Detailed Design

Greg Butler

Computer Science and Software Engineering
Concordia University, Montreal, Canada

Email: gregb@cs.concordia.ca



Detailed Design

Detailed Design Definition [ISO/IEC 24765]

1. the process of refining and expanding the preliminary design of
a system or component to the extent that the design is sufficiently
complete to be implemented;

2. the result of the process in (1).

OO Software Detailed Design — How To

Sketch CRC (Class-Responsibility-Collaboration) for each class
UML diagram for system objects and their collaboration
Determine interfaces (ie operations) of each class

Specify contract for each operation

Select algorithms and data structures for each class

Describe algorithm for each major operation using UML note



Example: CRC Cards for Model-View-Control Architecture

View
Pisplay Mode! Controller
Mode!
Controtier
[nterpret User fnput View
Cend changes to Made(
Moiel’
Model
Maintain sodet
info
Notify Views of
changes




Example: Collaborations in UML

Sequence Diagram for Observer Pattern

:Subject

addObserver()

:Observer

update()

m= -




Example: Collaborations in UML

Activity Diagram for Order Processing

QOrder

Finance

Receive
Order

Check Line ftem|

Brcoeeded

Cancel Order

]

Outstanding

Processing

Choose

Order

eack
chcoren
ot em

Assign to Order

[eed D o

Assign Goods'
to Order

L

ispatch
Order

Frckarsged
il e teme
3N paymeRtattiorzg

Bl EENg
orckr fems flied

Stock
Manager
Receive
Supp

Remainder
to Stock




Example: Collaborations in UML

Communication Diagram for Model-View-Control

Ohservable AN

\\\\ 1.1.2: notifyObservers()
1.1.1: setChanged()

1.1.2.1 : update()

-

L

1.1.2.1.1: getState()

1.1 updateState()

/] View -

:Controller

1: mouseClick() %




Example: Class Interfaces in UML

UML Class

ClassIdentifier4——m7m—— Circle
varIdentifier:type ¢ _radius:int

Access Control Modifier: -color:String
+ public - .
- private +getRadius () :double

+getColor():String
+getArea( ) :double
+resize(scale:int):void

# protected

~ default (package) A Class

methodName(arglist) :returnType

objectIdentifier:class
(objects are underlined)

4—— alircle:Circle

-radius=1.0

-color="red" An Instance

(An Object)




Example: Pre-conditions and Post-conditions

iz=ueBookToStudent{Student =. Book b)

ore:

1. = iz in =tudent=, b i= in books

2. b i= not i==ued to anvone

3. there are no reservations for b or

if there are reservations for b, 2 i=s
the fir=st one

po=t

1. oldi=tudent=) and =tudent= are identical
2. oldibook=) and boock=s are identical

3. = ha= been i1==susd the book b

4., there i= no reservation of = for b




Example: Java Assertions

fm BankAccount.java &3 !

25 Deposits money into the bank account.

26 @param amount the amount to deposit

27 Precondition: amount »=

28 Postcondition: getBalance{) 3= ‘-'—- assertions
29 *f

36=  public void deposit(double amount)

31 {

32 double newBalance = balance + amount;

33 balance = newBalance;

34




Example: Larman System Operation Contract

Basic Contract Format for Operations

= MName enterltem itemiD, quantity )
= Cross Reference Use case: Process sale
= Responsibilities Record Sale of an

iterm and add it to
the sale. Display
item description

and price.
= Pre-Conditions Product itemlD is
known to the system.
= Post-Conditions SalesLineltem corresponding

o product iemiD was
created.
SalesLineltem was
o associded with the sale.
~{saleslireter | |nstance.quantity became guantity.
! 01| qunity Instance was associated with a
Captued_l

Sale

ProductDescription based on
itemlID match.

Register

1




Example: Constraints using OCL in UML
Object Constraint Language for Tic-Tac-Toe

U
(players-zind layer@pre) + 1). m
pre stilPlaying : ISActive)

pre validPasition : position == 0 and position <= 8

post y yer <> yer@pr
post iy yer <> By prey
{inv playerOnelsX: players->at(0).side = Piece::X
inv playerTwolsO: piayers->at(1).side = Piece:Y}
{body: board squares piece} ! -
| e
| -
N Game .
= {init firstPlayerisX: players->any(side = Piece::X)
wcurrentPlayer :Player .~ f— — — — — — — init: players->any(side = Piece: X)}
<
+akeTumn™ Yl
(11 | +boarasSquares:Sequence(Piece)

m Board
Rl g1 board derive: squares->sze()} L
Pla winningLing T size ! Integer — - — ] 5q 0
yer ine
players
*placePioce  _
B8] +pieceAtPosition Piece [~ _

m ——— -

:Lw‘swmr” n | {pre validPosition: position >= 1

M rmeton> o | pre squareMustBeEmpty © Squ

i Plece | post piecelsPlaced : squares->
side

|

(9] {gydered) pre mustBeEmpty : squares-»;

t pls

ced Pi

: squares->a

squares
[0.1] 0.7

{body: squares->al(position). piece}




Example: UML Note for Observer Pattern

observarstate = ‘h‘
subject-=GetState()

Subject ohservers Observer
Attach({Observer) Updatef)
Detach(Observer) far all o in chsarvers f\b‘
Motify() o ——--- - ) o-=Update() ' Z#
1

zé ConcreteObserver
C Subject ey SR [ odate) o-
g:t[;“;;t::{l}\ R retum subjectState ohsanverStats
subjectState




Detailed Design Example — Count Substrings

//Construct collection C of

// triples <pattern, cnt, position> Count operations

& data movement

for each pattern p in alphabet”k do

Clp] i=<p, 0, empty_list >; |alphabet|* iterations

end for

for i := 0 to n-k do n — k iterations
ss = S.substring(i, i+k-1)); data movement?
C[ ss ].count++; indexing cost?
C[ ss ].list.append(i); indexing cost?

end for



Example — Count Substrings — Hand Execution
Small Example

Alphabet = { a, ¢, g, t } String S= ataaaa size n =6

Substrings of size k =1
Counts

Substrings - Positions

a ' a:5:02345
£l t:1:1

t Total = n o

Substrings of size k = 2
. Counts "

Substrings _ Positions
aa: 3

aa aa:3:234
at @ 1

at at: 1:0
ta: 1 11

ta Total=n—1 -

Compute substrings, counts, and positions!



Detailed Design Example — Count Substrings — Quality

Quality Concerns

Correctness
system must compute the right answers!

Efficiency = Resource Usage
Computation time, memory, disk, elapsed time
Formulas in terms of n, k, size of alphabet

Scaleability
size n of string S, size k of substring P
string S may be of size k = 10'° or more
size k of substring P is often 17 to 37
potential number of different substrings P is |alphabet|*
437 = 278 — 10?3 approximately



Detailed Design Issues for Example — Count Substrings

Data representations
character in the string
the string
the substring
the collection of statistics

Algorithms
for enumerating each substring
for updating statistics of a substring in the collection
indexing and searching the collection of statistics

Interfaces (API)
String: how to iterate over string
Collection: how to update the statistics for each substring

packed representation of characters in the string, or not?

pass-by-value versus pass-by-reference



Detailed Design — Use Data Structures in Libraries

String

Containers or Collections or Map or Dictionary
Vector and Array: indexed by scalar type, often fixed length

Set: no order, no duplicates
List: order, duplicates
Bag (or Multiset): no order, duplicates

Map: relates “key” and “value” pairs

Do not use library blindly!

Memory management

Fixed size vs dynamic size
Packed data representations
Initialise expected size

Set hash function



High-Level Algorithm Descriptions: Set Comprehensions

Type Declarations: Design Example

A:={a c gt} //alphabet

String ::= seq A; //Set of all finite sequences over A
StatisticsContainer ::= map String — N x seqN;

Variable Declarations: Design Example
Input: S : String; k : NT

Output: C : StatisticsContainer;

Local variables:

p : String; //the substring

n: Nt; // size of S



High-Level Algorithm Descriptions: Set Comprehensions

Program: Design Example

//define the set of patterns P of size k
let P ={p|peqS[i.it+k-1] for somei, 0 <i < n-k };

//for a given pattern p, define the set of its starting positions i
//take the size of the set to determine the count of pattern p
let cnt(p) = | {i| 0 <i<n-kandpeqS[i.itk1]} [;

//for a given pattern p, define the list of its starting positions i
let pos(p) = List{ i | 0 <i < n-k and p eq S[i..i+k-1] };

//the result is a map from pattern to a pair < count, list >
return C := Map{ p — ( cnt(p), pos(p) ) | p € P };



Data Structures — Be Careful!

Character storage as one byte
For alphabet = { a, ¢, g, t } you only need 2 bits per character

Comparison operators on strings
How do you compare strings to index a collection of strings?
Character by character? Do you copy the character from string?
Data movement in and out of string
Relationship between string and character
Relationship between string and substring
Pass-by-value versus Pass-by-reference
Memory management
Need extra memory allocated?
may allocate new block of memory
and move your data!
O from disk to memory
10 is typically 30% of total computing time



