
Department of Computer Science and Software Engineering
Concordia University

SOEN 6461 Software Design Methodologies
Design Assignments Fall 2015

Design Assignments

The assignments require you to practice creating a design, communicating your design, and
analysing your design to demonstrate that the design works, and that the design has the
properties — for example, performance, security, usability, etc — required for the task.

You do not program your designs, so your program can not serve as a way to check your
design. You must be able to communicate and check your design independently of a program.

Design work requires you to be able to express your ideas about a design to your fellow design-
ers. This includes the key features of the design, why these features are good, or necessary,
and what are the consequences of using this design feature (both positive consequences and
negative consequences).

These design conversations can happen in formal review meetings, or as informal chats
around the water cooler.

These design conversations happen no matter which methodology you are using for software
development.

Assignments 2015 — Patterns in Genome Sequences

Overview

The assignments deal with finding short patterns in strings; in this case the strings are
genome sequences.

A genome sequence is a string over the alphabet of four nucleotides{a, c, g, t}. A genome
can be very long, from 100 thousand to 100 billion nucleotides (nt). For example, the human
genome has length about 3.2 ×109 nt.

A pattern is a k-mer, a string of nucleotides of length k. The values of k that are of interest
in pattern finding varies from k = 1 to k = 37. Note that there are 4k possible k-mer’s, and
that 437 is 274 which is approximately 16×1021 — because 210 = 1024, which is approximately
103 = 1000.

When identifying organisms, scientists want to be able to detect a pattern or a combination
of patterns that distinguish one organism from all other organisms. For example, in food
safety testing, certain strains of common bacteria are harmful to us, while other strains are
perfectly safe. Is there a k-mer p in the genome of an unsafe strain X that is unique to that
strain?



Sometimes we need several patterns in order to be able to distinguish between strains or
organisms. That is, suppose we can identify a list ~P = (p1, p2, . . . , pm) of patterns pj, such
that no two strains have the same combination of patterns. That is, the binary string B~P (X)
= b1b2 . . . bm of zeroes and ones, where a one for bj indicates that the genome of organism
X has pattern pj, and a zero indicates that the pattern is absent in the genome of X. The

list ~P = (p1, p2, . . . , pm) of patterns are called biomarkers, and the binary number B~P (X)
= b1b2 . . . bm is called the signature of X.

Assignment One

The Problem

You are given a genome as a string S of length n over the alphabet = { a, c, g, t }; and an
integer k between the values of 1 and 37.

Your system is to compute the set of k-mers p over the alphabet = { a, c, g, t } that occur
in the genome S, together with a count of the number of occurrences of p, and a list of
positions i of p in S.

A Small Example

The genome is a string S= ataaaa of length n = 6 over the alphabet = { a, c, g, t }. The
input value of k is 2; hence, a pattern is a 2-mer, a string of 2 nucleotides. The task is
to determine all patterns of size 2, count the number of occurrences of each pattern, and
determine the position of each occurrence in the genome S.

For this example, the result would be

Pattern Count Positions
aa 3 2,3,4
at 1 0
ta 1 1

Note that the positions in the genome are numbered from 0 to 5.

Guidance

This assignment focuses on the design of classes, both in terms of being real-world concepts,
but also in terms of data representations in memory or on disk. In assignment one we really
want to avoid disk usage during the computation because of the high performance costs.

For class design, it is important to select appropriate data structures and operations. Fur-
thermore, the classes collaborate in order to perform the computation, so the design must
make the operations work together. The choice of data representations for each class must



be consistent, otherwise there is the overhead of transforming from one data representation
to another at each step of the algorithm.

For these assignments, you need to be concerned about

I that your program computes the correct result;

I that your program makes efficient use of cpu time;

I that you program makes efficient use of memory;

I that your program scales to handle genomes of size 100 billion nt; and

I that your program scales to handle patterns of size k=37.

When considering scaleability, think about how large a problem — that is, n and k — your
program can execute in the following three systems:

I 4 GB of memory for data;

I 128 GB of memory for data; and

I 1024 GB of memory for data.

Data Structures For this assignment, you need to design several key data structures.
Your design needs to have an in-memory data representation for

I a nucleotide, which is a member of { a, c, g, t };
I the genome itself, which is a string of length n;

I a pattern, which is a string of length k; and

I the result of the computation, which is a collection of patterns, together with a count,
and a list of positions.

You need to be aware of the memory resources used by each data structure. How many bits
or bytes or words are required by each element of the data structure? How many entries are
there in each data structure? What is the total size of each data structure?

Operations The overall algorithm for the program is a sequential scan of the genome
from position i=0 to position i=n − 1; and storing the information about the pattern p =
S[i . . . i + k − 1] in the collection of patterns.

For this assignment, there are key operations associated with the collection of patterns:

I given a pattern, find the pattern in the collection;

I update the count and positions for a pattern, once you have found the pattern in the
collection; and

I add a new pattern to the collection, if you could not find the pattern in the collection.

A very important part of these operations, is the data representation of a pattern, and the
related operation of

I fetching the pattern at position i of the genome;



and the comparison operator between patterns for the operation of

I compare a pattern p from the genome with each pattern q already in the collection.

You need to be aware of the number of steps used by each operation, including the steps that
move data. Remember that the underlying hardware operations will handle data in terms
of bytes, 32-bit words, 64-bit words, and that these units of data are at specific locations in
a memory’s 64-bit word. So think about how data is aligned in a word, and how you pad
unused bits of the word, since these affect your operations.

Consider the scenario where the pattern p = S[i . . . i+k−1] at position i spans the boundary
from one word of memory to the next; that is, for some value of j, S[i . . . j] are bits L..63
for a word and S[j + 1 . . . i + k − 1] are bits 0..M of the next word. When k > 32, the
pattern will always span a 64-bit word boundary, and may even span two boundaries in
some circumstances.

You may need to design an example of the Iterator design pattern that iterates along the
genome sequence, and also handles the data representation of the pattern at position i.

Classes and Objects You may want separate classes for the concept of genome, pattern,
and collection of patterns and the representation of these concepts. Alternatively, the
concept class may have several auxiliary or helper methods implementing the operations for
the data representation of the concept.

Hashing If you decide that a hash index is appropriate for searching the collection of
patterns, then you need to be explicit about the key decisions: the choice of hash function,
how the hash function is computed, and which class has the method for the hash function.
Furthermore, you need to be clear on how you resolve collisions, and how you handle overflow
of the hash table or bins.

Assignment Two

The Problem

You are given several genomes S1, S2, . . . , SM over the alphabet = { a, c, g, t } of lengths
n1, n2, . . . , nM respectively; and an integer k between the values of 1 and 37.

Your system is to compute the k-mers p1, p2, . . . , pM over the alphabet = { a, c, g, t }
such that pi occurs in the genome Si and does not occur in any other genome. If there is no
pattern unique to genome Si then raise an exception.

For convenience, consider k ≤ 16 so that the pattern fits into a single 32-bit word; consider
the genomes to be bacterial genomes of length about 5 million nucleotides; and consider that
there are about M = 100 genomes S1, S2, . . . , SM .



A Small Example

Consider three genomes of length n = 6 over the alphabet = { a, c, g, t }.

I S1 = ataaaa

I S1 = atcgta

I S3 = atagcg

The input value of k is 2.

Consider the k-mers in each genome:

Genome Patterns
S1 aa, at, ta
S2 at, cg, gt, ta, tc
S3 ag, at, cg, gc, ta

Each genome has a pattern that is unique to that particular genome, namely aa, gt, ag
respectively.

Guidance

This assignment builds on assignment 1. It combines object-oriented design and functional
design in that key processes in the solution are

I compute the set P(Si) of patterns p of length k over the alphabet A = {a, c, g, t} in the
genome Si; that is P(Si) = { p ∈ Ak | p occurs in Si }; and

I compute the set difference P(Si) \ P(Sj)

because conceptually the set of unique patterns U(Si) in a genome Si is defined as

U(Si) = P(Si) \

( ⋃
j 6=i

P(Sj)

)
(1)

which are the patterns p that occur in the genome Si but do not occur in any other genome
Sj.

These computational processes can be designed as operations for an appropriate class, or
they can be designed to be a class by themselves, much as you would define a web service
to provide the service of performing a computation. You should have a class that is the
overall algorithm for the problem. Furthermore, you should consider the advantages and
disadvantages of representing the two processes above as their own class.

Note that if there are M genomes S1, S2, . . . , SM then you may require
(
M
2

)
set differences,

which is M × (M − 1)/2.



Data Structures In assignment 1 you computed the collection of patterns, together with
the counts and the positions of each pattern. In addition to that, this assignment requires
many computations with a set of patterns. The representation of the set and the implemen-
tation of the set operations, especially set difference, are critical to performance and memory
usage.

A set can be represented by a list of the patterns in the set.

A set can be represented as a bitmap for Ak where the l-th bit is set to one if and only if
the l-th pattern of Ak is in the set.

The bitmap can be compressed using run-length encoding. This may be advantageous when
the set is sparse and the size of Ak is very large.

What is the cost in terms of memory and cpu instructions for the set difference operation
for each of these representations?

Some Numbers Consider problems working with bacterial genomes of size n about 5×106

nucleotides.

Consider the case of k = 16 where each pattern requires one 32-bit word for storage.

A genome of size n has n− k substrings of length k. Hence, there are at most n− k distinct
patterns p in the genome. So each bacterial genome has at most 5× 106 distinct patterns.

Storing the collection C(S) = {〈p, count, list(position)〉 | p ∈ S} of patterns requires for each
distinct pattern, the pattern, a count, and a list of positions. The total number of positions
is n − k. Assume each pattern, count, and position requires a 32-bit word. Then the total
storage is 2× |C|+ n− k, which is bounded by 3× n 32-bit words, about 60 MB.

So 100 genomes require about 6 GB of memory for the collection of patterns.

What is the size of Ak? For k = 16, there are 416 = 232 distinct k-mers; which is about
4× 109 k-mers.

Therefore, a bacterial genome has at most 1/1000 of the possible patterns. Amongst 100
genomes therefore it is likely to find a unique pattern for each genome.

For k=16, storing every k-mer requires 232 32-bit words, which is 234 bytes, which is 16 GB.

For k=16, storing a set of k-mers as a bitmap of the 232 k-mers in Ak requires 232 bits, which
is 229 bytes, which is 512 MB. Hence, storing the information on patterns for 100 genomes
is about 50 GB.

What if you had 10,000 genomes? Then storage would be 5,000 GB of memory. And the
likelihood of there being a pattern unique to a single genome is low.

Assignment Three

The Problem

You are given several genomes S1, S2, . . . , SM over the alphabet = { a, c, g, t } of lengths
n1, n2, . . . , nM respectively; and an integer k between the values of 1 and 37.



Your system is to compute an integer m, a biomarker list ~P of k-mers (p1, p2, . . . , pm), and

the signature B~P (X) = b1b2 . . . bm of each genome X relative to the biomarkers ~P .

To be biomarkers, the signature of each genome must be a unique binary number.

Ideally, the number m of biomarkers should be small. However, you are not required to find
the smallest possible list of biomarkers.

If there are no biomarkers that distinguish each and every genome then raise an exception.

For convenience, consider k ≤ 16 so that the pattern fits into a single 32-bit word; consider
the genomes to be bacterial genomes of length about 5 million nucleotides; and consider that
there are up to M = 10,000 genomes S1, S2, . . . , SM .

A Small Example

Consider five genomes of length n = 6 over the alphabet = { a, c, g, t }.
I S1 = ataaaa

I S1 = atcgta

I S3 = atagcg

I S4 = cgtaag

I S5 = tagcgt

The input value of k is 2.

Consider the k-mers in each genome:

Genome Patterns
S1 aa, at, ta
S2 at, cg, gt, ta, tc
S3 ag, at, cg, gc, ta
S4 aa, ag, cg, gt, ta
S5 ag, cg, gc, gt, ta

No genome has a pattern that is unique to that particular genome. However, consider the
set of patterns across every genome as the biomarkers, and then look at the signature of
each genome:

Genome Patterns
aa ag at cg gc gt ta tc

S1 1 0 1 0 0 0 1 0
S2 0 0 1 1 0 1 1 1
S3 0 1 1 1 1 0 1 0
S4 1 1 0 1 0 1 1 0
S5 0 1 0 1 1 1 1 0

Therefore ( aa, ag, at, cg, gc, gt, ta, tc ) are biomarkers. Note that the first three patterns
( aa, ag, at ) also form biomarkers that distinguish each genome.



Guidance

This assignment has no simple algorithm to find the solution. You need to explore a heuristic
solution where the design has a Strategy class for the heuristic.

For the solution, the heuristic should identify patterns that distinguish between sets of
genomes by occuring in some of the genomes but not in others.

A common heuristic is the greedy algorithm. The greedy algorithm solves – finds biomarkers
P2 — the case for {S1, S2} and then extends the solution P2 to a solution P2 for the case
for {S1, S2, S3}. And so on to a solution P for S = { S1, S2, . . . , SM }.

You could apply divide-and-conquer to solve the problem as a whole. That is, identify
subproblems, solve each subproblem, and then build the final solution from the set of sub-
solutions.

You could consider using the blackboard architecture as the basis of the design. However,
consider how the use of the blackboard architecture complicates the design. Is it necessary?
Is it helpful in making the design understandable?

Often heuristics are difficult to analyse in terms of computation time. This is generally not
so for divide-and-conquer heuristics, as they naturally lead to recurrence relations.

Data Structures You need to represent the set of biomarkers.

Membership of a pattern in a P(S) is required to determine the bits in the signature of S.

Your heuristics might take advantage of the count of a pattern in C(S).

Biomarkers A set of biomarkers ~P of m k-mers determines a signature B~P (X) which is
a binary number with m binary digits. Such a binary number can distinguish at most 2m

genomes. Hence, we need at least m = log2(M) biomarkers to distinguish M genomes. So
10,000 genomes requires at least 14 biomarkers to distinguish them.

Here are some properties of biomarkers that may be useful in a divide-and-conquer heuristic.

Lemma 1 If there exist a set of biomarkers for two genomes S1 and S2 then there is a set
of biomarkers of size 1 consisting of a single pattern p.

Proof If ~P is a set of biomarkers for S1 and S2 then there is some bit bi which is different in
the two signatures. Take p to be the corresponding biomarker pi.

Corollary 1 If p is a pattern that occurs in genome S1 but does not occur in genome S2,
then (p) is a set of biomarkers for { S1, S2 }.

Lemma 2 If ~P = (p1, p2, . . . , pm) is a set of biomarkers for the genomes S = { S1, S2, . . . ,
SM }, then any permutation of the patterns (p1, p2, . . . , pm) is also a set of biomarkers for
S.

Proof Follows directly from the definition of biomarkers and signature.



Lemma 3 If ~P = (p1, p2, . . . , pm) is a set of biomarkers for the genomes S = { S1, S2, . . . ,

SM }, and pm+1 is a pattern not in ~P then the patterns (p1, p2, . . . , pm, pm+1) are also a set
of biomarkers for S.

Proof Follows directly from the definition of biomarkers and signature.

Lemma 4 If ~P is a set of biomarkers for the genomes S = { S1, S2, . . . , SM }, and T is a

subsect of the genomes S, then ~P is also a set of biomarkers for T .

Proof Follows directly from the definition of biomarkers and signature.

Lemma 5 If ~P = (p1, p2, . . . , pm) is a set of biomarkers for the genomes S = { S1, S2, . . . ,
SM }, S is a genome not in S, and p is a pattern in P(S) that does not occur in any genome
in S, then the patterns (p1, p2, . . . , pm, p) are a set of biomarkers for { S1, S2, . . . , SM , S }.

Proof Follows directly from the definition of biomarkers and signature.

Not-Lemma If ~P is a set of biomarkers for the genomes S and ~Q is a set of biomarkers for
the genomes T then the combination of ~P and ~Q is not necessarily a set of biomarkers for
S ∪ T .

The counterexample for the proof is that the combined biomarkers do not necessary distinguish
between a genome S from S and a genome T from T .



Your Submission

There are three assignments were you must create, evaluate, and document a design.

The deliverable is a design document of about five (5) pages as a pdf file, submitted to
the ENCS electronic submission system. The first line of your document should identify
the course, the assignment number, your name, and your student number; do not have a
separate title page. Use a 12pt font or larger throughout the document.

The Design Document

The document is meant to be short and concise. The three design documents are practice
at communicating. They are also practice in identifying which of your design decisions are
obvious decisions to other designers, and which design decisions are important, critical to the
success of the design, and not obvious. You must communicate the important information.
There is no need to document the obvious design decisions.

Your design document should have subsections:

1. a brief description of the problem (up to one half (0.5) page);

2. a concise description of the design (from two (2) to four (4) pages), where you focus
on presenting the most important parts of the design (whatever they may be);

3. a brief description of the major design decisions (one half (0.5) to one (1) page);

4. a brief description on how you reviewed the design (one half (0.5) to one (1) page),
and which qualities of the design were considered during the review;

5. a glossary of important things (one half (0.5) to one (1) page in length), such as classes,
objects, methods, algorithms, and data structures.

Write your document for a reader at the level of a CS or SOEN graduate like yourself. Use
UML diagrams where and when they are appropriate for communicating information about
the design, but do not use them if they are not needed.

Marking Scheme

For each design document, the marking scheme will assign a mark out of 2 for each of the
subsections listed above, for a total mark out of 10:

• 0 marks for a missing subsection, or very unclear section, or where the section content
is not appropriate for the section (that is, it is mis-placed);

• 1 mark for an informative subsection that does not have too many errors;

• 2 marks for a clear, informative, concise, almost error-free subsection.

Length Penalty: There is a penalty of 10% of the assignment mark for each page of your
submission over 7 pages.

Late Penalty: There is a penalty of 10% of the assignment mark for each day that your
assignment is late.


