
Construx®

Software Development Best Practices

Test Driven
Development

http://www.construx.com

© 1999, 2006 Construx Software Builders Inc.
All Rights Reserved.

Construx®

Software Development Best Practices

Test Driven Development,
What is it and Why?

“Software Development Best Practices” 3Construx

Traditional View of Testing

Acceptance
Testing

System
Testing

Integration and
Component

Testing

Unit Testing

“System
Objectives”

Requirements

Design

Coding

“Software Development Best Practices” 4Construx

We Pause to Bring You This
Important Message ...

“More than the act of testing, the act of designing
tests is one of the best [defect] preventers known …
The thought process that must take place to create
useful tests can discover and eliminate problems

at every stage of development” Boris Beizer

“Software Development Best Practices” 5Construx

Improved View of Testing

Integration and
Component

Test Planning

Unit Test
Planning

System
Test Planning

Acceptance
Test Planning

Acceptance
Test Execution

System
Test Execution

Integration and
Component

Test Execution

Unit Test
Execution

“System
Objectives”

Requirements

Design

Coding

“Software Development Best Practices” 6Construx

XP’s “Test First”

Create test cases before writing code
Business rep writes acceptance tests to
demonstrate that user stories are correctly
implemented
Programmers continually write unit tests which
must run flawlessly for development to continue

“We only write new code when we have
a test that doesn’t work”

Reference: [Jeffries01]

“Software Development Best Practices” 7Construx

Test Driven Development’s View

Unit Test Fails

System
Test Passes

Coding

Requirements

Unit Test
Planning

System
Test Planning

System
Test Fails

Unit Test Passes

“Software Development Best Practices” 8Construx

Test Driven Development Process

repeat
select functionality to implement
create and/or modify system-level tests
repeat

developer selects one unit-level module to write and/or modify
developer creates and/or modifies unit-level tests
repeat

developer writes and/or modifies unit-level code
until all unit-level tests pass

until all system-level tests pass
until no more functionality to implement

“Software Development Best Practices” 9Construx

Test A Little, Code A Little

You don’t need to write all the test
cases first
1. You only have to create of one test that

the current code won’t pass
2. Write code to pass the test
3. Go back to step 1
If it is hard to write a test there may be
a design issue
Each round of test & code includes
refactoring of the previous code

“Software Development Best Practices” 10Construx

Why Test Driven Development?

One of the biggest problems in software
is requirements ambiguity

A direct result of using natural language
specifications (e.g., “The system shall be
fast”)

A test case is inherently unambiguous
Test cases are unambiguous “proxies” for
requirements

“Software Development Best Practices” 11Construx

Advantages of
Test Driven Development

Gradually builds an comprehensive suite of
(hopefully automated) test cases

Run that suite each time the code is compiled
All tests must pass except the brand new one(s)

Code can be refactored with confidence
Saves time during integration and system
testing

Most tests can be run automatically
Many integration errors can be found before
system test

Construx®

Software Development Best Practices

QA-level
Test Driven Development

“Software Development Best Practices” 13Construx

A Use Case Description Template

Identify any execution scenarios that constitute unsuccessful completion of this use
case. These are different ways that, despite the preconditions having been
satisfied, the postconditions will not have been achieved.

Exceptions

State how important use case is relative to all of other use cases in the system
(note: this could be interpreted as either execution priority or development priority)

Priority

Identify any nontypical execution scenarios that still constitute successful
completion of use case. These are different ways that postconditions could still be
satisfied

Alternative
courses

Identify what must be true on completion of use case to complete successfullyPostconditions
Identify what must be true at the start of use case to complete successfullyPreconditions

List any other specific (i.e., nonfunctional) requirements that apply to use caseSpecial
requirements

Describe typical execution scenario, if importantNormal course

Identify any assumptions behind specification of use caseAssumptions

Give an overall description of intent of use caseDescription
Identify which actors can access use caseActor(s)
Use case name hereUse case # nnn

“Software Development Best Practices” 14Construx

Example Use Case

Each reservation instance has been created. The reservation confirmation has been
given to actor. Space available in each fare/class for each flight has been reduced.

Postconditions

HighestPriority

This use case only covers making reservations for one person at a time.
It also doesn’t address related travel services like rental car and hotel reservations.

Assumptions

Must be completed in under 60 seconds.Special
requirements

One or more minimum airport connection times isn’t satisfied.
Traveler is on the FBI watch list.

Exceptions

Actor pays for reservations immediately. Actor preassigns seats. Actor requests special
meal. Actor requests extra service like wheelchair or unaccompanied minor service
(traveler is under 12 years old).

Alternative
courses

Reservation request is made and completed.Normal course

Each specified flight segment exists. There is room available in fare/class for each flight.
All applicable advance-purchase/stay requirements are satisfied.

Preconditions

Make a reservation on one or more requested flight segments in name of specified
traveler.

Description
Travel Agent, Traveler, Airline Ticket AgentActor(s)
Make Flight Reservation(s)Use case # 66

“Software Development Best Practices” 15Construx

Testing from Use Cases

Positive tests
Normal course
Each alternative course
Combinations of alternative courses?
Validate the assumptions?

Negative tests
Violate each precondition
Force each exception

“Software Development Best Practices” 16Construx

Example Use Case-based Tests

TC1 (Positive, normal course)
Reservation on existing flight(s) with room in fare/class and advance purchase/stay
requirements met reservation created, confirmation provided, availability reduced

TC2 (Positive, alternative course 1)
Reservation on existing flight(s) with room in fare/class and advance purchase/stay
requirements met & pay immediately …

TC3 (Positive, alternative course 2)
Reservation on existing flight(s) with room in fare/class and advance purchase/stay
requirements met & pre-assign seat(s) …

TC4 (Positive, alternative course 3)
Reservation on existing flight(s) with room in fare/class and advance purchase/stay
requirements met & special meal …

TC5 (Positive, alternative course 4)
Reservation on existing flight(s) with room in fare/class and advance purchase/stay
requirements met & unaccompanied minor …

TC6 16 (Positive, all other combinations of alternative courses)
…
Reservation on existing flight(s) with room in fare/class and advance purchase/stay
requirements met & pay now & pre-assign seat(s) & special meal & unaccompanied
minor reservation created, confirmed, availability--, paid, seat assigned, meal rqst’d,
and UM

“Software Development Best Practices” 17Construx

Example Use Case-based Tests (cont)

TC17 (Negative, violate precondition 1)
Reservation on non-existing flight(s) “Flight doesn’t exist”

TC18 (Negative, violate precondition 2)
Reservation on existing flight(s) and advance purchase/stay

requirements met but no room in fare/class “No room in
fare/class”

TC19 (Negative, violate precondition 3)
Reservation on existing flight(s) with room in fare/class but advance

purchase/stay requirements not met “Advance purchase/stay not
met”

TC20 (Negative, force exception 1)
Reservation on existing flights with room in fare/class and advance

purchase/stay requirements met but minimum connect time not met
“Minimum connect time not met”

TC21 (Negative, force exception 2)
Reservation on existing flight(s) with room in fare/class and

advance purchase/stay requirements met but traveler on FBI watch
list “Traveler on FBI Watch List”

Construx®

Software Development Best Practices

Developer-level
Test Driven Development

“Software Development Best Practices” 19Construx

Example of Test First Development

Suppose we need a method that finds
the largest number in an array

int Largest.largest(int[] list);

Given [7, 8, 9] it should return 9

From Andrew Hunt and David Thomas, Pragmatic
Unit Testing: In Java with Junit, 2003

“Software Development Best Practices” 20Construx

Example Test Cases

[7, 8, 9] 9
[8, 9, 7] 9
[9, 7, 8] 9
[7, 9, 8, 9] 9
[1] 1
[-9, -8, -7] -7

Order shouldn’t matter

Multiple occurrences are OK

One element is still an array

Negative numbers are OK

“Software Development Best Practices” 21Construx

Unit Test Frameworks

Automates unit-level testing
Write unit tests in the same language you are
coding in

Many open source, downloadable, free
frameworks available

JUnit for Java
NUnit for C#
CppUnit for C++
…

Links at www.xprogramming.com/software.htm

“Software Development Best Practices” 22Construx

JUnit Design

TestResult

Test

run():TestResult

TestSuite

run():TestResult
addTest(Test)

TestCase

run():TestResult
setUp()
runTest()
tearDown()

MyTestCase

“Software Development Best Practices” 23Construx

Asserts in JUnit

assertEquals()
assertFalse()
assertTrue()
assertSame()
assertNotSame()
assertNull()

“Software Development Best Practices” 24Construx

JUnit Test Code (1)

import junit.framework.*
public class TestLargest extends TestCase {
public TestLargest(String name) {
super(name);

}
public void testSimple() {
assertEquals(9,
Largest.largest(new int[] {7, 8, 9}));

}
}

What happens when we run this test?

“Software Development Best Practices” 25Construx

Initial Code for the Method

public class Largest {
public static int largest(int[] list) {
int index, max = Integer.MAX_VALUE;
for (index = 0; index < list.length-1; index++){
if (list[index] > max) {
max = list[index];

}
}

return max;
}

}

“Software Development Best Practices” 26Construx

What happens when we run the test?

There was 1 failure:
1)testSimple(TestLargest)junit.framework.AssertionF

ailedError: expected: <9> but was: <2147483647>
at TestLargest.testSimple(TestLargest.java:11)

Assignment
max = Integer.MAX_VALUE

should have been more like
max=0

Change the code, run the test, now it passes

“Software Development Best Practices” 27Construx

JUnit Test Code (2)

import junit.framework.*
public class TestLargest extends TestCase {
public TestLargest(String name) {
super(name);

}
public void testSimple() {
assertEquals(9,
Largest.largest(new int[] {7, 8, 9}));

}
public void testOrder() {

assertEquals(9,
Largest.largest(new int[] {9, 8, 7}));

assertEquals(9,
Largest.largest(new int[] {7, 9, 8}));

}

“Software Development Best Practices” 28Construx

What happens when we run the tests?

There was 1 failure:
1)testOrder(TestLargest)junit.framework.AssertionF

ailedError: expected: <9> but was: <8> at
TestLargest.testOrder(TestLargest.java:10)

Ignoring last item in the list
for (index = 0; index < list.length-1; index++)

should be
for (index = 0; index < list.length; index++)

Change the code, run the tests, now they pass

“Software Development Best Practices” 29Construx

JUnit Test Code (3)

import junit.framework.*
public class TestLargest extends TestCase {

public TestLargest(String name) {
super(name);

}

// leaving out tests already shown

public void testDups() {
assertEquals(9,

Largest.largest(new int[] {9, 7, 9, 8}));
}
public void testOne() {
assertEquals(1, Largest.largest(new int[] {1}));

}
public void testNegative() {
int [] negList = new int[] {-9, -8, -7};
assertEquals(-7, Largest.largest(negList));

}
}

“Software Development Best Practices” 30Construx

What happens when we run the tests?

There was 1 failure:
1)testNegative(TestLargest)junit.framework.Assertio

nFailedError: expected: <-7> but was: <0> at
TestLargest.testNegative(TestLargest.java:16)

0 is bigger than any negative number, so it will
be returned as the largest, want
max = Integer.MIN_VALUE

Change the code, run the tests, now they pass

Construx®

Software Development Best Practices

Transitioning to
Test Driven Development

“Software Development Best Practices” 32Construx

Transitioning to
Test Driven Development

Don’t try to write tests for the whole
thing!

Write tests for the parts you are adding or
changing
Write tests for parts that are causing you
problems
Gradually you’ll build up a set of tests

You may find the code isn’t designed to
make writing tests easy

May have to be refactored or rewritten

“Software Development Best Practices” 33Construx

Contact Information

Consulting@construx.com
www.construx.com
(425) 636-0100

Consulting
Seminars

sales@construx.com
www.construx.com

Construx
Software Development Best Practices

