
Detailed Design

Greg Butler

Computer Science and Software Engineering
Concordia University, Montreal, Canada

Email: gregb@cs.concordia.ca

Detailed Design

Detailed Design Definition [ISO/IEC 24765]

1. the process of refining and expanding the preliminary design of
a system or component to the extent that the design is sufficiently
complete to be implemented;
2. the result of the process in (1).

OO Software Detailed Design — How To

Sketch CRC (Class-Responsibility-Collaboration) for each class
UML diagram for system objects and their collaboration
Determine interfaces (ie operations) of each class
Specify contract for each operation
Select algorithms and data structures for each class
Describe algorithm for each major operation using UML note

Example: CRC Cards for Model-View-Control Architecture

Example: Collaborations in UML

Sequence Diagram for Observer Pattern

Example: Collaborations in UML

Activity Diagram for Order Processing

Example: Collaborations in UML

Communication Diagram for Model-View-Control

Example: Class Interfaces in UML

UML Class

Example: Pre-conditions and Post-conditions

Example: Java Assertions

Example: Larman System Operation Contract

Example: Constraints using OCL in UML

Object Constraint Language for Tic-Tac-Toe

Example: UML Note for Observer Pattern

Detailed Design Example — Count Substrings

//Construct collection C of

// triples <pattern, cnt, position>

for each pattern p in alphabet^k do

C[p] := < p, 0, empty_list >;

end for

for i := 0 to n-k do

ss = S.substring(i, i+k-1));

C[ss].count++;

C[ss].list.append(i);

end for

Count operations
& data movement

|alphabet|k iterations

n − k iterations
data movement?
indexing cost?
indexing cost?

Example — Count Substrings — Hand Execution
Small Example

Alphabet = { a, c, g, t } String S= ataaaa size n = 6

Substrings of size k = 1
Substrings

a
t

Counts
a : 5
t : 1
Total = n

Positions
a : 5 : 0,2,3,4,5
t : 1 : 1

Substrings of size k = 2
Substrings

aa
at
ta

Counts
aa : 3
at : 1
ta : 1
Total = n − 1

Positions
aa : 3 : 2,3,4
at : 1 : 0
ta : 1 : 1

Compute substrings, counts, and positions!

Detailed Design Example — Count Substrings — Quality

Quality Concerns

Correctness
system must compute the right answers!

Efficiency = Resource Usage
Computation time, memory, disk, elapsed time
Formulas in terms of n, k , size of alphabet

Scaleability
size n of string S , size k of substring P
string S may be of size k = 1010 or more
size k of substring P is often 17 to 37
potential number of different substrings P is |alphabet|k
437 = 278 = 1023 approximately

Detailed Design Issues for Example — Count Substrings

Data representations
character in the string
the string
the substring
the collection of statistics

Algorithms
for enumerating each substring
for updating statistics of a substring in the collection
indexing and searching the collection of statistics

Interfaces (API)
String: how to iterate over string
Collection: how to update the statistics for each substring

packed representation of characters in the string, or not?

pass-by-value versus pass-by-reference

Detailed Design — Use Data Structures in Libraries

String

Containers or Collections or Map or Dictionary

Vector and Array: indexed by scalar type, often fixed length

Set: no order, no duplicates
List: order, duplicates
Bag (or Multiset): no order, duplicates

Map: relates “key” and “value” pairs

Do not use library blindly!

Memory management
Fixed size vs dynamic size
Packed data representations
Initialise expected size
Set hash function

High-Level Algorithm Descriptions: Set Comprehensions

Type Declarations: Design Example

A ::= { a, c, g, t }; //alphabet
String ::= seq A; //Set of all finite sequences over A
StatisticsContainer ::= map String → N× seqN;

Variable Declarations: Design Example

Input: S : String; k : N+

Output: C : StatisticsContainer;
Local variables:
p : String; //the substring
n : N+; // size of S

High-Level Algorithm Descriptions: Set Comprehensions

Program: Design Example

//define the set of patterns P of size k
let P = { p | p eq S[i..i+k-1] for some i, 0 ≤ i ≤ n-k };

//for a given pattern p, define the set of its starting positions i
//take the size of the set to determine the count of pattern p
let cnt(p) = | { i | 0 ≤ i ≤ n-k and p eq S[i..i+k-1] } |;

//for a given pattern p, define the list of its starting positions i
let pos(p) = List{ i | 0 ≤ i ≤ n-k and p eq S[i..i+k-1] };

//the result is a map from pattern to a pair < count, list >
return C := Map{ p 7→ (cnt(p), pos(p)) | p ∈ P };

Data Structures — Be Careful!

Character storage as one byte

For alphabet = { a, c, g, t } you only need 2 bits per character

Comparison operators on strings

How do you compare strings to index a collection of strings?
Character by character? Do you copy the character from string?

Data movement in and out of string

Relationship between string and character
Relationship between string and substring
Pass-by-value versus Pass-by-reference

Memory management

Need extra memory allocated?
may allocate new block of memory
and move your data!

IO from disk to memory

IO is typically 30% of total computing time

