
T. Kühne (Ed.): MoDELS 2006 Workshops, LNCS 4364, pp. 56 – 65, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Unified Ontology-Based Process Model for Software
Maintenance and Comprehension

Juergen Rilling1, Yonggang Zhang1, Wen Jun Meng1, René Witte1,
Volker Haarslev1, and Philippe Charland2

1 Department of Computer Science
and Software Engineering

Concordia University, Montreal, Canada
{rilling,yongg_zh,w_meng,rwitte,haarslev}@cse.concordia.ca

2 System of Systems Section
Defence R&D Canada Valcartier,

Val-Bélair, Canada
philippe.charland@drdc-rddc.gc.ca

Abstract. In this paper, we present a formal process model to support the com-
prehension and maintenance of software systems. The model provides a formal
ontological representation that supports the use of reasoning services across dif-
ferent knowledge resources. In the presented approach, we employ our Descrip-
tion Logic knowledge base to support the maintenance process management, as
well as detailed analyses among resources, e.g., the traceability between various
software artifacts. The resulting unified process model provides users with ac-
tive guidance in selecting and utilizing these resources that are context-sensitive
to a particular comprehension task. We illustrate both, the technical foundation
based on our existing SOUND environment, as well as the general objectives
and goals of our process model.

Keywords: Software maintenance, process modeling, ontological reasoning,
software comprehension, traceability, text mining.

1 Introduction and Motivation

Software maintenance is a multi-dimensional problem space that creates an ongoing
challenge for both the research community and tool developers. These maintenance
challenges are caused in particular by the variations and interrelationships among
software artifacts, knowledge resources, and maintenance tasks [3,20,22]. Existing
solutions [10,20] that address aspects of these challenges are commonly not integrated
with each other, due to a lack of integration standards or difficulties to share services
and/or knowledge among them. The situation is further complicated by the non-
existence of formal process models to create a representation that describes the inter-
actions and relationships among these artifacts and resources.

There has been little work in examining how these resources work together for end
users [13,20] and how they can collaboratively support a specific program maintenance
task. Maintainers are often left with no guidance on how to complete a particular task

 A Unified Ontology-Based Process Model for Software Maintenance 57

within a given context. Our research addresses this lack of context sensitivity by
introducing a formal process model that stresses an active approach to guide software
maintainers during maintenance tasks. The process model, its basic elements and their
major inter-relations are all formally modeled by an ontology based on Description
Logic (DL) [2]. The process behavior is modeled by an interactive process metaphor.
Our approach differs from existing work on comprehension models [3], tool integra-
tion [11, 20] and task-specific process models [8,19,20] in several aspects:

1. A formal software maintenance process model based on an ontological representa-
tion to integrate different knowledge resources and artifacts.

2. An open environment to support the introduction of new concepts and their rela-
tionships, as well as enriching the existing ontology with newly gained knowledge
or resources.

3. The ability to reason about information in the ontological representation to allow
for an active and context-sensitive guidance during the maintenance process.

4. Analysis of relationships among resources, e.g., the traceability between artifacts.

The process model itself is motivated by approaches used in other application do-
mains, like Internet search engines (e.g., Google1) or online shopping sites (e.g.,
Amazon2). Common to these applications is that they utilize different information
resources to provide an active, typically context-sensitive user feedback that identifies
resources and information relevant to a user’s specific needs. The challenge in apply-
ing similar models in software maintenance goes beyond the synthesis of information
and knowledge resources. There is a need to provide a formal meta-model to enable
reasoning about the potential steps and resources involved in a maintenance process.

For example, a maintainer, while performing a comprehension task, often utilizes
and interacts with various tools (parsers, debuggers, source code analyzers, etc.).
These tool interactions are a result of both, the interrelationships among artifacts
required/delivered by these tools and the specific techniques needed to complete a
particular task. Identifying these often transitive relationships among information
resources becomes a major challenge. Within our approach, we support automated
reasoning across these different information resources (e.g., domain knowledge, docu-
ments, user expertise, software, etc.) to resolve transitive relationships. Furthermore,
our model can be applied to analyze and re-establish traceability links among the
various resources in the knowledge base [1].

From a more pragmatic viewpoint, process models have to be able to adapt to ever
changing environments and information resources to be used as part of the process
itself. In our approach, we address this problem by providing a uniform ontological
representation that can be both extended and enriched to represent any newly gained
knowledge or change in the information resource(s). This knowledge will also be-
come an integrated part of the process that can be further utilized and reasoned on.

The remainder of the article is organized as follows. The relevant research back-
ground is introduced in Section 2. Section 3 describes in detail the context-driven
program comprehension process model, followed in Section 4 by its implementation
and validation. Discussions and future work are presented in Section 5.

1 www.google.com
2 www.amazon.com

58 J. Rilling et al.

2 Background

Historically, software lifecycle models and processes have focused on the software
development cycle. However, with much of a system’s operational lifetime cost oc-
curring during the maintenance phase, this should be reflected in both the develop-
ment practices and process models supporting maintenance activities. It is generally
accepted that even for more specific maintenance task instances (e.g., program com-
prehension, architectural recovery), a fully-automated process is not feasible [11].
Furthermore, existing models share the following common challenges:

• Existing knowledge resources (e.g., user expertise, source code artifacts, tools) are

used to construct mental models. However, without a formal representation, these
process models lack uniform resource integration and the ability to infer additional
knowledge.

• Limited knowledge management that allows the extension and integration of
newly gained resource and knowledge.

• These models provide typically only general descriptions of the steps involved in a
process and lack guidelines on how to complete these steps within a given context
(concrete software maintenance task and available knowledge resources).

In our approach, we provide a formal representation that integrates these informa-

tion resources and allows reasoning and knowledge management across them.
Furthermore, we address the issue of context-sensitive support, i.e., providing the
maintainer with guidance on the use of the different information resources while ac-
complishing a particular task.

Research in cognitive science suggests that mental models may take many forms,
but the content normally constitutes an ontology [8]. Ontologies are often used as a
formal, explicit way of specifying the concepts and relationships in a domain of un-
derstanding [2]. They are typically specified using the standard ontology language,
Description Logics (DL), as a knowledge representation formalism.

DL is also a major foundation of the recently introduced Web Ontology Language
(OWL) recommended by the W3C3. DL represents domain knowledge by first defin-
ing relevant concepts (sometimes called classes or TBox) of the domain and then
using these concepts to specify properties of individuals (also called instances or
ABox) occurring in the domain. Basic elements of DL are atomic concepts and
atomic roles, which correspond to unary predicates and binary predicates in First
Order Logic. Complex concepts are then defined by combining basic elements with
several concept constructors.

Having DL as the specification language for a formal ontology enables the use of
reasoning services provided by DL-based knowledge representation systems. The
Racer system [7] is an ontology reasoner that has been highly optimized to support
very expressive DLs. Typical services provided by Racer include terminology infer-
ences (e.g., concept consistency, subsumption, classification, and ontology consis-
tency) and instances reasoning (e.g., instance checking, instance retrieval, tuple
retrieval, and instance realization). For a more detailed coverage of DLs and Racer,
we refer the reader to [2,7].

3 Available online at http://www.w3.org/TR/owl-ref

 A Unified Ontology-Based Process Model for Software Maintenance 59

3 Modeling a Software Maintenance Process

A model is essentially an abstraction of a real and conceptually complex system that
is designed to display significant features and characteristics of the system, which one
wishes to study, predict, modify or control [13]. In our approach, the software main-
tenance process model is a formal description that represents the relevant information
resources and their interactions (Fig 1).

Fig. 1. Comprehension Process Meta-Model

In what follows, we describe in general: (1) the ontological representation used to
model the information resources, (2) the ontology population and traceability among
ontologies, and (3) the maintenance process and its management.

3.1 An Ontological Software Maintenance Process Model

Through the use of ontologies and DL, we formally model the major information
resources used in software maintenance. The benefits of using a DL-based ontology
as a means to model the structure of our process model are as follows:

Knowledge acquisition and management. As mentioned previously, program com-
prehension is a multifaceted and dynamic activity involving different resources to
enhance the current knowledge about a system. Consequently, any comprehension
process model has to reflect and model both the knowledge acquisition and use of the
newly gained knowledge. The ontological representation provides us with the ability
to add newly learned concepts and relationships, as well as new instances of these to
the ontological representation. This extendibility enables our process model not only
to be constructed in an incremental way, but also to reflect more closely the iterative
knowledge acquisition behavior used to create a mental model as part of human cog-
nition of a software system [3,8]. It is not realistic to expect all these sources to share
a single, consistent view within a comprehension task. Rather, we expect disagree-
ments between individual users and tools during an analysis. In our approach, we
explicitly model those different views using a representational model that attributes
information to (nested) contexts using so-called viewpoints.

An elegant model for managing (possibly conflicting) information from different
sources has been proposed by [18]: Knowledge is structured into viewpoints and
topics. Viewpoints are environments that represent a particular point of view

60 J. Rilling et al.

(e.g.,information stemming from a particular tool or entered by a user). Topics are
environments that contain knowledge that is relevant to a given subject (e.g., design
patterns, architectural recovery). These environments are nested within each other:
viewpoints can contain either other viewpoints or topics. A topic can contain knowl-
edge pertaining to its subject, but also other viewpoints, e.g., when the subject is an-
other user. These viewpoints create spaces that allow consistency to be maintained
within a topic or a viewpoint, but at the same time, conflicting information about the
same topic can be stored in another viewpoint. Therefore, knowledge can be collected
while attributing it to its source, without having to decide on a “correct” set of infor-
mation, thereby avoiding losing information prematurely. Viewpoints can be con-
structed as well as destructed through the processes of ascription and percolation.
Ascription allows incorporating knowledge from other viewpoints (users, tools)
unless there is already conflicting information on the same topic. Percolation is intro-
duced for the deconstruction of nested knowledge.

Reasoning. Having DL as a specification language for a formal ontology enables the
use of reasoning services provided by DL-based knowledge representation systems,
by inferring knowledge through transitive closure across different ontologies. The
DL-based ontology and reasoning services form the basis for both, the knowledge
integration and retrieval used in our process model.

Building a formal ontology for software maintenance requires an analysis of the
concepts and relations of the discourse domain. In particular, the outlined process
model must be supported by the structure and content of the ontological knowledge
base. Our approach here is twofold: We (1) created sub-ontologies for each of the
discourse domains, like tasks, software, documents, and tools (Fig. 1); and (2) link
them via a number of shared high-level concepts, like artifact, task, or tool, which
have been modeled akin to a (simple) upper level ontology [16].

Having different knowledge resources modeled as ontologies allows us to link in-
stances from these knowledge resources using existing approaches from the field
of ontology alignment [17]. Ontology alignment techniques try to align ontological
information from different sources on conceptual and/or instance levels. Since our
subontologies share many concepts from the programming language domain, such as
Class or Method, the problem of conceptual alignment has been minimized. This re-
search therefore focuses more on matching instances that have been discovered both
from source code analysis and text mining.

3.2 Ontological Representation for Software Artifacts

Software artifacts such as source code and documentation typically contain rich struc-
tural and semantic information. Providing uniform ontological representations for
various software artifacts enables us to utilize semantic information conveyed by
them and to establish their traceability links at a semantic level (Fig. 2b). In this sec-
tion, we introduce our SOUND program comprehension environment [22], which was
developed to establish the technical foundation for our ontological software mainte-
nance process model.

The SOUND environment facilitates software maintainers in both discovering
(new) concepts and relations within a software system, as well as automatically infer-
ring implicit relations among different artifacts (Fig. 2a and 2b).

 A Unified Ontology-Based Process Model for Software Maintenance 61

Source Code OntologySource Code Ontology

Software Ontology

Racer – Ontology ReasonerRacer – Ontology Reasoner

Documentation OntologyDocumentation Ontology

Text Mining SystemText Mining System

Eclipse IDE

Query Interface
nRQL/Javascript

Query Interface
nRQL/Javascript

Ontology
Management

Ontology
Management

SOUND Plug-in
Ontology Browser

Document Navigator
Ontology Browser

Document Navigator

Class

Method

Variable

Design Pattern

Paragraph

Sentence

m1
m1

c2
c2c1

c1

c’1c’1 m’1m’1

dp1
dp1

c’2c’2

s1
s1

p1
p1

Documents Source Code

Documentation
Ontology

Source Code
Ontology

Class

Method

Variable

c3
c3

Fig. 2a. Overview of SOUND Environment Fig. 2b. Linking Code and Documentation

Instances of concepts and roles in the software ontology can be populated by either
our Eclipse plug-in or text mining system. The discovered instances from different
sources can be automatically linked through ontology alignment [17]. Based on the
software ontology, users can define new concepts/instances for particular software
maintenance tasks through an ontology management interface. Text Mining (TM) is
commonly known as a knowledge discovery process that aims to extract non-trivial
information or knowledge from unstructured text. Unlike Information Retrieval (IR)
systems, TM does not simply return documents pertaining to a query, but rather at-
tempts to obtain semantic information from the documents themselves, using tech-
niques from Natural Language Processing (NLP).We implemented our TM subsystem
based on the GATE (General Architecture for Text Engineering) framework [4], one
of the most widely used NLP tools [22].

The ontological reasoning services within the SOUND environment are provided
by the ontology reasoner, Racer [7]. Racer’s query language nRQL can be used to
retrieve instances of concepts and roles in the ontology. An nRQL query uses arbi-
trary concept names and role names in the ontology to specify properties of the result.
In a query, variables can be used to store instances that satisfy it. However, the use
of nRQL queries is still largely restricted to users with a good mathematical/logical
background due to nRQL's syntax, which, although comparatively straightforward, is
still difficult for programmers to understand and apply. To bridge this conceptual gap
between practitioners and Racer, we have introduced a set of built-in functions and
classes in the JavaScript interpreter, Rhino4, to simplify querying the ontology for
users. The scriptable query language allows users to benefit from both the declarative
semantics of Description Logics as well as the fine-grained control abilities of proce-
dural languages.

In our previous work, we have already demonstrated an ontological model of
source code and documentation supporting various reverse engineering tasks, such as
program comprehension, architectural analysis, security analysis and traceability links
[22]. We currently investigate its integration with work examining the requirements
for software reverse engineering repositories [15] that deals with incomplete and
inconsistent knowledge on software artifacts obtained from different sources (e.g.,
conflicting information delivered by source code and document analysis).

4 Available online at http://www.mozilla.org/rhino/

62 J. Rilling et al.

3.3 Process Management

The interaction among users and the knowledge resources plays a dominant role in
any software maintenance process model. As part of this interaction, users should
become immersed in the program maintenance process, while the different phases of a
particular maintenance task unfold. The user itself is active and interacts with differ-
ent resources (e.g., support from tools, techniques, documents and expertise) and
other users (e.g., system or historic user data) to complete a particular task. In this
research, we introduce a process management approach that establishes the communi-
cation and interaction between users, the process and the underlying ontology man-
ager [15]. A typical usage scenario of our maintenance process model is illustrated in
Fig. 3. with the iterative nature of the process being reflected by the loop (messages
2-22). A user is completing a comprehension task and the process manager, ontology
manager, reasoner and available resources are all working together to assist the user
during the different phases of the software maintenance process.

Fig. 3. Process Sequence Diagram

After each iteration, users will provide feedback and annotate briefly their experi-
ence with the resources and their success towards problem solving (Messages 18-22).
The resulting feedback is used to further enrich the historical data stored in the ontol-
ogy, as well as trigger the next step in the maintenance process.

In this research, we introduce an iterative process management approach that guides
the communication and interaction between users, the process and the underlying
ontology manager. A user is completing a comprehension task and the process man-
ager, ontology manager, reasoner and available resources are all working together to
assist the user during the different phases of the software maintenance process.

After each iteration, users will provide feedback and annotate briefly their experi-
ence with the resources and their success towards problem solving. The resulting
feedback is used to further enrich the historical data stored in the ontology, as well as
trigger the next step in the maintenance process. A more detailed description of the
process manger can be found in [15].

 A Unified Ontology-Based Process Model for Software Maintenance 63

4 System Implementation and Evaluation

In this section, we provide a general system overview of the implementation of our
process model and a general overview of the ontological implementation used to
model the knowledge base.

4.1 System Overview

The process itself is based on two main components, the process and the ontology
manager.

Ontology Manager is used to manage the infrastructure of the process model,
where the basic elements of the program comprehension process and their inter-
relationships are formally represented by DL-based ontology. Our approach supports
the addition of new concepts and their relations in a given sub-ontology, coordinates
the reasoner with the ontologies, and controls querying and reasoning services across
the sub-ontologies. A user can perform both pre-defined and user-defined queries.
The ontology manager is an extension to our SOUND tool [22], an Eclipse plug-in
that provides both ontology management (software ontology and document ontology
have been developed) and inferences service integration using the Racer [7] reasoner.
So far, the ontology management interface provides the following services: add-
ing/defining new concepts/relationships, specifying instances, browsing the ontology,
and a Java Script based query interface.

Process Manager is built on top of the ontology manager and provides users with
both the context and the interactive guidance during the comprehension process. The
process context is established by the process manager, depending on the user process
interactions, the current state of the knowledge base and the resulting information
inferred by the reasoner. For interactive guidance, the process manager utilizes differ-
ent visual metaphors to establish a representation that allows users to immerse in the
process context and, at the same time, provides an approach to analyze and utilize the
inferred knowledge to provide guidance during the comprehension process itself.

4.2 Initial Evaluation

At the current stage, we have successfully implemented and used our SOUND ontol-
ogy management and query tool to perform comprehension tasks such as impact
analysis, design pattern recovery, and component identification [9]. In addition, we
have defined an initial set of concepts and relations for the remaining sub-ontologies
as the foundation for our process model. A more detailed description of the ontology
implementation can be found in [15].
 A set of frequently used queries has been defined in the system, e.g., identifying the
coupling among classes, recovering the design pattern in a system. We are currently
in the process of conducting a larger case study in collaboration with Defence Re-
search and Development Canada (DRDC) Valcartier to explore and validate the ap-
plicability of our software maintenance process model. The system used for the case
study is an open source software for the analysis and reporting of maritime exercises
– Debrief [5]. As part of the ongoing Debrief case study, we are performing a specific
component substitution task, in which a non-secure file access will be substituted by a

64 J. Rilling et al.

client specific encrypted version. Feedback from the process and information resource
usage will be collected for further refinement and enrichment of both the process
model and the knowledge base.

5 Related Work

There exists only very limited research in applying Description Logics or formal
ontologies in software engineering. The two major projects that are closely related to
our ontological approach are the LaSSIE [6] and CBMS [21] systems. However, these
systems are much more restricted by the expressiveness of their underlying ontology
languages and they lack the support for an optimized DL reasoner, such as Racer in
our case.

Current research in modeling software maintenance processes [10,19,20] typically
describe only very generally the process and lack formal representations. Thus, they
are unable to utilize any type of reasoning services across the different knowledge
sources involved in the comprehension process. To the best of our knowledge, there
exists no previous work that focuses on developing a formal process model to de-
scribe the program comprehension process.

Existing work on comprehension tool integration focuses either on data interopera-
bility using a common data exchange format [20] or on service integration among
different reverse engineering and software comprehension tools [11]. Our approach
can be seen complementary to these ongoing tool integration efforts. Improving the
overall capabilities and applicability of reverse engineering tools will help to enrich
our tool ontology and therefore, directly/indirectly benefit the comprehension process
model. However, our approach goes beyond just mere tool integration. It is the formal
ontological representation that supports both reasoning across different knowledge
sources (including tools) and context support during the comprehension process itself.
Furthermore, our approach provides flexibility and extensibility required to support
the evolution of the process model itself.

6 Conclusions

Our work promotes the use of both formal ontology and automated reasoning in soft-
ware maintenance research, by providing a DL-based formal and uniform ontological
representation of different information resources involved in a typical software main-
tenance process.

As part of our future work, we will conduct several case studies to enrich our cur-
rent ontology and optimize the software maintenance process model for different
maintenance tasks. We are currently in the process of developing a new visual proc-
ess metaphor to improve the context-sensitive guidance during typical maintenance
tasks.

Acknowledgement. This research was partially funded by Defence Research and
Development Canada (DRDC) Valcartier (contract no. W7701-052936/001/QCL).

 A Unified Ontology-Based Process Model for Software Maintenance 65

References

1. G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia, “Information retrieval models for
recovering traceability links between code and documentation”. In Proceedings of IEEE
International Conference on Software Maintenance, San Jose, CA, 2000.

2. F.Baader, D. Calvanese, D. McGuinness, D.Nardi, P.P.-Schneider, “The Description Logic
Handbook”. Cambridge University Press, 2003.

3. R. Brooks, “Towards a Theory of the Comprehension of Computer Programs”. Int. J. of
Man-Machine Studies, pp. 543-554, 1963.

4. H. Cunningham, D. Maynard, K. Bontcheva, V. Tablan. “GATE: A Framework and
Graphical Development Environment for Robust NLP Tools and Applications.” Proceed-
ings of the 40th Anniversary Meeting of the ACL (ACL'02). Philadelphia, July 2002.

5. Debrief, www.debrief.info, last accessed 25/10/2006.
6. P.Devanbu, R.J.Brachman, P.G.Selfridge, and B.W.Ballard, “LaSSIE: a Knowledge-based

Software Information System”, Com. of the ACM, 34(5):36–49, 1991.
7. V. Haarslev and R. Möller, “RACER System Description”, In Proc. of International Joint

Conference on Automated Reasoning, IJCAR'2001, Italy, Springer-Verlag, pp. 701-705.
8. P. N. Johnson-Laird, “Mental Models: Towards a Cognitive Science of Language, Infer-

ence and Consciousness”. Harvard University, Cambridge, Mass., 1983.
9. A. V. Mayhauser, A. M. Vans, “Program Comprehension During Software Maintenance

and Evolution”. IEEE Computer, pp. 44-55, Aug.,1995.
10. IEEE Standard for Software Maintenance, IEEE 1219-1998.
11. D. Jin and J. R. Cordy. "Ontology-Based Software Analysis and Reengineering Tool Inte-

gration: The OASIS Service-Sharing Methodology". 21st IEEE ICSM, 2005.
12. P. N. Johnson-Laird, “Mental Models: Towards a Cognitive Science of Language, Infer-

ence and Consciousness”. Harvard University, Cambridge, Mass., 1983.
13. M. I. Keller, R. J. Madachy, and D. M.Raffo, “Software Process Simulation Modeling:

Why? What? How?”. Journal of Systems and Software, Vol.46, No.2/3, 1999.
14. U. Kölsch and R. Witte, “Fuzzy Extensions for Reverse Engineering Repository Models”.

10th Working Conference on Reverse Engineering (WCRE), Canada, 2003.
15. W. Meng, J. Rilling, Y. Zhang, R. Witte, P. Charland, “An Ontological Software Compre-

hension Process Model”, 3rd Int. Workshop on Metamodels, Schemas, Grammars, and
Ontologies for Reverse Engineering (ATEM 2006), Genoa, October 1st, 2006, pp. 28-35.

16. Niles and A. Pease. “Towards a Standard Upper Ontology”. Proc. of the 2nd Int. Conf. on
Formal Ontology in Information System (FOIS), Maine, 2001.

17. N. F. Noy and H. Stuckenschmidt, “Ontology Alignment: An annotated Bibliography –
Semantic Interoperability and Integration” Schloss Dagstuhl, Germany, 2005.

18. A. Ballim, Wilks, “Artificial Believers: The Ascription of Belief”,Lawrence Erl-
baum,1991.

19. C. Riva, "Reverse Architecting:An Industrial Experience Report", 7th IEEE
WCRE, pp.42-52, 2000.

20. M. -A. Storey, S. E. Sim, K. Wong, “A Collaborative Demonstration of Reverse Engineer-
ing tools”, ACM SIGAPP Applied Computing Review, Vol. 10(1), pp18-25, 2002.

21. C.Welty, “Augmenting Abstract Syntax Trees for Program Understanding”, Proc. of Int.
Conf. on Automated Software Engineering. IEEE Computer Soc .Press. 1997, pp. 126-133.

22. Y. Zhang, R. Witte, J. Rilling, V. Haarslev, “An Ontology-based Approach for Traceabil-
ity Recovery”, 3rd International Workshop on Metamodels, Schemas, Grammars, and On-
tologies for Reverse Engineering (ATEM 2006), Genoa, October 1st, 2006, pp. 36-43.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

