1
2

6a
6b

Ports, Protocols, and Processes:
a Programming Paradigm?

Peter Grogono
Computer Science and Software Engineering
Concordia University
22 November 2007

It is time for a new paradigm. The talk explains why.

Our project is named for Erasmus. Why? A clue: Erasmus visited Queens’ College, briefly
in 1505 and for longer during 1511-14, where there is a building named after him. We can
claim that Brian, Peter, and Desiderius are alumni of the same college although, strictly
speaking, Erasmus is not an alumnus.

It was provided by the statutes that lectures were to be given on sophistry, logic,
philosophy, and the works of poets and orators. Mr. Mullinger has suggested
that the latter clause was due to the influence of Erasmus, who had a very
high opinion of Fisher and who attributed to him the peaceful introduction of
the study of Greek in Cambridge and all that was most encouraging in the
University.!

People. East of the Atlantic: Brian. West: Peter and grad students. Rana is actually east
of the Atlantic.

FErasmus said many interesting things; this one is appropriate for our project. Perlis says
essentially the same thing about LISP. As disciples of Hoare, we stole practically everything
from someone else.

Outline: cover as much as possible in the time available, leaving time for questions.

The next few slides are about programming in Erasmus. All of the code compiles and runs,
although it may not do much. This is what we have done so far. May raise questions:
answers later. Diagrams suggest a design notation. Distinguish declaration/definition and
instantiation of cell.

Add a protocol; diagram unchanged.

Add an empty server process and an empty client cell. Server provides (4) protocol; client
needs (—) protocol.

We can start filling in some details. Protocol specifies start/queries/stop. Server code
43 b2

corresponds to protocol. Client is still empty. If executed, server waits for ever. “p.
indicates send/receive/synchronize.

Client process nested in client cell. Cells and processes can be nested indefinitely.

We could continue coding but will move on to generalities instead. query: caret gives
direction. sequence: protocol fields have types; no type implies signal. methodl: pro-
tocol imitating function call. method2: multiple results. class: protocol imitating class
interface.

! Lady Margaret: A Memoir, E.M.G. Routh, OUP, 1924. Dr. John Fisher was the President of Queens’ 1505-8.



10

11

12

12a

13
14

15

16
17
18
19

20

21

21a

21b

22

23

23a
24

select chooses from different ports and fields. Top: can distinguish different fields of a
protocol. Middle: branches can be guarded, directions can be mixed. Bottom: policies
determine processing order.

Ports and processes can be instantiated dynamically. The code shows part of Eratosthenes’
sieve: the process filter receives a prime number p, recursively generates a new filter,
and sends non-multiples of p to it.

The diagram for a recursive process such as filter is a bit messy ...

... but we can do better. Ports on the edge of a cell/process provide external linkage;
ports within allow the cell/process to communicate with its components.

Diagram for a client/server application in which both processes are embedded in cells.

Code for this application—details do not matter. Compiling this code gives a program
that runs on a single processor and switches context between the two processes.

Give the compiler the same code and this metacode: the result is a program that runs on
two processors, sending data over the network. Crucial for refactoring.

Outline: from specifics to generalities.
Cells: any size; first-class; control flow; co-routines.
Cells of any size gives scalability.

Processes are similar in some ways to cells, but: actions, shared variables, no race condi-
tions.

Processes in a cell run as coroutines and may share variables: P1 and P2 share V1. P3 is
nested in a cell and is not run as a coroutine. P3 can access V2 but not V1. We are not
advocating shared variables but (tentatively) allowing them.

Process loses control when it communicates. The two displayed values of sv may differ.

In particular, sending a shared variable is unpredictable. (See above: we are not advocating
sharing!)

A process behaves as if it is atomic, except that communication is non-atomic (open).
“Atomic” is with respect to shared variables: there is no other interference. We cannot
eliminate problems associated with concurrency, but we can tame them.

Protocols are like specifications. They define the type and sequence of communications.
Satisfaction is like subtyping—more later.

Messages behave like lvalues and rvalues. Code does not specify location of communicator.
Signals synchronize.

Receives can be used in expressions—they really are lvalues.

“Separation of concern” is a useful principle in CS and SE. These separations are useful:
cells/processes; meaning /deployment; specification /satisfaction—what a process does/that
it does what is needed.



25

26

27

28

29

30

31
32
33

34

35

36

37

38

39
40

41

42

Outline: one question we are often asked is “how will you verify correctness?”. Here is one
possible approach.

Milner meets Erasmus.

Labelled Transition System (LTS) has states, labels, and transition relation and is a very
common basis for reasoning about concurrency.

Strong simulation is a useful relation on LTS. Assume pSq and take any transition p — p'.
Then there must be ¢’ that enables completion of the square with p’S¢’ and ¢ = ¢'.

There is a strong simulation in our original diagram: left can simulate right, but not wvice
versa. Conventional theory continues with bisimulation (effective equivalence of concurrent
systems) but we don’t.

Define simulates as a relation on sets of states. If B simulates A then (roughly) B can do
anything that A can.

There is a simple algorithm that extracts an LTS from a protocol.
There is a simple algorithm that extracts an LTS from a process.

The compiler can derive LTSs for the server, client, and their protocols. The process
and client may not declare the same protocols. The compiler can check the simulations
statically and efficiently. We can check that the server satisfies the client. (“The customer
is always satisfied.”)

Another example from our original diagram. The server handles an unlimited sequence of
queries; the client sends only two.

No time for details, but there is a simple and intuitive reasoning system for LTS: Hennessy-
Milner Logic. A formula is a mapping from sets of states to sets of states. The logic is
modal because of the quantifiers (-) and [].

The semantics show how formulas translate to state-set maps.

Summary: code/protocols map to LTS; simulation ensures that servers “satisfy” clients.
Outline: a few notes on software development /engineering.

We believe in modelling!

An overview of the software development process. Requirements are very broad—all pos-
sible applications, many approaches, not “one size fits all”. Machine code is all the same,
“one size fits all”. (Of course, machine code is not the only product of development.) The
“funnel” shows how very different things are squeezed into one thing. Point of diagram:
process evolution tends to occur bottom-up.

Left shows language evolution; right shows development processes that they inspired. Note
that mechanical translation is possible upwards but not downwards. E.g., OO program
can be translated to SP program but not vice versa.

Conclusion: if you want to improve the process, start with a programming paradigm—
although this is controversial!



43

44

45

45a,

45b

45¢

45d

45e

46
46a
46b
46¢

46d

47

48

49

49a ...

50

Our hypothesis: process-oriented model-driven development will succeed because there are
many forces pushing towards it. In particular, Erasmus, with cells and processes to reduce
coupling, will be very successful.

Outline: why do we bother with this? Will anyone take any notice? (Present company
excluded.)

Arguments against ...

Many say that our PLs are good enough: the problem is the process. Not true: program-
mers make many mistakes, cannot (or are not allowed to) handle concurrency, software
becomes “brittle”, etc.

Put pressure on the anti-PL people and they respond with “objects” as the ultimate
solution. But objects are becoming too complex—cf. Brian’s talk.

Under more pressure, they admit that objects are not ultimate but perhaps aspects are.
But aspects are part of the problem—they just make things more complex.

Current approaches split applications into the “hard bits” (concurrency, transactions,
database access, etc) and the “easy bits” that can be coded by “ordinary programmers”.
Hard bits need gurus. Increasingly pervasive concurrency will doom this approach.

No one will buy into a new paradigm. POPL anecdote about UNIX. Think 10 years, or
20 years, ahead: will OOP/AOP still dominate? When do we start changing paradigms?

Arguments in favour ...
More and more applications require concurrency
Multicore requires concurrent thinking

No time for a detailed argument, but we believe that “thinking with processes” is better
than “thinking with objects/methods”. It will take time to train a generation of pro-
grammers to think in this way, just as it took a generation to produce OO programmers.
Processes are closer to the real world. Alan Kay said that an object abstracts a computer;
we think a process abstracts a PU and a cell abstracts a computer.

We must be able to write programs that grow. This is difficult/impossible with current
techniques. It will be easier with communicating processes and cells.

We are not the only people who feel this way. There is too much related work to discuss
in a talk but we can mention several languages. Joyce, and other work by Per Brinch
Hasnen, is a primary source of inspiration.

Adding threads and locks to the current mess won’t work. Guru code is not a good
long-term solution. Modular concurrency is the way to go.

Erasmus will provide a lot of good things ...
we hope.

Questions?



