

Architecture-Oriented Programming Using FRED

Markku Hakala1, Juha Hautamäki1, Kai Koskimies1
Jukka Paakki2, Antti Viljamaa2, Jukka Viljamaa2

1Tampere University of Technology
{markku.hakala, csjuha, kk}@cs.tut.fi

2University of Helsinki
{jukka.paakki, antti.viljamaa, jukka.viljamaa}@cs.helsinki.fi

Abstract

Implementing application-specific code conforming to
architectural rules and conventions can be tedious. FRED
is a tool prototype for architecture-oriented programming
that takes an architectural description as a set of
programming patterns and provides an interactive task-
based programming environment for the architecture.
Incorporating adaptive code generation and
documentation, the tool provides a convenient way to
adopt as well as effectively reuse a framework or
architectural standard such as Java Beans.

1. Introduction

Today, software development rarely starts from
scratch. Instead, it is largely based on standards,
conventions, underlying systems and architectures, often
represented by object-oriented frameworks. This paper
introduces our notion of architecture-oriented
programming, where software development is guided by
the underlying architecture. Our research prototype
(FRED) allows a system architect (e.g. framework
developer) to define architectural rules (e.g. specialization
interface of a framework) so that the tool can provide
interactive programming assistance in the form of
programming tasks.

Typical programming tasks discussed herein include
creation of a new class, method or field, refactoring a
program element to adhere to some semantic constraint, or
adding arbitrary piece of code. As a simple example,
creation of a subclass can be seen as a task. When an
operation needs to be overridden in that subclass, this can
be defined as another task, which occurs only after the
creation of the subclass. When dealing with complicated
structures, which are typical for software, this task list
cannot be adequately expressed by a linear step-by-step
list. The mechanism should allow the list of tasks to

evolve during the development process, based on the
earlier choices. This brings us to patterns as instruments of
piecemeal growth [1].

2. Programming Patterns

In order to provide task-based tool support, FRED
adopts a model that builds on the notion of patterns as
generative descriptions that can be used systematically to
produce a number of similar structures. These patterns are
essentially a tool-supported formalization of pattern
languages [1] for program construction. We shall call
them programming patterns, or simply patterns.

This fits a more traditional view of a pattern as a
description of a recurring problem along with a reusable
solution to that problem within a certain context.
However, programming patterns should not be confused
with design patterns [4], often associated with
requirements on the generality of the solution. With the
goal of providing programming assistance using patterns
in mind, there is no need to make a distinction between a
generic solution and a specific solution. For example,
specializations of a framework share a similar structure.
Thus, even if the framework contained a structure that
occurs nowhere else, it still defines a recurring solution
that can be presented as a pattern.

Programming patterns are essentially a static concept.
A pattern defines a recurring program structure. It can be
seen as an algorithm that can be applied in several
environments to build a similar structure. Thus, patterns
can be used as building blocks in describing framework
specialization interfaces as well as other architectural
rules and conventions. Application of a pattern results in a
pattern instance, essentially a record of bindings that
relate fragments of code to the elements of the pattern.
This bridge between an abstract solution and source code
effectively enables architecture-specific typing checks.

The approach relates to specialization instructions
provided by cookbooks [7], and even more to hooks [3].

However, based on the notion of generative programming
patterns, we can provide tool support that gradually adapts
to the current instantiation context making use of the
bindings made so far. This adaptation includes textual
documentation. For the specializer point of view, the
mechanism reveals itself as informal tasks speaking with
application-specific terms as they become defined during
the specialization process.

Tasks also provide basis for code generation, and to
some extent, verification. However, programming patterns
are not templates of code, as we believe that pattern
instantiation is not an atomic action but a process.
Thorough the programming process, the tool is able to
generate new pieces of code based on existing code and
design decisions. Programming patterns provide
architecture-oriented programming support that evolves
with the development process, rather than relying on
single-shot code generation and after-the-fact validation.

3. FRED Development Environment

FRED is a prototypical development environment for
Java (see Figure 1). It integrates a pattern editor and an
incremental programming environment where the patterns
can be instantiated incrementally following the tasks
generated by the tool.

Figure 1. FRED User Interface

Most tasks relate directly to the creation of some
program element such as a class or method. The user has
the choice of generating the default implementation for
the task, implementing the requested functionality by
herself, or pointing out an existing implementation. The
provided code is checked for any violations against the

pattern definition, such violations reported as tasks as
well.

Completing a task may lead to generation of new tasks.
Following the ever-changing task list, a point is reached
where no more mandatory tasks exists. As a result, an
abstract structure defined by the pattern is specialized in a
user-defined context. In the context of framework
specialization this means that part of the specialization has
been finished. Completing all the patterns describing the
framework specialization interface this eventually results
in a complete specialization.

The tool has been evaluated in the Finnish industry in
the context of framework specialization. It can be
downloaded from the project web site at
http://practise.cs.tut.fi/fred. At the time of writing, release
1.1 of the tool is publicly available.

Acknowledgements. FRED methodology and
programming environment is developed jointly between
the University of Tampere, Tampere University of
Technology, and the University of Helsinki. The project is
funded by the National Technology Agency of Finland
(TEKES) and by several software companies. Preliminary
results are reported e.g. at [5] and [6].

References

[1] C. Alexander, M. Silverstein, S. Angel, S. Ishikawa and D.
Abrams, The Oregon Experiment, Oxford University Press,
1975.
[2] C. Alexander, The Timeless Way of Building, Oxford
University Press, 1979.
[3] G. Froelich, H. Hoover, L. Liu and P. Sorenson, “Hooking
into Object-Oriented Application Frameworks”, Proc. of
ICSE’97, 1997, pp. 491-501.
[4] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design
Patterns – Elements of Reusable Object-Oriented Architecture,
Addison-Wesley, 1995.
[5] M. Hakala, J. Hautamäki, J. Tuomi, A. Viljamaa, J.
Viljamaa, K. Koskimies and J. Paakki, “Managing Object-
Oriented Frameworks with Specialization Templates”,
ECOOP'99 Workshop on Object Technology for Product-line
Architectures, European Software Institute, Spain, 1999, pp.87-
98.
[6] M. Hakala, “Task-Based Tool Support for Framework
Specialization”, Proc. of OOPSLA'00 Workshop on Methods
and Tools for Framework Development and Specialization,
Tampere University of Technology, Software Systems
Laboratory, Report 21, October 2000.
[7] W. Pree, Design Patterns for Object-Oriented Software
Development, Addison-Wesley, 1995.

