
Copying and Comparing:

Problems and Solutions

Peter Grogono1 and Markku Sakkinen2

1 Department of Computer Science, Concordia University
Montreal, Quebec

grogono@cs.concordia.ca
2 Software Systems Laboratory, Tampere University of Technology

Tampere, Finland
(On leave from the Department of Computer Science

and Information Systems, University of Jyväskylä
Jyväskylä, Finland)
sakkinenm@acm.org

Abstract. In object oriented programming, it is sometimes necessary to
copy objects and to compare them for equality or inequality. We discuss
some of the issues involved in copying and comparing objects and we
address the problem of generating appropriate copying and comparing
operations automatically, a service that is not provided by most object
oriented languages and environments. Automatic generation appears to
be not only desirable, because hand-coding these methods is mechanical
and yet error-prone, but also feasible, because the form of the code is
simple and largely predictable.
Some languages and some object models presented in the literature do
support generic copying and comparing, typically defining separate “shal-
low” and “deep” versions of both operations. A close examination of these
definitions reveals inadequacies. If the objects involved are simple, copy-
ing and comparing them is straightforward. However, there are at least
three areas in which insufficient attention has been given to copying and
comparing complex objects: (1) values are not distinguished from ob-
jects; (2) aggregation is not distinguished from association; and (3) the
correct handling of linked structures other than trees is neglected.
Solving the third problem requires a mechanism built into the language,
such as exists in Eiffel. Building such a mechanism without modifying
the language requires a language with sufficient reflexive facilities, such
as Smalltalk. Even then, the task is difficult and the result is likely to be
insecure.
We show that fully automatic generation of copying and comparing op-
erations is not feasible because compilers and other software tools have
access only to the structure of the objects and not to their semantics.
Nevertheless, it is possible to provide default methods that do most of
the work correctly and can be fine-tuned with a small additional amount
of hand-coding.
We include an example that illustrates the application of our proposals
to C++. It is based on additional declarations handled by a preprocessor.

Keywords: Copying, cloning, equality, complex object structures.

2

1 Introduction

In object oriented programming, it is sometimes necessary to copy the contents
of one object to another object, make a new copy (or clone) of an object, or to
decide whether two objects are equal. Previously [5], one of us (PG) has argued
that copying should be needed only rarely in object oriented programs; never-
theless, copying is sometimes necessary, and most object oriented programming
languages provide some kind of facilities for copying. Equality testing is certainly
sometimes necessary, too, but the details of how to perform the comparison can
be subtle.

For the purposes of this discussion, we assume that programmers need to
make copies of objects and to compare objects. The two operations are related
in that we expect “X is a copy of Y” to imply “X is equal to Y”, with appropriate
interpretations of “copy” and “equal”. Complexity arises because the desired
meanings of “copy” and “equal” depend on features of the objects involved and
on the circumstances in which the operations are used. We will argue:

– there are several plausible meanings that can be assigned to “copy” and
“equal”;

– a programming language cannot provide appropriate default versions of
“copy” and “equal” for all situations; and therefore

– a programming language should provide a set of standard operations that
help programmers to construct appropriate copying and comparison opera-
tions with minimal effort and maximal security.

Section 2 provides a basis for the discussion. Section 3 discusses the problems
involved in copying and comparing objects, including the special problems that
arise with cyclic structures. Section 4 describes the facilities for copying and
comparing provided by various programming languages. Section 5 demonstrates
a possible implementation of our proposals and, finally, Section 6 presents our
conclusions.

2 Background

In this section, we introduce an object model that provides a basis for the sub-
sequent discussion and some terminology. The object model can be seen as the
“greatest common divisor” of most object oriented programming languages, as
simple as possible for presenting the topics of this paper. It is most suited to
typed, class-based languages.

In our object model, an object contains zero or more attributes. Each at-
tribute is one of:

– a basic value;
– an object; or
– a reference1 to an object.

1 This covers both “reference” and “pointer” in C++ terminology.

3

A basic value is an indivisible attribute in the object model. In most pro-
gramming languages, Booleans, characters, and integers are basic values. A string
might be considered either as a basic value or as a vector of characters.

The model permits nested objects: an object may be an attribute of another
object. Some programming languages (e.g., C++ and Eiffel) provide nested ob-
jects but most object-oriented languages allow an object to contain only refer-
ences to other objects. The model does not allow for references to nested objects,
a situation that can arise in C++ but not in most other languages. The model
permits an object to contain a reference to another object. Cycles are possible:
a chain of one of more references may lead back to the original object.

In this paper, we assume that the objects under discussion belong to a sin-
gle identifier space. The additional complications of copying and comparing in
distributed object systems are beyond the scope of the present work.

2.1 Essential and Accidental Attributes

We distinguish essential and accidental attributes of an object.2 An essential at-
tribute is indisputably a part of the object; an accidental attribute is another ob-
ject that is related in some way to the object in question but is not a part of it. For
example, if the object in question is an instance of class Car, we would consider
the attribute engine to be essential but the basic value distanceTravelled
and the reference owner to be accidental. The distinction between “accidental”
and “essential” is orthogonal to that between “reference” and “containment”.
The model permits all four possibilities. When an attribute is represented by a
reference, it is the referent object itself, not the reference, that is the accidental
or essential attribute.

Accidental attributes are intended as a generalization of associations. An
association is a “structural relationship between peers” where “peers” are classes
at the same conceptual level [3]. An association is a kind of accidental attribute
but it is not the only kind. Associations are usually implemented as references to
other full-fledged objects, although more elaborate implementations have been
proposed. But objects may also contain counters, flags, descriptors, and other
attributes that are needed by the application software but are conceptually not
part of the object.

The distinction between essential and accidental is not always obvious. As
a rule of thumb, the relationship between two objects is an association (and
therefore accidental) if destroying one object does not logically entail destroying
the other, otherwise one object is an attribute of the other. Similarly, an attribute
is accidental if removing it from the object does not destroy the basic integrity
of the object.

Example 1. Figure 1 provides a simple if rather contrived example of this ter-
minology. The class declaration introduces a Detector which is responsible for
monitoring the performance of a pump. Each detector has: a pointer to its own

2 This distinction is based loosely on Aristotle’s categories.

4

class Detector

{

public:

. . . .

private:

Counter *counter;

Clock *clock;

Pump *pump;

long startTime;

};

Fig. 1. The class Detector

Counter object, used to count events; and a pointer to a unique Clock object,
shared by all detectors. It has a reference to the pump it is monitoring and,
finally, a basic value startTime. The attributes counter and startTime are es-
sential; the attributes clock and pump are accidental because they are not part
of the object.

2.2 Values and Objects

Following MacLennan [14], we distinguish values, which are immutable abstrac-
tions, and objects, which are containers with mutable attributes. For example,
true and false are immutable, Boolean values. In contrast, a Switch object
might have a mutable attribute with a Boolean value that, at different times, is
either true or false.

In many languages, there is an implicit assumption that basic values are
“values” and that classes define “objects” in MacLennan’s sense. This leads to
confusion for entities such as String which should arguably be implemented as
immutable (in accordance with the view that strings are basic values) but is usu-
ally implemented as a mutable class for efficiency. For example, Java addresses
this confusion by providing both an immutable class, String, and a mutable
class, StringBuffer [2, page 172] and CLU has both mutable and immutable
versions of the structured type constructors [12].

Our object model distinguishes mutable and immutable (const in C++).
This distinction is orthogonal to that between simple and structured objects.
We allow both mutable, simple objects, such as a Counter that contains an
updatable integer, and immutable structured objects, such as a binary tree with
an integer at each node.3 Figure 2 shows examples of each of the four categories.

References are not values in MacLennan’s sense because the meaning of a
reference depends on the existence of its referent. Many formal object models
postulate a fixed, given set of object identifiers, but they must then prohibit
the use of meaningless identifiers by suitable integrity constraints. By contrast,
3 Of course, binary trees can also be represented with mutable objects.

5

Mutable Immutable

Simple Switch Integer

Structured Person BinaryTree

Fig. 2. An orthogonal classification

one would not imagine a constraint saying that, depending on the total state of
the object system, some integer values must not appear as any attribute of any
object.

An immutable object may in general contain references to mutable objects.
We use the term strictly immutable4 for the important special case in which this
is not allowed. The contents of a strictly immutable object is a pure value.

Example 2. The distinction between mutable and immutable is useful but has
some subtle ramifications. Consider an application with an immutable class
Rectangle with integer attributes length and width. An application can save
space by creating one instance of each desired size of rectangle and sharing these
instances amongst clients.

Suppose that the same application has a class Point with mutable integer
attributes x and y. An instance of class GraphicalObject is an object with
attributes shape, referencing a Rectangle, and position, referencing a Point.
Using these classes, the application can create structures like that shown in Fig-
ure 3, in which GraphicalObjects share Rectangles and Points. The instances
of Rectangle are immutable objects; that they are shared is undetectable to the
program. The instances of Point are mutable objects; that they are shared is
crucial to the behaviour of the system, because changing the coordinates of a
Point will cause movement of all of the GraphicalObjects referencing it.

The use of two or more names to refer to a single object is called “aliasing”
and is sometimes considered to be undesirable. Sharing of both mutable and
immutable objects is an important feature of object modelling [5]. Certainly,
unintended aliasing can cause serious and subtle errors. But, in many situations,
multiple references to a single object are the most appropriate way to model
real-world relationships.

2.3 Abstract and Concrete Values

For many objects, it is useful to distinguish the abstract value of the object from
its concrete representation. For example, if the object is a set, its abstract value
consists of the members of the set, but its concrete representation might be an
array, a list, a hash table, or some other kind of data structure. In CLU, this
idea is elevated to a principle [13], and the language provides explicit syntax

4 “Deep-immutable” would also be suitable.

6

Point

x 1

y 2

Point

x -1

y 6

Rectangle

length

width

4

3

Rectangle

length

width

5

7

GraphicalObject

shape

position

qq @
@

@ -
�

GraphicalObject

shape

position

qq �
�

�

�
�

�� GraphicalObject

shape

position

qq -
@

@
@

Fig. 3. Using GraphicalObjects

for switching between the interface, or external view, and the representation, or
internal view. (We avoid the word “conversion” because abstract values do not
exist directly either in the language or in programs.) Most object oriented pro-
gramming languages, however, do not provide explicit syntax for this distinction,
and the distinction between abstract values and their representations is mostly
in the mind of the programmer.

It is quite natural to think of abstract values in connection with compari-
son operations. Suppose, for example, that we have two objects X and Y, each
representing sets, and each using an unordered list to represent a set. We would
consider X and Y to be equal if their lists were, respectively, [2, 1, 3] and [3, 1, 2],
because both lists share the abstract value {1, 2, 3}.

It is perhaps less obvious, but equally important, that copying operations
should respect abstract values. For example, we might want to represent a set as
a binary search tree while we are building it and as an ordered array for retrieval
operations. The conversion from tree to array could be accomplished by a copy
operation that recognized the need for a change of representation but preserved
the abstract value of the set.

2.4 Inheritance

It is usually best not to inherit copying and comparison operations from super-
classes because the inherited methods do not process attributes introduced by
the subclass. To use a familiar example, if the subclass ColouredPoint inher-
its its copy and comparison methods from the superclass Point, the attribute
colour will be neither copied nor compared. Nevertheless, a copy or compare
method in the subclass can often make use of the corresponding method in the
superclass and should do so if the programming language provides an appropriate
mechanism, as most object oriented programming languages do.

7

If the programming language supports multiple inheritance, copy and com-
parison methods from one or more superclasses can be used to construct the
corresponding methods in the subclass. Object oriented programming languages
with multiple inheritance typically provide appropriate mechanisms for calling
methods from multiple superclasses. A few languages provide standard method
combinations that do not require explicit invocation: for example, “before meth-
ods” and “after methods” in CLOS [7, page 50].

With either single and multiple inheritance, the programming language can
provide some support for implementing copy and comparison methods in sub-
classes. Our approach, described in Section 5.3, avoids some of the common
problems, such as covariant redefinition of equality. It is clear, however, that
the programming language cannot generate the subclass methods correctly in
all cases.

3 Copying and Comparing

In this section, we discuss copying and comparing operations in detail, the conse-
quences of cycles in structures, and the problems of operations between instances
of different classes.

3.1 Copying

The word “copy” is used loosely to mean several different things. In this paper,
we use particular words for various copying operations, as follows.

– Assign means “update a reference” and does not involve copying the contents
of objects.

– Replace means “copy data from an object into another object that already
exists”.

– Clone means “create a new object and copy data from an existing object
into it”.

The object from which values are obtained is called the source object. The
object that is changed or created by the copy operation is called the target object.

To clarify these definitions, suppose we have the situation shown in the left
part of Figure 4 The letters X and Y are variable names in a program text; the
boxes are run-time objects; the letters A and B indicate the values of the objects’
attributes; and the arrows indicate the relation between names and objects. The
target object is X and the source object is Y. The right part of Figure 4 shows
the various situations that can arise after different kinds of copying operations.
B′ indicates a fresh copy of the value B. We have used a neutral, procedural
syntax for each operation. In each case, the first argument is the name of the
target object. We note that:

– the operation assign (reference assignment) creates an alias — afterwards,
X and Y both refer to the same object;

8

– after the operations assign and clone, the reference X has changed and the
object A becomes inaccessible, or “garbage”, unless there are other references
to it; and

– clone could be implemented by first creating a new, uninitialized object and
then using replace to initialize its attributes.

In assign, the type of Y can be a subtype (subclass) of the type of X (inclu-
sion polymorphism). For replace, we require the objects X and Y to be of the
same type; this restriction will be discussed in Section 3.4.

X - A

Y - B

assign(X,Y)

replace(X,Y)

clone(X,Y)

X

?

A

Y - B

X - B′

Y - B

X - B′ A

Y - B

Fig. 4. Copying Operations: before (left) and after (right)

We can further categorize copying operations by their “depth”. A shallow
operation copies, but does not trace, references. A deep operation traces refer-
ences and applies a copy operation to their referents. The distinction between
shallow and deep does not apply to reference assignment. A “shallow replace”
operation replaces attributes in the target object but not in objects referenced by
the target object. A “deep replace” operation replaces non-reference attributes
in both the target object and in objects referenced by the target object. Deep
replacement requires the source and target object to be isomorphic structures.
For example, deep replacement of one list by another list would require both
lists to have the same number of items. It would be possible to provide a deep
replacement operation that succeeded if the source and target had isomorphic
structures and failed otherwise.

Swapping can be seen as a generalized form of replacing. The naive imple-
mentation (which requires a temporary intermediate object, one clone operation,
two copy operations, and a deletion) is inefficient for complex objects. A more
efficient, customized swapping method could be implemented automatically.

9

X -

A

q - B

shallowClone(Y,X) Y -

A′

q
6

deepClone(Z,X) Z -

A′

q - B′

Fig. 5. Shallow and deep clones

Shallow cloning and deep cloning are distinct operations. In Figure 5, Y is a
shallow clone of X. As in Figure 4, primes indicate newly created values. Note
that the object B is shared by X and Y: shallow cloning may introduce aliasing.
Z is a deep clone of X; an object and its deep clones should normally be disjoint.
Approximately the foregoing definitions of shallow and deep cloning have been
used in the literature of object oriented systems for many years [8]. Unfortu-
nately, the definition of deep cloning breaks down when cyclic structures are
involved! We discuss the application of these definitions to cyclic structures in
Section 3.3.

In principle, there is an infinite number of possible ways of cloning a structure.
We can define cloneK(X, Y) as follows: clone0(X, Y) is the same as assign(X, Y);
and cloneK(X, Y) for K > 0 creates a new object and assigns it to X, copies
value attributes, and performs cloneK−1 on reference attributes.

Languages that provide cloning operations usually provide clone1 (shallow
copy) or clone∞ (deep copy). However, the Smalltalk method deepCopy, de-
scribed in Section 4.6, performs clone2. The shallow and deep operations are
not generally useful. In most cases, “shallow” is too shallow5 and “deep” is too
deep. In order to be generally applicable, copying operations should respect the
semantic properties of objects rather than merely their syntactic properties.

3.2 Comparing

There are two principal ways of comparing objects: we can check equality or iden-
tity. If X and Y are objects that have similar structure and whose corresponding
attributes are equal, we say that X is equal to Y. Note that this definition is
recursive but terminating: we are defining equality of complex objects in terms
of equality of simpler objects. An identity comparison, on the other hand, de-

5 Embedded objects can be at least a partial help.

10

termines whether the names X and Y refer to the same object; the attributes of
X and Y are not even considered.

In their description of CLU, Liskov and Guttag state that “it should be
impossible to distinguish between equal objects” [13, page 93]. For mutable ob-
jects, this implies that equality is identity. Otherwise, it would be possible to
distinguish apparently equal objects by making a change to one object and then
checking whether the other object changed. Two immutable objects are equal if
their abstract values are the same. If X and Y refer to immutable objects with
equal attributes, the programmer cannot determine whether X and Y refer to the
same object or to different objects with the same value.

As with copying, we can define shallow, deep, and “depth-K” equality com-
parisons in the sense of the preceding section. A shallow comparison compares
references but does not trace them, a deep comparison traces references and re-
cursively compares their referents, and a “depth-K” comparison traces at most
K pointers from the original object. As with copying, this conventional but naive
approach works only as long as the object structures do not contain cycles.

We use four binary operators to denote comparison relations:

X =0 Y means “X and Y are references to the same object”;
X =1 Y means “X and Y are shallow equal”;
X =∞ Y means “X and Y are deep equal”;
X ∼= Y means “X and Y are structurally equal”.

Figure 6 compares the evaluation of these relations for different pairs of
objects. We note that identity implies shallow equality and shallow equality im-
plies deep equality. In general, equality at depth K implies equality at all depths
greater than K. Examples (4) and (5) show that deep equality and structural
equality are independent. The distinction between deep and structural equality
has rarely been mentioned in the literature. Even such recent work as [1] does not
consider structure equality at all but just studies three different formalizations
of conventional deep equality.

3.3 Cyclic Structures

Objects that contain direct or indirect references to themselves introduce a fur-
ther complication into copying and comparing. Figure 7 is a simplified version
of a diagram by Meyer [17, page 249]. The original object is X; the objects Y and
Z represent possible outcomes of making a copy of X. Using our definitions:

– Y =1 X, implying Y =∞ X, but not Y ∼= X;
– Y is a shallow clone of X; and
– Z =∞ X and Z ∼= X.

According to the definitions of Section 3.1, a deep clone of X would be an
infinite list.

11

X =0 Y X =1 Y X =∞ Y X ∼= Y

(1) true true true true

(2) false true true true

(3) false false true true

(4) false false false true

(5) false false true false

X

Y

A
ZZ~

��>

X

Y

q
q A

-

-

HHj

��*

X

Y

q
q

A

A

-

-

-

-

X

Y

q
q

A

B

-

-

-

-

X

Y

qq
qq

A

A

A

- XXz
��:

- ��:

XXz

Fig. 6. Four kinds of equality

According to the definitions of Eiffel [16,17], in contrast, Z is a deep clone
of X. Clearly, a complete implementation of deep cloning in Eiffel must detect
cyclic references and create corresponding cyclic references in the target object.

A similar problem occurs when the object structure contains no (directed)
cycles but there are several distinct paths to one object. In this case, conventional
deep copying does not get into infinite recursion but produces a target object
with a different structure than the source object. For example, in Figure 6(5), Y
is a deep copy of X.

The distinction between shallow and deep cloning, at first glance, seems to
be related to the preservation of structure but is in fact almost orthogonal. To
see this distinction, observe that, in Figure 7:

– Y and X have the same reference attribute values but different structures;
– Z and X have the same structures but different reference attribute values.

One could argue that even the definition of shallow cloning and shallow
equality should be modified to take self-references into account. Such structural

12

landlord qX - name "Anna"

-

landlord qY - name "Anna"

?

landlord qZ - name "Anna"

?

Fig. 7. The problem of self-reference

shallow equality would imply structural equality, just as conventional shallow
equality implies deep equality. In that case, Z would be a structural shallow
clone of X but Y would not be. Similarly, structural variants of depth-K cloning
and equality can be defined.

In general, we can draw a distinction between value-preserving cloning oper-
ations and structure-preserving cloning operations. Which operation is the most
appropriate in a particular situation depends on the nature of the application
and cannot be deduced simply by examining the objects.

If the kind of deep replacement operations described in the previous section
are required, it would be useful to be able to compare the structures of two ob-
jects without considering the values of their non-reference components. Because
structural comparisons can be expensive, it would also be useful to offer also a
three-valued comparison operation: equal by structure and leaf values; equal by
structure only; and unequal by structure.

Meyer [16, 305–307] notes that comparison of cyclic structures introduces
problems similar to those involved in cloning cyclic structures. In Figure 8, we
would like both A =∞ B and C =∞ D to be true, but it is not obvious how to
arrive at these results. (The attributes f and b are intended to suggest “forward
link” and “backward link” respectively.) Meyer’s technique for deep comparison
of objects X and Y is to recursively compare references from X and Y under the
assumption that X =∞ Y. For example, in the deep comparison of A and B in
Figure 8, since we have

A.b =0 B.b =0 Void

and
A.f.f =0 B.f.f =0 Void

we need only show that
A.f.b =0 B.f.b.

13

A - f

b

qq - f

b

qq�

B - f

b

qq - f

b

qq�

C
?

D - q - q - q
6

E - q
6

Fig. 8. Deep comparisons

In fact, A.f.b =0 A and B.f.b =0 B, and the result follows from the
assumption A =∞ B. This technique is, of course, analogous to a proof of the
correctness of a recursive function in which we use the correctness of the function
as an induction hypothesis. Note that even Meyer’s definition of deep equality
does not require structural equality: for instance, D =∞ E in Figure 8.

One of the reasons that cycles can occur in a structure is that components
of the structure may have “back-pointers” to components that contain them.
“Threads” in a threaded tree are an example. For copying or comparing the
entire structure, the rules that we have given apply correctly. Problems arise,
however, if we try to copy or compare a component of such a structure: for
example, a leaf of a threaded tree. In such situations, it is not feasible to provide
general methods, and we must resort to class-specific methods, as described in
Section 5 below.

3.4 Operations Across Classes

As mentioned in Figure 3.1 and Figure 3.2, both replacement and comparison
are more complicated if the objects belong to different classes. Suppose that the
objects are X and Y and that their classes are CX and CY , respectively. There
are four cases to consider for replace(X, Y).

CY is a subclass of CX . In this case, Y will in general have at least the at-
tributes of X, and possibly additional attributes. Copying from Y to X is safe
in the sense that all of the attributes of X will be defined, but information in
the additional attributes of Y will be lost (“sliced”). This is what happens by

14

default in C++ and some other languages. The abstract value of the object
may thus not be conserved; a better solution would be to require an explicit
slicing operation (i.e., a projection) before the assignment.

CX is a subclass of CY . Copying from Y to X is undesirable and not allowed
directly in any well-known language, because the additional attributes of X
will be left undefined (retain their old values). Such copying is possible in
C++ if the object X is just addressed through a reference of type CY .

CY and CX have a common ancestor class CZ . In this case, only the at-
tributes inherited from CZ will be copied. This is still less likely to make
sense than the previous case, of course. Even this kind of copying will hap-
pen in C++ if both objects are addressed through a reference of type CZ.

CX and CY are not related by inheritance. It may be feasible to define
sensible copying and comparison operations, but this will have to be done
by the programmer.

Similar considerations apply to comparison: only the attributes common to
the classes CX and CY will be compared, which will in most cases not give the
results that the class designer would like to have. The equality operator is not
generated automatically in C++, but if it is defined for a class, it will be inherited
by all subclasses that do not redefine it.

Evidently, the only simple and easily understandable way to handle replace-
ment between objects of different classes is the principle we chose in Section 3.1:
the operation should fail. Thus, replace must either give a failure/success code
as a return value, or be able to raise an exception.

In comparison, the equivalent simple principle is that objects of different
classes can be compared for equality but the result is always false. Non-trivial
comparison is performed only between objects of the same exact class, so we
have a kind of “type-safe covariance” (cf. Section 2.4) for the equality operation.

4 Language Comparison

In this section, we discuss the facilities for copying and comparing provided by
several popular or otherwise relevant object-oriented languages. The languages
are introduced in alphabetical order.

4.1 BETA

BETA [15], like its precursor Simula [9], does not provide copying or comparing
operations automatically. This is a reasonable design decision because, as we
have shown, it is not possible to provide the right functions in all contexts.

4.2 C++

C++ leaves most of the work of copying and comparing to the programmer.6 The
compiler provides a default assignment operator and a default copy constructor
6 Information about C++ was obtained from the ISO/ANSI Draft Standard available

at http://www.cygnus.com/misc/wp/ and elsewhere.

15

for a class if the programmer does not define these methods. In our terminology,
the default assignment operation “replaces” and the copy constructor “clones”.
(More precisely, the copy constructor initializes an object that has already been
created.) Both operations are shallow (“memberwise”) and will give rise to mem-
ory management problems if the programmer relies on them for classes that
contain references. Consequently, C++ programmers are encouraged to define
their own assignment operators and copy constructors for classes with reference
(pointer) attributes.

C++ provides the operator == for built-in types but does not provide a com-
parison method for user-defined classes. The programmer must provide an over-
loaded version of the == operator for any class whose instances must be com-
pared. The operator == with pointer arguments can be used for identity com-
parisons. Caution is required because, in the presence of multiple inheritance, a
C++ object may have several different addresses [18, page 57].

There is a bias in C++ in favour of copying objects rather than sharing
them. If data members are not pointers and objects are allocated on the stack,
then assignment, argument passing, and returned objects all involve copying.
The default assignment operators and copy constructors provided by C++ are
consistent with this bias. As classes get more complex, however, complex objects
are more likely to be represented as pointer structures. The default methods are
inappropriate for pointer structures and programmers must manage copying for
themselves. Lalonde and Pugh [11] consider the bias towards copying to be a
deficiency of C++ and discuss the implications of this bias for C++ programmers.
Style guides for C++ programmers often recommend the use of pointers and heap
allocation rather than containment and stack allocation to avoid the overhead
and complications of copying [10,19].

4.3 DSM

Although the language DSM [20] is no longer widely used, we include it in this
discussion because it is one of the few languages that addresses the issues raised
in this paper in a comprehensive manner. Rumbaugh points out that there are
a variety of operations that should be propagated to the objects of a structure.
These operations include not only copy (clone), which we have discussed, but also
save, destroy, print, and others. On the other hand, replacing and comparing
are not treated because the approach applies only to unary operations.

In DSM, reference attributes in classes are replaced by relations (relation-
ships, associations) between classes; this approach is quite common in data mod-
elling but less common in programming languages. Propagation is controlled by
propagation attributes that are part of the semantic relationship. (Obviously,
Rumbaugh is using “attribute” in a different sense than that of this paper.) For
example, for the class Car, the part-of relation has the attribute propagate
and the made-by relation has the attribute shallow in an example of [20]. Con-
sequently, when we copy a Car, the new object will contain copies of the parts
of the original Car but a reference to the same manufacturer as the original Car.

16

A relation in DSM is always bidirectional, corresponding to a reference at-
tribute and its inverse. In the Car example, the made-by relationship has the
propagate attribute in the inverse direction, indicating that copying a manu-
facturer copies all the cars manufactured by it. We would certainly prefer the
none attribute, meaning that the new company must start without any cars
manufactured yet. However, our disagreement with Rumbaugh shows only that
the semantically correct propagation of cloning cannot be decided automatically
by the language or compiler, since even reasonable designers can have different
opinions on it.

The DSM principle could obviously be applied also to reference attributes. It
is more fine-grained and complicated than our proposal, especially because the
attributes are specified separately for each operation. Consequently, a program-
mer might inadvertently define very strange semantics for a relation. DSM also
takes into account the complete graph structure of objects and relations, as we
do in the proposals of Section 5.

4.4 Eiffel

Attributes in Eiffel classes are usually represented by references. It is possible to
declare an attribute of a class (or a variable in general) as expanded, in which
case it will contain an embedded object without separate identity, rather than a
reference. It is also possible to declare an entire class as expanded, in which case
all variables whose type is that class will contain objects rather than references
to objects. Basic types are regarded as special cases of expanded types.

The Eiffel type hierarchy is bounded above by ANY, an ancestor of all classes,
and bounded below by NONE, a descendant of all classes. Methods for copying
and comparing are defined in class ANY and may be inherited or redefined by
user classes. Most of these methods exist in three forms. The basic form is the
one that we consider here. In addition to the basic form, there may also exist: a
“frozen” form, indicated by the prefix standard , that cannot be redefined; and
a form that allows either or both of its arguments to be Void — that is, a null
reference.

In Eiffel [16, 295–307]:

– If X and E have expanded types, the statement X := E is a copy operation.
– If X and E have reference types, the statement X := E is a reference assign-

ment.
– The method is equal tests for shallow equality. (The operator “=” may be

used for the same purpose.)
– The statement X.copy(Y) makes X a shallow copy of Y and ensures that the

expression X.is equal(Y) yields TRUE.
– The expression clone(X) creates a new object, Y; shallow copies the at-

tributes of X to Y; and returns a reference to Y. The (useless) expression
clone(X).is equal(X) yields TRUE.

– The method deep equal tests for deep equality.

17

– The methods deep copy and deep clone “replicate an entire data structure,
starting at the source and creating new objects as needed”. Both methods
ensure that deep equal is satisfied. The distinction between deep copy and
deep clone is not clear in the original specification of Eiffel [16]. Probably,
deep copy was intended to effect a replacement of non-reference attributes
and a deep cloning of reference attributes. It is not mentioned at all in later
descriptions of the language [17].

After X.copy(Y) or X:=clone(Y) has been executed, the objects X and Y may
contain pointers to the same object. After X.deep clone(Y) or X.deep copy(Y)
has been executed, X and Y are disjoint data structures. Deep operations detect
cyclic references and process them appropriately.

Eiffel provides an unusually large collection of methods for copying and com-
paring, and is the only language we know besides DSM that can handle cyclic
structures correctly. Nevertheless, the probability that one of the methods pro-
vided would be precisely correct for copying or comparing complex objects seems
rather small, and the programmer has no mechanism for incrementally modifying
these methods without losing the built-in handling of cyclic structures.

4.5 Java

Java [2] provides single inheritance with the class Object at the root of the class
hierarchy. A class other than Object inherits either Object or another class —
Java does not provide multiple inheritance for classes — but it may inherit any
number of interfaces.

The root class Object provides a method clone that creates a new object
and then shallow-copies the attributes of the source object to it. A class can
support clone in its basic form, redefine it, or prevent its instances from being
cloned.

A class that requires a copying method different from clone obtains it by re-
defining the default implementation. The object must first execute Object.clone,
which allocates space for the new object and initializes its attributes as described
above, and then overwrite any attributes for which the default values are incor-
rect.

Although Java does not provide a general method for copying other than
clone, some of the standard classes (e.g., Vector and String) provide special-
ized operations.

Java provides the operator == for identity comparisons. The class Object
provides a method equals which defaults to identity comparison. In Java stan-
dard classes, equals is redefined to provide an appropriate value comparison.
User-defined classes can use the default version of equals or provide an imple-
mentation of equals that is appropriate to their needs.

18

4.6 Smalltalk

A Smalltalk7 object is immutable if its class has no methods that change the
values of its attributes. An identity object has exactly one instance. For example,
a Smalltalk implementation provides an identity object true that is never cloned;
you are allowed to “copy” true but all you will get is a reference to the original
object. All identity objects are immutable.

The Smalltalk statement X := E evaluates the expression E, obtaining an
object, and makes X a reference to that object. All Smalltalk implementations
provide methods copy and shallowCopy, both of which return a shallow copy of
the source object. Some Smalltalk implementations also provide a method called
deepCopy that returns a new object in which references have been replaced by
shallow copies of their referents. Note that this is clone2, not a deep copy, in
the sense of Section 3.1 of this paper.

Smalltalk provides two comparison operators: “==” for identity comparison
and “=” for equality comparison.

Identity comparison is an ordinary object operation in Smalltalk, which
means that it can be redefined in a user class. (It is a Smalltalk programmers’
convention that users do not redefine “==” but the language does not prevent
redefinition.) This approach is unfortunate, for two reasons. First, identity is a
basic object concept whose meaning should not be changeable [8]. Second, there
is a performance penalty for what should be a very rapid test, because object
operations are dynamically bound.

5 Semantic Copying and Comparing

The traditional classification of copying and comparing that we have presented
— reference, shallow, and deep — is based on the representation of objects rather
than on their abstract values. Practical applications frequently require reference
operations that are usually provided by the language. The shallow and deep
operations provided by the language, if any, are often not suitable in practice. In
general, a compiler cannot infer the abstract value of an object from the program
text and therefore cannot provide appropriate copy and comparison operations
for complex classes. The question that we address is: what facilities should a
language provide to simplify the task of defining these operations?

What does it mean, for example, to copy an instance of GraphicalObject
(see Figure 3)? The target object should presumably share the attribute shape
of the source object but should have its own attribute position. Alternatively,
if the target object is to be a member of a group of objects, its position should
be that of the group.

7 Information about Smalltalk was obtained from the FAQ by David N. Smith available
at http://www.dnsmith.com/SmallFAQ/.

19

5.1 Attribute Classification

In practice, the distinction between “essential” and “accidental” that we made
in Section 2.1 is not always sharp enough to use as a basis for implementation:
we need to identify attributes that require special treatment. It seems useful to
classify attributes as follows (better terms might be invented):

– structure (composite link, essential object reference);
– normal reference (association) or value;
– accidental reference (association) or value; and
– special attribute.

We give below the equivalent DSM propagation modes (propagation attribute
values, see Section 4.3). Note that in DSM these apply only to reference at-
tributes.

The structure attributes (composite links, DSM: propagate) are those which
are to be followed in both copying and comparing, using standard algorithms
for directed graphs to obtain or check graph isomorphism (structure equality).
They need not be restricted to point from a composite to its parts; thus directed
cycles are possible.

Normal attributes (DSM: shallow) are copied or compared as such, in the
sense of shallow copying or comparing.

Accidental attributes (DSM: none) are not compared at all. In copying, an
accidental attribute is assigned a default value if such is given in the class def-
inition. Otherwise, an accidental reference attribute is set to null. Some value
types may also have natural default values, but, for example, it is questionable
to use zero as a default value for all integers.

The special attributes (DSM: none) would not be touched by the standard
operations. If special attributes are present, the standard operations must invoke
class-specific methods to handle them. However, the class-specific methods could
access also other attributes and call other methods. Defining them would be
allowed even when there are no special attributes.

We can divide the actions of both copying and comparison on an object into
three phases:

1. the propagation of the operation over the composite links (if any) to the
adjacent objects;

2. handling the normal and accidental attributes; and
3. the class-specific actions.

The execution order between the first part and the other parts is immaterial
in cloning and comparing; they could even proceed concurrently. In comparison,
the order between the second and third parts is also immaterial, except possibly
for performance reasons. In cloning, the order can be important, because the
special actions can access also the normal and accidental attributes.

In replacing (and swapping, if that operation is desired), phase 1 must first be
propagated to the end, and only if the whole structures are found to be equal are
phases 2 and 3 performed for all involved objects. In some cases there might be

20

something that must be done with the old attribute values of the target object.
This is straightforward if the language provides garbage collection but can be
very awkward otherwise.

5.2 General Proposals

As a partial answer to the problems raised in the preceding sections, we propose
the following guidelines.

1. The language should provide:

– a built-in reference assignment operator; and
– a built-in identity comparison method.

The assignment operator allows programmers to create multiple references
for a single object — in other words, to introduce aliasing. Although unin-
tended aliasing may be harmful, the object model sometimes requires multi-
ple references to an object. The identity comparison enables a programmer
to determine whether two names refer to the same object.

2. The language should not provide separate public methods for shallow and
deep copying and comparison, but only one copy method and one comparison
method for each class. The designer of the class, rather than its clients, should
choose appropriate semantics for these methods.

3. The language should provide syntactic mechanisms for:

– distinguishing mutable and immutable classes;
– distinguishing essential attributes and accidental attributes; and
– specifying when deep copies or comparisons of reference attributes are

required.

An explicit distinction between mutable and immutable classes enables the
compiler to make a number of optimizations. An explicit distinction between
essential and accidental attributes enables the compiler to generate the de-
fault copy and comparison methods described in item 4 below. The depth
specifications enable the programmer to customize these methods.

4. The implementation should provide:

– an optional default copy procedure for each user-defined class; and
– an optional default comparison method for each user-defined class.

The copy procedure shallow-copies each essential attribute of the source ob-
ject, unless the programmer has indicated that an attribute should be deep-
copied. The copy procedure does not copy accidental attributes but should pro-
vide appropriate default values for accidental attributes in the target object.
Similarly, the comparison method shallow-compares essential attributes, unless
the programmer has requested deep comparison, but does not compare acciden-
tal attributes.

21

5.3 Applying the Proposals

To illustrate the application of these guidelines, we suggest ways in which they
might be incorporated into C++ in a way would fulfill our requirements. We do
this to demonstrate the feasibility of our proposals rather than in the realistic
expectation of their adoption into C++. In particular, we do not address the
more arcane aspects of C++, such as private or protected inheritance. But note
that static attributes are irrelevant to copying and comparing and that, for other
attributes, it does not matter whether they are public, protected, or private.

Standard C++ already contains some of the features that we need:

– the operator “=”, used with pointer arguments, provides reference assign-
ment;

– the operator “==”, used with pointer arguments, provides identity compari-
son; and

– the keyword const can be used to distinguish between mutable and im-
mutable objects (and, in fact, enables mutability distinctions of finer granu-
larity than this).

There are four ways in which we might make the distinctions between essen-
tial and accidental attributes, and between deep and shallow operations.

1. We could introduce new keywords. This is incompatible with C++ style,
which prefers to overload existing keywords (e.g., static) in order to avoid
breaking old code.8 Another disadvantage of new keywords is that the com-
piler must be modified.

2. We could introduce a convention for marking variable names. For example,
we could use the prefix a to indicate an accidental attribute. We could also
use the prefix e to indicate an essential attribute, although this would be
redundant.
Similar conventions have been proposed for other purposes. For example,
Lakos [10, page 91] suggests using the prefix d for class data members and
s for static members. The problem with conventions, however, is that the
compiler will not act on them.

3. We could use pragmas to make the distinctions. Pragmas are less offensive
than keywords9 and a compiler is allowed to ignore a pragma that it does
not recognize.

4. We could design arbitrary extensions and use a preprocessor to translate the
extended language into C++.

We are currently applying the fourth approach, using a preprocessor for C++.
The preprocessor, which is based on earlier work [4] and will be described in de-
tail elsewhere [6], performs a number of tasks of which the following are relevant
for this discussion:
8 “Proposing a new keyword never fails to cause a howl of outrage” [21, page 152].
9 But: “Too often, #pragma seems to be used to sneak variations of language seman-

tics into a compiler and to provide extensions with very specialized semantics and
awkward syntax” [21, page 425].

22

class Detector

public void startPump () { ... }

deep Counter *counter;

long startTime;

accidental Pump *pump;

accidental Clock *clock;

Fig. 9. Preprocessor input for class Detector

– Programmers can indicate that attributes of a class are deep or accidental
in the sense of Section 2.1 of this paper.

– The preprocessor constructs default copying and comparing methods that
follow the conventions that we have described with respect to normal, acci-
dental, and deep attributes.

– Programmers can override the actions of the copying and comparing methods
for special attributes.

– The preprocessor supports multiple, non-virtual inheritance. Virtual inheri-
tance can be supported but we do not describe the (somewhat messy) details
here.

Figure 9 shows the class Detector of Figure 1 as it would be presented to
the preprocessor. We have included a method, startPump, to show how pub-
lic features are declared; in practice, of course, there would be other functions,
including a constructor and a destructor. The listing also shows the syntax for
distinguishing shallow/deep attributes and essential/accidental attributes; there
are no keywords for “private”, “shallow”, or “essential” because these are de-
faults.

First, we describe the way in which the preprocessor handles the qualifiers
deep and accidental. Unqualified attributes are shallow-copied and shallow-
compared. For deep attributes, the structure graph is explored until either non-
reference attributes or reference attributes not marked deep are encountered.
Attributes marked accidental are ignored by default comparison methods; the
copying methods set copied attributes to a suitable default value, such as NULL.

Second, we describe the methods generated by the preprocessor for a general
class. Figure 10 shows the file generated for a class Z with two parents, X and
Y.10 The classes HAX and HAY are the highest ancestors of X and Y, respectively.
These could be the same class (fork-join inheritance) but, in general, both X and
Y could have more than one highest ancestor.

The preprocessor generates functions as required. In Figure 10, the user has
provided none of the functions and the preprocessor has generated a complete
set. However, if the user had provided operator=, the preprocessor would not
have generated operator= and would have generated defaultReplace only if

10 The preprocessor actually generates a header file, a definition file, and a documen-
tation file. It also includes more white space than shown here.

23

class Z : public X, public Y {

public:

virtual Z * clone();

virtual Z & operator=(Z & other);

virtual bool operator==(const HAX * other) const;

virtual bool operator==(const HAY * other) const;

private:

int iz;

virtual Z & defaultReplace(Z & other);

virtual bool defaultEqual(const Z * other) const;

};

Z * Z::clone() {

Z *result = new Z;

*result = *this;

return result;

}

Z & Z::defaultReplace(Z & other) {

((X &) *this) = other;

((Y &) *this) = other;

iz = other.iz;

return *this;

}

Z & Z::operator=(Z & other) {

return defaultReplace (other);

}

bool Z::operator==(const X * other) const {

return

typeid(* this) == typeid(* other) &&

defaultEqual((Z *)other);

}

bool Z::operator==(const Y * other) const {

return

typeid(* this) == typeid(* other) &&

defaultEqual((Z *)other);

}

bool Z::defaultEqual(const Z * other) const {

if (! ((X *)this == (X *)other)) return false;

if (! ((Y *)this == (Y *)other)) return false;

if (iz != other->iz) return false;

return true;

}

Fig. 10. Declaration and implementation of class Z

24

the user’s operator= called it. The defaults for comparison are similar. Note
that objects of different classes are never considered equal.

We have not yet addressed the issue of cyclic structures. It is not possible
to decide statically whether a structure may contain cycles, but the assumption
that every structure might be cyclic introduces considerable overhead because
mark bits are required. In the general case, a global view of the object structure
is needed. Such a view can in principle be built on an existing language if it has
sufficiently powerful reflective facilities, as does Smalltalk (although it is surpris-
ing that the standard methods of Smalltalk are so defective in this respect). In
the static variety of object oriented languages, the basic mechanisms must be
built-in, as they are in Eiffel but in no other well-known language. It should be
possible to define incremental methods to adjust the copying and comparison to
the exact semantics required for specific classes.

Our attribute classification scheme partly solves the problem of cyclic refer-
ences because only cycles consisting of deep references are relevant, and these
should not be very common. If deep references are used only for composition,
there will be no directed cycles. If sharing of parts is not allowed, there will not
even be undirected cycles.

6 Conclusion

Copying and comparing are operations that cannot be generated automatically
from a syntactic object description. Nevertheless, most object oriented program-
ming languages provide some support for copying and comparing, either in the
form of default methods in root classes, or in some other way.

The subtleties involved in copying and comparing non-trivial objects are such
that simple-minded attempts by the compiler to provide suitable methods are
likely to be of little use. Consequently, some languages provide only a basic set
of methods and leave the rest of the work to programmers.

We have shown that copying and comparing methods for a class can be
generated automatically if the compiler or preprocessor is given a few hints
about the way in which the attributes of the class are used. In large systems
with thousands of classes, automatic generation of these methods could save a
considerable amount of work.

The correct handling of object structures that are not simply trees is impos-
sible or at least very cumbersome (depending on the language) to program on
the class level. Therefore, this facility should be offered by the language (or stan-
dard libraries), but with suitable hooks for the class-specific handling of some
attributes.

Acknowledgments. Peter Grogono’s part of the research described in this pa-
per was supported by the Natural Sciences and Engineering Research Council
of Canada. A significant part of Markku Sakkinen’s work was performed at
the Department of Computer Science and Information Systems, University of
Jyväskylä.

25

References

1. Serge Abiteboul and Jan Van den Bussche. Deep equality revisited. In T.W.
Ling, A. O. Mendelzon, and L. Vieille, editors, Deductive and Object-Oriented
Databases: Fourth International Conference, DOOD ’95, Singapore, December 4-
7, 1995, Proceedings, number 1013 in LNCS, Berlin and Heidelberg and New York,
1995. Springer-Verlag.

2. Ken Arnold and James Gosling. The Java Programming Language. Addison-
Wesley, second edition, 1998.

3. Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-
guage: User Guide. Object Technology. Addison Wesley, 1999.

4. Peter Grogono. Issues in the design of an object oriented programming language.
Structured Programming, 12(1):1–15, January 1991.

5. Peter Grogono and Patrice Chalin. Copying, sharing, and aliasing. In Colloquium
on Object Orientation in Databases and Software Engineering (ACFAS’94), Mon-
treal, Quebec, May 1994.

6. Peter Grogono and Markku Sakkinen. A view and interface generator for C++.
Technical report, Department of Computer Science, Concordia University, Novem-
ber 1999.

7. Sonya E. Keene. Object-Oriented Programming in COMMON LISP. Addison-
Wesley, 1989.

8. Setrag N. Khoshafian and George P. Copeland. Object identity. In Proc. ACM
Conf. on Object-Oriented Programming Systems, Languages and Applications,
pages 406–416, September 1986.

9. Bjørn Kirkerud. Object-Oriented Programming with Simula. Addison Wesley, 1989.
10. John Lakos. Large-Scale C++ Software Design. Professional Computing Series.

Addison-Wesley, 1996.
11. Wilf LaLonde and John Pugh. Complexity in C++: A Smalltalk perspective. J.

Object-Oriented Programming, 8(1):49–56, March/April 1995.
12. Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaffert,

Robert Scheifler, and Alan Snyder. CLU Reference Manual. Number 114 in LNCS.
Springer-Verlag, Berlin and Heidelberg and New York, 1981.

13. Barbara Liskov and John Guttag. Abstraction and Specification in Program De-
velopment. MIT Press, 1986.

14. Bruce J. MacLennan. Values and objects in programming languages. ACM SIG-
PLAN Notices, 17(12):70–79, December 1983.

15. Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard. Object-
Oriented Programming in the BETA Programming Language. ACM Press/Addison
Wesley, 1993.

16. Bertrand Meyer. Eiffel: the Language. Prentice Hall International, 1992.
17. Bertrand Meyer. Object-oriented Software Construction. Object Oriented Series.

Prentice Hall, second edition, 1997.
18. Scott Meyers. Effective C++. Addison-Wesley, 1992.
19. Steven P. Reiss. A Practical Introduction to Software Design with C++. Wiley,

1999.
20. J. Rumbaugh. Controlling propagation of operations using attributes on relations.

In N. Meyrowitz, editor, Proc. ACM Conf. on Object-Oriented Programming Sys-
tems, Languages and Applications, pages 285–296, September 1988.

21. Bjarne Stroustrup. The Design and Evolution of C++. Addison-Wesley, 1994.

