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Abstract 
 

This paper reports on our experience in modeling 

and employing ontology-inferred knowledge to 

support and improve data mining tasks of yeast 

protein interactions for knowledge discovery. This 

objective has been accomplished by providing 

simplified access to units of intersecting proteome 

data and information from different biological 

databases and bio-ontologies, and utilizing a logical 

framework to answer questions from biologists. 

 

1. Introduction 
  

Proteins are crucial in biological systems. Most 

protein functions depend on interactions with other 

molecules. In addition, protein–protein interactions 

provide rich information on the fundamental aspects of 

cellular life, and can be used in areas like target 

selection in drug discovery. To study the functional 

interactions of different proteins, one needs to access 

to a consistent set of data about protein interactions. 

These data are scattered over various databases and 

model organisms. Acquisition, representation, 

integration, and validation of  so much stored scientific 

data of various types need a combination of machine 

learning and knowledge representation methods, 

including semantic interpretation, structural and 

functional similarity assessment, control relationships, 

properties, and various annotation and validation 

techniques. Many of these techniques require a formal 

description of part of an intended domain in the real 

world. Ontologies provide a set of shared and precisely 

defined terms in various degrees of formality to 

describe a particular domain of interest. 

This paper reports on our experience in extracting 

knowledge from current data and information sources 

of the yeast protein interactions, to improve protein 

interaction data mining and text mining. We have 

achieved this purpose by modeling an integrated logic-

based ontology to represent knowledge and answer 

biological questions. In our approach, we have used 

graph-based data mining algorithm [4]. Also for the 

purpose of our study, we have considered mutually 

interacting protein pairs in the budding yeast 

Saccharomyces cerevisiae, which is one of the best 

studied of all organisms with a rich amount of 

available data and knowledge in cell biology and 

genetics [1]. Most yeast proteins can be connected in a 

large network of interactions. Yeast has a very 

dynamic protein interaction network, with more than 

30,000 interactions [2].  

Many scientists in labs all around the world 

generate a large amount of protein data using several 

applications. These data are highly volatile, complex, 

inter-related, and heterogeneous. They have different 

types, algorithms (BLAST, FASTA, pSW), forms, and 

implementations (WU- BLAST, NCBI-BLAST); they 

are generated by various communities and service 

providers (NCBI, EBI, DDBJ) [3]. Protein complexes 

sometimes have different behaviors from their basic 

elements. Even one domain does not always fulfill the 

same functions. In addition, different synonyms, 

IDs/accession numbers, relations, interactions, and 

functions as free text descriptions cause more 

confusion. Ontologies provide a shared understanding 

from these heterogeneous data and information by 

defining axioms, concepts and properties. Here we 

present the usability of an integrated ontology-based 

framework in a graph-based data mining system 

dedicated to the collection, validation, and integration 

of protein interaction data.  

 

2. Protein Interactions 
 
2.1. Interactions with other molecules 
 



Most protein functions depend on interactions with 

other molecules, such as the nucleic acids DNA or 

RNA, solvent molecules (e.g., water), and metal ions 

[5]. 

 

2.2. Protein-protein interaction 
 

Interactions of proteins with other proteins provide 

precious information about their functions and 

biological roles with directions for phenotypic 

examination of mutants for the novel genes [1]. In 

addition, this information can aid in the discovery of a 

number of protein-binding domains or motifs, used in 

diverse signaling pathways [6].    

 

2.3. Methods for interaction analysis and their 

data 
 

Most current knowledge of yeast protein 

interactions comes from a few methodologies, 

including the yeast two-hybrid assay, the purification 

of protein complexes, and their analysis by mass 

spectrometry [2]. To study all possible protein-protein 

interactions, biologists often use the two-hybrid 

screening system where ″the interacting proteins are 

decoded by sequence tagging of the plasmid inserts″ 

[1]. 

 

2.3.1. Two-hybrid assay interactions. The two-

hybrid system uses two hybrid proteins that 

reconstitute a transcription factor (TF) when they 

interact. This TF can switch on a reporter gene. About 

7000 two-hybrid protein interactions are available in 

databases, derived from small and large screens [2].  

 

2.3.2. Purification and analysis by mass 

spectrometry. Proteins interact within stable protein 

complexes. The components of these complexes can be 

identified by complex purification. An approach called 

tandem-affinity purification (TAP) along with mass 

spectrometry [39] can characterize protein complexes 

in Saccharomyces cerevisiae [41]. 

 

Comparing interaction datasets in [2] shows that 

various methods produce different results. Biologists 

need to have a consistent view of these datasets to be 

aware of these differences. 

 

3. Integrating  protein interactions data 

    with yeast proteome datasets 
      

      In order to integrate the yeast protein-protein 

interactions datasets with other data scattered over 

distributed data sources, one need to browse the 

relationship between gene expression and protein 

interactions first [20] to allow evaluating “interaction 

datasets using large-scale gene expression profiling as 

benchmark” [2]. Integration of various interactions 

datasets remains a difficult challenge for 

bioinformatics, especially when interactions have to be 

done with expression data, homology, structures, or 

localization in a cell [11]. 

     Protein interactions can be explained based on their 

actions on other proteins (similar to the interactions 

between enzymes and their substrates [11]). Different 

parameters describing protein interactions such as 

Concentration, Localization, Cleavage, Binding site, 

Covalent and Non-covalent modifications are 

described in [11]. 

 

3.1 Major information sources 
 

Many datasets and information resources 

contribute to provide sufficient data and information to 

describe protein interactions. To reduce the 

complexity, in this study, we have focused on static 

protein interactions, which deal with less parameter in 

compare with the dynamic interactions [11]. The 

datasets and information about protein-protein 

interactions are scattered over various data sources 

[12, 11]. For knowledge discovery, one needs to 

search in distributed databases, literatures, and existing 

bio-ontologies. Some of our major resources are: 

 

- DIP (Database of Interacting Protein) [13] 

- SGD (Saccharomyces Genome Database)  

- BIND (Biomolecular Interaction Network 

Database) [10] 

- Yeast protein-protein interactions database 

[14] 

- The Protein-Protein Interaction Server [15] 

In addition, the following bio-ontologies are used 

as other information resources: Protein Ontology (PO) 

[16], Gene Ontology (GO) [17], FungalWeb Ontology 

(FWO) [18], and TRANSFAC Ontology [19]. 

As mentioned, one of the major resource in our 

project is BIND [10], which curates and archives 

physical interactions between bio-molecules from the 

literature, using a standard data representation. BIND 

is a suitable source for developing interaction networks 

into pathways. It is available in different format, such 

as ASN.1 (text), XML, and Flat File. In our project, 



we have adapted the available XML version of BIND 

witch a similar structure to OWL format. 

The Protein Ontology [16] provides common 

terminologies and classification for capturing 

knowledge about protein domain. 

 

    The "TRANSFAC" [19] is a collection of databases 

that deal with information about gene expression. 

 

3.2. The integrated ontology structure  
 

We considered the FungalWeb Ontology [18], 

which is implemented in OWL-DL as the basis of our 

integrated ontology. The FungalWeb is a resource for 

fungus and enzyme-related terminologies and 

concepts, which mostly come from the NCBI 

taxonomy database [22], NEWT [21], BRENDA [23], 

SwissProt [24], and some commercial enzyme 

vendors. This ontology also reuses existing domain-

specific bio-ontologies such as Gene Ontology (GO) 

and TAMBIS [25]. 

 

 

Fig 1. Sacchromyces. Cerevisiae (budding yeast) 

classification in the FungalWeb Ontology 

One can find the attributes and the corresponding 

enzymes for the fungus organism “budding yeast” in 

the FungalWeb ontology.  Other vocabularies related 

to the corresponding proteins for each fungus and their 

interactions come from the databases and bio-

ontologies mentioned in Section 3.1. 

To have a coherent knowledge-based system that 

combines and infers implicit knowledge from different 

databases and ontologies in a domain of interest, the 

mentioned databases and ontologies should be linked 

to each other (Figure 2). By integrating and reusing 

existing databases and ontologies, the integrated 

system would be more efficient for information 

retrieval, knowledge discovery, query answering, and 

decision-making [26]. 

We tried to map the databases’ elements to a set of 

ontological concepts, and we have reused vocabularies 

from generic bio-ontologies in a unified ontological 

framework. To reuse these ontologies together, they 

have been combined and merged into a new ontology. 

For this purpose, the ontologies were brought into 

mutual agreement. In some cases, the integration has 

been accomplished by relating analogous concepts or 

relationships from distributed resources to each other 

by an equivalence relationship. The integration is done 

at two levels: Data integration (normalizing various 

formats of data that are extracted from different 

sources) and Semantic Integration (specifying the 

applicable datasets with their semantic relationships).  

 

 

Fig 2. The structure of the integrated ontology for protein 

interaction including available domain related databases and 

bio-ontologies 

 

After finding the regions of overlap in the 

ontologies, the concepts with close semantics are 

aligned in consist and coherent way.  

We have used PROMPT [27] as a Protégé plug-in 

for automated ontology merging and alignment.  

PROMPT works based on similarity matching which 

sometimes generate imprecise results. So, to control 

the quality of the results, human supervision was 

needed at this stage. 

 

3.3. Integrated ontology-driven data mining  

       Framework 



 

Data mining is defined as "the nontrivial extraction 

of implicit, previously unknown, and potentially useful 

information from data" [38]. Graphs are currently used 

to model protein structures for the identification of 

active site clusters, folding clusters, and aromatic 

clusters, in relation to thermodynamic stability, and the 

analysis of protein-protein interactions. (For more 

information applying graph theory to protein 

interactions see: [9].) 

As stated in [34] “a molecular interaction networks can 

be mapped to labeled graphs. Every node of the graph 

represents a distinct amino acid residue in a protein 

and has the residue type as its label”. Different graph 

representations have been proposed [34], ranging from 

coarse (each node is a secondary structure segment) 

[35] to fine (each node is an atom) [36] 

representations. A part of a graph where each node is 

attached to the others with at least k edges is called k-

core. As stated at [33] highest k-core is a “central most 

densely connected region of a graph, which may 

represent molecular complexes”. 

BIND [10] uses graph theory to represent 

molecular interactions.  For the graph annotation, 

BIND employs graph coloring techniques connected 

with the Gene Ontology. Using graph theory, BIND 

has discovered 7000 yeast interactions among 3000 

proteins.  

Some of the major tasks in data mining are finding 

patterns (i.e., association rules), classification, and 

grouping (or clustering) [7]. A vast amount of valuable 

background knowledge is distributed in various 

databases, texts (e.g., publications), or database 

annotations. Current available protein interaction 

databases and information resources are incomplete, 

incoherent and in some cases inconsistent. Today 

communities do not use a standard nomenclature for 

genes/proteins, which makes proteomic data mining 

difficult and ineffective [8].  Ontologies can provide a 

shared vocabulary for existing proteomic sources.  

Ontology can utilize multi-relational data and can 

improve the efficiency of large-scale data mining 

problems. We have employed ontologies along with 

data mining methods to design an integrated system for 

analyzing protein interactions. Particularly we are 

applying data mining algorithms to analyze the yeast 

protein interaction dataset. By using data mining 

methods, we survey and discover patterns and 

differences at various biological resolutions for a given 

concept. 

4. Logic-based representation of biological  
knowledge 
 

The FungalWeb Ontology is implemented in 

OWL-DL format, giving it the advantages of 

description logics (DL) to support maximum 

expressivity without losing computational 

completeness. DL describes knowledge in terms of 

concepts and relations that are used to automatically 

derive classification taxonomies. Concepts in 

description logics are defined in terms of descriptions 

using other roles and concepts. In this way, the DL 

reasoner (such as RACER [28]) can automatically 

classify Enzyme as a kind of Protein [25]. The 

semantic is not clear in graph-based representation, 

which is popular in current protein interaction data 

mining systems, so we tried to solve this problem by 

using description logic representation. 

Description Logics have clear semantics, so it is 

possible for the available reasoner (in our case, 

RACER) to verify ontological consistency and 

coherency.  

There are certain ways to convert graph 

representation to logic [29]. This conversion is done 

manually in our project. Description logics are 

introduced as a language with transitive closure on 

roles [30]. Languages based on description logics, such 

as OWL-DL, can be related to directed acyclic graphs 

through sets of nodes similar to concepts, roles similar 

to graphs, and transitive closure of roles similar to 

reachability [31]. Therefore, techniques in description 

logics, like the Tableau-Based Decision Procedure, can 

lead to advances in graph theory, and vice versa [31]. 

 

5. Evaluation and Querying 
 

In our approach, the evaluation is pragmatic, 

accomplished by assessing the ontology to satisfy the 

requirements of our application. The DL reasoner 

(RACER) assists in maintaining semantic consistency. 

Although we validate the biological data and relations 

by citing their origin (database or literature), validation 

by the domain expert is also necessary. We use 

RACER as a DL reasoning system, which supports T-

Box (axioms about class definitions) and A-Box 

(assertions about individuals), for reasoning in the 

integrated ontology and checking the A-Box and T-

Box consistency. RACER solves the posed 

subsumption problems very quickly. 



We use nRQL (new RACER Query Language) [32] 

as a query language based on RACER. The querying 

can be done by experts or by a software agent. It is 

possible for the answering agent to use automated 

reasoning methods when deriving answers to queries 

where the knowledge necessary may be found in 

multiple knowledge-bases. In the current state of our 

integrated ontology, the knowledge source for 

querying is determined manually. Some queries in the 

system that might be interesting for biologists studying 

protein-protein interactions can be defined as follows: 

1. Assume there is an interaction between two 

proteins X and Y. Protein Z is homologous to X, 

and protein W is homologous to Y. Do Z and W 

interact? 

2. What is the corresponding organism for a protein? 

3. Are the two proteins from the same compartment? 

4. Was the interaction saturable? 

5. Are the two proteins involved in an interaction 

known to be involved in the same process? 

 

Queries 2 and 3 can be studied from the yeast two-

hybrid method, and queries 4 and 5 can be studied 

from the affinity purification method [33]. 

 

6. Challenges and Future works 
 

Knowledge discovery process includes different 

phases, such as data preparation, integration, and 

transformation. Each of these phases can benefit from 

an ontology. We integrated several protein interaction 

resources in a logic-based ontological framework, 

which can be used as a knowledge-base for querying 

and capturing annotation data in the protein interaction 

domain. By using the ontology with the graph-based 

data mining algorithm, we would be capable of doing 

some knowledge discovery in the domain through 

designed queries. 

One of our major issues was semantic integration. 

The protein interaction data must be linked to 

complementary biological information, but these data 

and information are inconsistent, complex, and highly 

volatile. At the ontology integration stage, we were 

faced with the problem of mismatching between 

ontologies in language and model levels. There were 

differences in conceptualization and in the way the 

conceptualization is specified. Future work will focus 

on improving ontological structure and considering 

relations and protein interactions with small molecules. 

The interactions of small molecule with proteins play 

an important role for determining the effects of drugs 

(which are mostly small molecules) [40] in the human 

body.  
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