = new Cat(); 

 Cat c = (Cat)a;       // ? 
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Type Casting  (in Statically Typed OO Languages) 

• Purpose of Casting 
– Inform compiler of (assumed) subtype of an object. 
– Compiler can then perform better type checking. 

• Type cast 
– Like an assertion, it may fail; e.g. 
 Object i = new Integer(0);  
String s = (String) i; 
//  ClassCastException 
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Type Hierarchy (Java) 
• Every class is a subclass of Object. 
• If S is a subclass of T then we can use an instance of S 

where ever a T is expected: 
 

T t = new S(); 

 

Object o = new S(); 

// Do not do this (it is wasteful): 
Object o = new String(“abc”); 



Type Hierarchy: Object, the root of  all 

Object 

A 

B 

X 

K 



Type Hierarchy: Supertypes, Subtypes 

Object 

A 

B 

X 

K 

Supertypes of A 

Subtypes of A 



Unrelated Sub-hierarchies are Not Compatible (for 
assignment, cast). 

Object 

A 

B 

X 

K 

• Cannot  
– Assign, or 
– Cast  

 A to K 



‘Declared Type’ Fixes Bounds 

• Declared type – e.g. A. 
• Run-time type – can change at run-time ... 

– … within bounds of  declared type subhierarchy. 

A 

B 

X 



Type Checking: Assignment 

• Always done relative to declared type. 
A a = some-expression-of-type-X 

• Legal? (or will cause a compile-time error?) 
• Assignment is legal iff   
X is 
– A, 
– Subtype of  A. 

A 

B 

X 
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Exercise: 
Given the declarations below, what will be the value of b?  
Is this actually legal code; will an exception be thrown? 
 
String s = “abc”; 

Object o = “abc”; 

boolean b = o.equals(s); 
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Static Methods (& Fields) 

• Consider the call of a static method m(): 
receiver.m() 

• The declared type of the receiver expression determines 
which method m() gets called. 
 

• Like a “global” procedure and/or variable. 
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Non-Static Methods & Fields 

• Let m() be a non-static method, then call: 
receiver.m() 

• The method m() can be implemented in several classes 
(achieved by method overrides). 

• Which implementation gets called depends on the run-
time type of the receiver expression. 

• This technique is called dynamic dispatching. 
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Small Animal Type Hierarchy 
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Subtype Polymorphism & Dynamic Dispatching 

• Given 
Animal a = new Cat(); 

a.sleep(); 

 
• Which sleep method gets called … ? 
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Subtype Polymorphism & Dynamic Dispatching 

Animal a =  
new Cat(); 

a.sleep(); 
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Polymorphism 
• “poly” – many 
• “morphism” – forms 
• How does the meaning of this term apply to OO? 

– Run-time type of a given expression can vary. 
 

• Different types: our concern 
– Subtype polymorphism. 
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Dynamic Dispatching 
• Also called: dynamic method lookup. 
• Only happens for non-static methods. 
• NOT for any other method, field or constructor. 
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Dynamic Dispatching 
Given a.m(), which implementation of m() will be called? 
1. Determine the compile-time type of a. Let us called it 

A. 
2. Look for a method m() with the appropriate signature 

in A or any supertype of A. 
3. Not found? Then: Compiler-time error. 
4. Found? And … 
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Dynamic Dispatching 

Found, and it is a non-static method, then: … 
• Determine the run-time type of a. (Call it X) 
• Start looking up implementations of m(): 

– Does X contain an implementation of m()?  
If yes, then use it. 

– Otherwise, move up the supertype hierarchy rooted at X one 
level at a time. 
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FYI – Vtables 
• vtable lookup, involves a single table lookup. 

– Constructor initialized vtable entries appropriately. 

• Contrast this with static methods where no lookup is 
needed. 
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Exercise: 
Consider the given code (note that println represents 
System.out.println). What will the output be after running main()? 

 class P {   
  static int rate = 1;    
  static String m1() {       
    return "P.m1";   
  }   
  static String m2() {       
   return "P.m2";   
  }   
  String r1() {       
   return "P.r1: " + rate;   
  }   
  String r2() {       
   return "P.r2: " + rate;   
  } 
} 

class C extends P {    
  static int rate = 2;   
  static String m1() {     
    return "C.m1";   
  }    
  String r1() {     
    return "C.r1: " + 
rate;   
  }  
} 

class Main {   
  static public void main(String args[]) {       
    P p = new C();       
    println(p.m1());       
    println(p.m2());       
    println(p.r1());       
    println(p.r2());       
    println(p.rate);       
    C c = new C();       
    println(c.m1());       
    println(c.m2());       
    println(c.r1());       
    println(c.r2());       
    println(c.rate);   
  } 
} 
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