
A Grammar Processor

Peter Grogono

Tuesday 29th June, 2010

Contents

1. Introduction 1

2. Usage 2

3. The Input File 2

4. The Control File 5

5. The Report File 7

6. The Definitions File 8

A. Algorithms 9
A.1. Notation and Conventions . . 9
A.2. Nullable 10
A.3. Start sets 10
A.4. Follow sets 11
A.5. Overlaps 12

Revision History

Date Revised by Description

1 Jan 2010 P.G. \alt is built into the code and is not defined in the
control file.

1 Jan 2010 P.G. The new command %%factor attempts to left-
factorize the grammar.

8 May 2010 P.G. The program writes a LATEX macro for each pro-
duction to the “definitions” file.

29 June 2010 P.G. Empty symbol added. TBD: document # as empty
symbol and other consequences.

1. Introduction

An attractive grammar is desirable for æsthetic reasons and, more importantly, it is much
easier to spot errors in a grammar that is cleanly formatted than in a grammar that is a

1

mess. On the other hand, grammars require a mixture of fonts and are therefore tedious
to write in LATEX. The Grammar Processor translates a grammar written in a simple
ASCII format to a formatted LATEX grammar and also provides additional information
that may be of use to parser writers.

2. Usage

The program is called gramproc and it is invoked with up to four file names:

gramproc input control output definitions

This command tells gramproc to read from input.grm and control.tex, to write a
report to output.tex, and to write definitions to the file definitions.tex. The exten-
sions .grm and .tex are wired into the program and are non-negotiable.

If the fourth argument is omitted, gramproc uses the name of the first file with “-defs”
appended:

gramproc input control input ≡ gramproc input control input input-defs

If the third argument is omitted, gramproc uses the name of the first file, reading from
input.grm and creating input.tex:

gramproc input control ≡ gramproc input control input input-defs

If the second argument is omitted, gramproc looks for a control file called control.tex:

gramproc input ≡ gramproc input control input input-defs

3. The Input File

The input file contains the productions (or rules) of the grammar. Figure 1 shows a
simple example of a grammar, and Figure 2 shows part of the output generated by
gramdoc for this grammar.

%Here is a \emph{very simple} grammar.

Program = (Declaration | Assignment) $ ’;’ .

Declaration = ?identifier [’:’ Type] [(’=’ | ’:=’) Expr] .

Type = !Char | !Integer .

Assignment = ?identifier ’:=’ Expr .

Expr = Term $ (’+’ | ’-’) .

Term = Factor $ (’*’ | ’/’) .

Factor = ?identifier | ?number | ’(’ Expr ’)’ .

Figure 1: A simple grammar

2

Program = { Declaration | Assignment }‘;’ .

Declaration = identifier [‘:’ Type] [(‘=’ | ‘:=’) Expr] .

Type = Char | Integer .

Assignment = identifier ‘:=’ Expr .

Expr = { Term }(‘+’ | ‘-’) .

Term = { Factor }(‘*’ | ‘/’) .

Factor = identifier | number | ‘(’ Expr ‘)’ .

Figure 2: Output generated by gramdoc from the grammar of Figure 1

Comments The input file may start with one or more comments. A comment starts
with % and continues until the next line break. The first line of the grammar in Figure 1
is a comment. Comments may be copied to the output file, as explained in Section 4.
They may contain LATEX commands, provided that the commands are either standard
or are defined in the Control file.

All comments must appear before any rules are given.

Metasymbols Certain symbols (the metasymbols) play particular roles in the grammar.
The metasymbols used by gramproc are:

= . () [] { } & ? !

Each rule has the form

〈Symbol〉 "=" 〈Expression〉 "."

in which “=” and “.” are metasymbols. The other metasymbols are used to build
expressions as follows (α, β, . . . denote arbitrary expressions; ε denotes the empty string):

• Concatenation corresponds to sequencing.

• A vertical bar denotes an alternative: “α |β” is equivalent to either α or β.

• A dollar symbol, used as an infix operator, denotes a non-empty list in which the
right operand is a separator: α $β is equivalent α |αβ α |αβ αβ α | · · ·. For a list
that may be empty, use [α $β].

• Parentheses are used for grouping: (α) is equivalent to α.

• Square brackets indicate an option: [α] is equivalent to ε |α.

• Braces indicate zero or more repeats: {α } is equivalent to ε |α |αα | · · ·.

3

The order of precedence is:

(lowest) | $ concatenation (highest)

The grammar of Figure 1 uses all of these symbols. The first line, for example, says that
a 〈Program〉 is a list of 〈Declaration〉s and 〈Assignment〉s separated by semicolons. The
use of the list constructor “$” in the rules for Expr and Term is slightly unorthodox, but
demonstrates that the list separator may be a general expression, not just a terminal
symbol. (These rules also illustrate the precedence rules: the parentheses are necessary.)
Note how the list is represented in the output (Figure 2); again, this is unconventional,
but avoids the repetition required in the usual format:

Expr = Term { (‘+’ | ‘-’) Term } .

Nonterminal symbols A nonterminal symbol starts with an upper-case letter and con-
tinues with zero or more alphanumeric characters. An alphanumeric character is an
upper-case letter, a lower-case letter, a decimal digit, or an underscore. More concisely:

〈Nonterminal〉 = [A-Z][A-Za-z0-9_]*.

Terminal symbols Terminal symbols are more complicated than nonterminals. There
are five kinds of nonterminal:

• A string consisting of a lower-case letter followed by zero or more alphanumerics
is interpreted as a keyword. E.g.: while.

• A string consisting of “?” followed by one or more alphanumerics is interpreted as
an information-carrying symbol. In Figure 1, for example, ?identifier is a single
terminal symbol of the grammar that may have many different realizations in a
program.

• A string consisting of “!” followed by one or more alphanumerics is interpreted as
a keyword. This allows keywords to start with an upper-case letter without being
mistaken for a nonterminal symbol. In Figure 1, for example, !Char and !Integer

are treated as keywords.

• A string of the form "σ" in which σ is a string that does not contain ", is a terminal
symbol.

• A string of the form ’σ’ in which σ is a string that does not contain ’, is a terminal
symbol.

The last two forms allow most symbols to be represented without escape characters.
However, it is not possible to define a terminal symbol that contains both ’ and ".

There is no special symbol for the empty string, but an expression such as [] is equivalent
to the empty string. In an EBNF, the empty string is rarely necessary. For example,
the expression α |β | ε can be written more intuitively as [α |β].

4

4. The Control File

The control file is a conventional LATEX source file that gramproc copies to the output
file. It contains directives that LATEX would treat as comments, if it saw them, but in
fact cause gramproc to write information about the grammar to the output file. All
directives have the following properties:

• Their first two characters are “%%” and the following characters are lower-case
letters.

• A directive may appear in any position on the line. However, all other text on the
line is discarded (not copied to the output file).

• The information generated by a directive has a particular form. The directive must
be used in a context that respects that form. The forms are:

General: one or more LATEX paragraphs that do not require a particular context.

List: a sequence of strings separated by \sep, a macro explained below.

Two-column table: a sequence of table rows with structure “A & B \\”. The
tabular environment must be defined in the control file.

Three-column table: a sequence of table rows with structure “A & B & C \\”.
The tabular environment must be defined in the control file.

The tables generated by gramproc may be very long. For example, the grammar for a
production-quality language may have several hundred productions. It is therefore best
to use supertabular environments rather than tabular environments, so that tables
can run over page boundaries.

The directives are explained next. With a few exceptions, noted below, directives may
be given in any order and are optional. For example, if you do not wish to see errors,
do not include the directive %%errors.

%%filename (General): the name of the file containing the gramamr.

%%comments (General): copy any comments that appeared at the start of the input
file. Each comment is set as a separate paragraph.

%%errors (General): a report of errors detected while processing the grammar.
gramproc will abort if there are serious errors. Currently, gramdoc reports
nonterminal symbols that are:

1. defined more than once;

2. not defined;

3. defined but not used in any productions.

%%factor (General): gramproc attempts to left-factorize the grammar. For exam-
ple, the result of factorizing the grammar

A = B | C .

B = x Btail .

C = x CTail .

would be

A = x (Btail | Ctail) .

5

The directive %%factor performs the factorization and writes a list of rules
removed by factoring. In the example above, rules B and C would be removed.
To see the factorized grammar, use the directive %%rules described below.

%%statistics (two-column table): generates a short table giving the values of
various counters.

%%rules (three-column table): the rules of the grammar. Each rule has the form

〈Symbol〉 & = & 〈Expression〉 \\
in which 〈Expression〉 may be very long. If the expression has the form
α1| · · · |αn, it is displayed with one line for each alternative.

%%sortalpha: generates no output, but specifies that rules should be output in
alphabetical order of nonterminals. This directive affects only instances of
%%rules that follow it in the control file.

%%sortinput: generates no output, but specifies that rules should be output in
the order in which they appear in the input file. This directive affects only
instances of %%rules that follow it in the control file.

By default, the rules are sorted according to their order of appearance in the
input file, as specified by %%sortinput.

%%nonterminals (List): the nonterminal symbols of the grammar.

%%terminals (List): the terminal symbols of the grammar.

%%nullables (List): the nullable nonterminals — that is, the nonterminals that
may produce the empty string.

%%startsymbols (two-column table): the start symbol set for each nonterminal.
This set contains the terminal symbols that may be produced as the first
symbol of the nonterminal. Each start set has the form

〈Symbol〉: & 〈List〉 \\
in which 〈List〉 may be very long.

%%followsymbols (two-column table): the follow symbol set for each nonterminal.
This set contains the terminal symbols that may follow a string prduced by
the nonterminal. Each start set has the form

〈Symbol〉: & 〈List〉 \\
in which 〈List〉 may be very long.

%%overlaps (three-coumn table): situations in which a strict LL(1) parser would
not know how to proceed. The three columns of the table contain: the rule
name; the overlapping terminal symbol; and the expressions that overlap.

For example, the grammar of Figure 1 produces the overlap report shown in
Figure 3. This report says that the rule for Program contains two expressions
that are alternatives (Declaration and Assignment) that both start with the
terminal identifier.

6

Rule Symbol Expressions

Program identifier Declaration
Assignment

Figure 3: An overlap report for the grammar of Figure 1

%%factor (general): factorize the grammar in order to remove overlaps. No rules
are added, but some rules may be subsumed by others. For example, when
the grammar of Figure 1 is factorized, the rule for Program becomes

Program = identifier ([‘:’ Type] [AssignOp Expr] | AssignOp Expr
) .

and rules Assignment and Declaration are removed from the grammar. The
factorized grammar may be harder to understand than the original grammar,
but it may be of more use to a parser writer.

In addition to the directives, the control file must define several LATEX commands. The
required commands, and suitable definitions, follow.

\newcommand{\nonterminal}[1]{\mbox{\textsl{#1}}}

Specifies that nonterminal symbols will be set in a slanted font without hy-
phenation.

\newcommand{\keyword}[1]{\mbox{\textbf{#1}}}

Specifies that keywords will be set in a bold font without hyphenation.

\newcommand{\terminal}[1]{\mbox{\texttt{#1}}}

Specifies that terminal symbols will be set in a typewriter font without hy-
phenation. Typewriter font is strongly recommended for terminals because
some characters (e.g., “<” and “>”) produce strange results with other fonts.

\newcommand{\infoterminal}[1]{\mbox{\textsf{#1}}}

Specifies that information-carrying terminal symbols will be set in a sans-serif
font without hyphenation.

\newcommand{\sep}{\hskip 1em plus 3em}

Specifies that list items will be separated by very elastic glue. This allows
LATEX to justify long lists without hyphenation even when the list items them-
selves are long. (The result is a bit ugly, but the alternative — using less
elastic glue — tends to give a plethora of overfull hboxes.)

The command \alt is no longer required; gramproc writes “ | ” (LATEX “ \textbar\ ”)
to the output file.

5. The Report File

The output file will contain any text provided in the control file, comments copied from
the input file, and the requested information about the grammar.

As mentioned in the introduction, the main purpose of the output file is to provide a
readable version of the grammar. The current version of gramproc does a fairly good

7

job, but could be improved. The most obvious deficiency is poor line breaks — a human
writer could do much better.

Parentheses in the input file are used to control parsing; they are not stored internally.
Parentheses in the output file are inserted in accordance with precedence rules. Con-
sequently, it is a good idea to read the formatted grammar carefully to ensure that its
structure is as intended. Forgetting that concatenation binds more tightly than the list
operator $, for example, you might write

ParameterList = ’(’ Expr $ ’,’ ’)’ .

in your grammar, only to be surprised by the output:

ParameterList = { ‘(’ Expr }(‘,’ ‘)’) .

The choice of quote symbols from LATEX fonts is difficult. The following choices seem to
constitute an acceptable compromise for terminal symbols. Example strings are set in a
large font to make distinctions clear.

• Terminal symbols are enclosed in left and right apostrophes (i.e., grave and acute
accents) from the typewriter font. E.g.,‘=’.

• When the terminal symbol itself is a left or right apostrophe, a sans-serif font is
used. E.g.,‘‘’ and‘’’.

• When the terminal symbol itself is a quote, typewriter font is used. E.g.,‘"’.

The symmetric symbol is appropriate because ASCII does not distinguish “ and

”.

6. The Definitions File

The definitions file, which is created unless the grammar cannot be parsed, contains one
LATEX macro definition for each production of the grammar. Here is a typical macro
definition (with line breaks inserted):

\newcommand{\Assignment}{\nonterminal{Assignment} & = &

\infoterminal{identifier} \nonterminal{AssignOp} \nonterminal{Expr}

. \\ }

The macro name is the same as the production name. This might cause a problem if
a macro with the same name has already been defined. However, conflicts are unlikely
because most standard LATEX macros begin with a lower case letter.

The format of the rule assumes a three-column table. Here is a typical use of the macro
just defined, with the formatted result shown on the right:

\begin{tabular}{rcl}

\Assignment

\end{tabular}

Assignment = identifier AssignOp Expr .

8

A. Algorithms

The algorithms for computing nullable symbols, start sets, etc., given in compiler text
books usually assume a simple form of grammar rules, such as basic BNF. The algo-
rithms for calculations with more general grammar rules, often called EBNF, are fairly
straightforward extensions of the standard algorithms, but nevertheless are of sufficient
interest to record explicitly. That is the purpose of this section.1

A.1. Notation and Conventions

Each algorithm is a fixed-point calculation, using the idea that lim
n→∞

fn(⊥) is a fixed-

point of f for some suitable ⊥. For example, if we are computing a set, ⊥ would be
the empty set and applying f might yield a larger set. Since the universe is finite (e.g.,
the terminal symbols of the grammar), eventually we find fn+1(⊥) = fn(⊥) and we can
stop.

In this section, fixed point calculations are written as

initialization
repeat

for each N = α do:

. . .
until no changes

in which N = α denotes a rule of the grammar.

The fixed point computation mentions some function, f say. It is followed by a list of
rules that define f for each of the arguments shown in Figure 4.

An implementation must handle the “no changes” condition correctly. For example,
adding an element x to a set S is a “change” only if S did not contain x already. Since
this action (adding an element to a set) is used several times, we use an abbreviation
analogous to += for add and assign:

S ∪= x ≡ S := S ∪ x.

T : a terminal symbol
N : a nonterminal symbol
α : an arbitrary syntactic expression (similarly, β, etc.)
α1 . . . αn : a sequence: α1 followed by α2, etc.
[α] : an optional α
{α } : a repeated α
α1| · · · |αn : choice: one of αi, 1 ≤ i ≤ n
{α }β : a list of α’s separated by β’s (α $β in grammars)

Figure 4: Argument forms for syntax functions

1Another, no less important, purpose, is to ensure that the implementor can figure them out when
revisiting the code a few years from now.

9

A.2. Nullable

The function nullable returns a Boolean such that nullable α is true if α can produce
the empty string.

The set nullset contains the nullable nonterminals.

Fixed point calculation:

nullset := ∅
repeat

for each N = α do:
if nullable α then nullset ∪= {N }

until no changes

Rules:
nullable T = false
nullable N = N /∈ nullset

nullable α1 . . . αn = ∀i .nullable αi
nullable [α] = true
nullable {α } = true

nullable α1| · · · |αn = ∃i .nullable αi
nullable {α }β = nullable α

A.3. Start sets

The function start returns a set of terminal symbols. start α contains the terminal
symbols that can start a string produced by α.

The map startsets(·) maps nonterminals to sets of terminal symbols. The set startsets(N)
is the start symbol set for nonterminal N .

Fixed point calculation:

for each N do:
startsets(N) := ∅

repeat

for each N = α do:
startsets(N) ∪= start α

until no changes

10

Rules:
start T = {T }
start N = startsets(N)

start α1 · · ·αn = if nullable α1

then start α1 ∪ start α2 · · ·αn
else start α1

start [α] = start α
start {α } = start α

start α1| · · · |αn =
⋃
i start αi

start {α }β = start α

A.4. Follow sets

The procedure follow(·, ·) constructs a follow set for each nonterminal. follow(α, S)
processes the case in which the expression α may be followed by any terminal in the set
S.

The map followsets(·) maps nonterminals to sets of terminal symbols. The set followsets(N)
is the follow symbol set for nonterminal N .

Fixed point calculation:

for each N do:
followsets(N) := ∅

repeat

for each N = α do:
follow(α, followsets(N))

until no changes

Rules:

follow(T, S) = skip
follow(N, S) = followsets(N) ∪= S

follow(α1 . . . αn, S) = follrec(α1 . . . αn, S)
follow([α], S) = follow(α, S)
follow({α }, S) = follow(α, S ∪ start α)

follow(α1| · · · |αn, S) = ∀i . follow(αi, S)
follow({α }β, S) = follow(α, S ∪ start β); follow(β, start α)

Follow sets for a sequence α1 . . . αn are computed by calling follrec(α1 . . . αn, S). Clearly,
for each pair αiαi+1, the start set of αi+1 must be added to the follow set of αi. Also,
S must be added to the follow set of αn.

However, we must also take care of the case αiαi+1αi+2 in which αi+1 is nullable by
adding the start symbols of αi+2 to the follow set of αi, as shown here:

follrec(α1 . . . αn, S):
follow(αn, S)
if n > 1:

if nullable αn
then follrec(α1 . . . αn−1, S ∪ start αn)
else follrec(α1 . . . αn−1, S)

11

A.5. Overlaps

Overlap calculation differs from the others in that it can be computed directly in one
pass, and does not require a fixed-point iteration. The overlap procedure searches each
rule of the grammar generating tuples (N, αi, αj , S) with the following properties:

• There is a rule N = α in which α contains a subexpression α1| · · · |αn.

• There exist i and j such that 1 ≤ i < j ≤ n, S = start αi ∩ start αj , and S 6= ∅.
This procedure produces too many overlap reports. The number could be reduced by
generating tuples (N, E, S) with these properties:

• There is a rule N = α in which α contains a subexpression α1| · · · |αn.

• E is a subset of {α1, . . . , αn} with at least two elements.

• For every pair αi ∈ E and αj ∈ E: S = start αi ∩ start αj 6= ∅.

12

