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1 Introduction 

Since the announcement of the creation of a Web Ontology Working Group in 2001, two stan-
dards, DAML+OIL[1] and its successor, the Web Ontology Language (OWL) [2] were intro-
duced. The latter is now the agreed-upon standard for formally specifying knowledge in the 
web and its introduction has renewed the focus on ontologies. Categories of researchers inter-
ested in ontologies include philosophers, software developers, computational linguists, biolo-
gists and logicians, and their motives are varied. Much debate now focuses on the criteria by 
which ontologies should be evaluated [3] and this debate is often driven by the question regard-
ing the usefulness of ontologies for applications such as support for natural language processing 
[4] text mining [5], annotation of genes for gene expression analysis [6], inference or knowl-
edge discovery in general, the facilitation of data integration [7], providing cornerstones of the 
Semantic Web [8], and as educational resources [9] There is however general agreement that 
Ontologies can serve as portable and easily exploitable conceptualizations for use in a multi-
tude of computational applications. This has lead to an increase in the creation of ontologies 
and the emergence of a new generation of computational ontologists.  

In order to characterize the proliferation of ontologies in the public domain we conducted a 
study to assess and review the general characteristics of existing OWL ontologies paying atten-
tion to features such as their abundance, continuing availability, originating sources and domain 
covered. Our long-term goal is to evaluate ontologies in light of their suitability for reasoning 
that yields non-obvious insight or new knowledge in the corresponding domain. The next sec-
tion discusses criteria and related work for ontology evaluation. We then report on the findings 
from our survey of ontologies in the public domain and on their domain dependent and domain 
independent features. The paper concludes with a summary and an outlook on future research. 

1.1 Ontology Evaluation 

Criteria for ontology evaluation can be divided into domain dependent and domain independent 
criteria. Domain dependent criteria focus on the content of a given ontology. This is a criterion 
fundamental to the Semantic Web which is based on the vision of ontlogies being made avail-
able across the World Wide Web. In this case alignment and integration of domain conceptuali-
zations in areas where ontologies overlap is a critical step. Domain content is also the primary 
criterion when considering a given ontology for a specific application or for evaluating the on-



tology for reuse in a new knowledge engineering project. Though some existing tools simplify 
the identification of domain content within an ontology, such approaches require significant 
contributions of ontology meta-data from the developer [10] though some approaches [11] 
automatically tag concepts with appropriate meta-properties. In many cases ontologies are 
poorly characterized with respect to domain content, and require much user interaction using 
ontology visualization tools to produce a thorough assessment. Furthermore, the rate at which 
ontologies are being self-published makes a thorough evaluation of domain coverage and con-
tent particularly difficult. 

Ontology content is one of many criteria that ontology users are interested in. After having 
identified an ontology with relevant and sufficient domain content, a user may consider apply-
ing this ontology for a specific task. For instance, in the area of natural language processing 
(NLP) ontologies are often used as hierarchically controlled vocabularies [4]. In such applica-
tions a series of metrics are commonly derived which seek to quantify the success of extraction 
of structured information content from corpora of unstructured text. Tools also exist which seek 
to measure the compatibility of an ontology's vocabulary with that of to the text corpus under 
examination. For instance, the approach reported in [12] uses NLP techniques to compare the 
content of ontologies but does not consider their conceptual structure. 

Beyond the content and application features of ontologies, the philosophical correctness of 
the conceptualization of knowledge in ontologies is an important consideration. Philosophical 
rules of thumb should not be violated, though frequently they are, especially the rules of uni-
vocity, positivity, objectivity, single inheritance, exhaustiveness, and intelligibility [13]. These 
rules provide important guidelines to ensure that conceptualizations have clarity and avoid am-
biguity. Such criteria are however difficult to evaluate and enforce computationally, since they 
require a thorough understanding of the domain content and the axioms and relationships being 
employed in a conceptualization. 

Taxonomic structures of formal ontological representations are also the subject of evaluation 
approaches [14]. Notions of rigidity, unity, identity, and dependence have been employed to 
provide useful controls on the correctness of hierarchies – thus a child (subtype) term in an on-
tology should not have identity criteria incompatible with those of its parent term. Formal on-
tologies such as those written in OWL can be further evaluated with respect to OWL tags used 
to build the conceptualization. Such investigations provide insight into the logic architecture 
underlying the conceptualization. To do this specific tags, such as those for declaring subclass 
relationships, can be used as inputs to Description Logic (DL) reasoners [15] in order to derive 
explicit or implicit knowledge. This can include knowledge about the internal correctness of an 
ontology and the presence of gaps. For further reference, a comprehensive study of ontology 
evaluation methodology is provided by [16].  

Metrics of the afore mentioned evaluation criteria are of interest to ontology engineers and 
the Semantic Web community at large. To facilitate coordinated access to such metrics a num-
ber of initiatives have focussed on establishing resources and algorithms for searching, ranking 
and classifying ontologies. The OntoSelect library [17] is a collection of ontologies obtained by 
monitoring and trawling the web for new ontologies available in standard RDFS, DAML and 
OWL formats. The ontologies are marked up for human users according to a series of usability 
criteria. OntoKhoj [18] is a similar portal providing access to both human and computational 
agents to retrieve ontology classification information. OntoKohj classifies ontologies according 
to domain content using a naïve Bayesian approach. Swoogle’s search services such as the On-
tology Dictionary offer algorithms for ranking the importance, in terms of frequency and com-
munal acceptance, of Semantic Web components at three levels of granularity: documents, 
terms and RDF graphs [19]. AKTiveRank [20] is a prototype system for ranking ontologies 
based on the analysis of their structures using a series of combined metrics. These resources 



make it easier for knowledge engineers to access the ontologies and Semantic Web resources 
relevant to their needs.  

2 Ontology Survey 

One of the questions raised in most ontology projects concerns usefulness. Specifically, are 
ontologies valuable research tools, or are they an academic curiosity that cannot support tangi-
ble productive work? To address this multi-faceted issue, we first estimated ontology adoption 
by enumerating ontologies publicly available on the internet and assessing the rate at which 
they are modified or updated. We used this as a metric to indicate the level of acceptance or 
adoption of OWL ontologies as vehicles for knowledge representation. Additionally we identi-
fied the originating sources of these ontologies according to the institutions that published them 
and used this to illustrate the extent to which public organizations have endorsed ontology use. 
We then sought to classify ontologies according to domain content in order to identify the in-
tended application domains and scale of their conceptualizations by enumerating the defined 
entities in the ontologies. Our focus then switched to the structures of these ontologies and spe-
cifically to the deployment of OWL tags. By identifying tag profiles within ontologies we were 
able to determine the extent to which support for DL-based reasoning has been incorporated 
into ontologies. Finally we reviewed features of ontologies that can be enumerated using DL 
reasoning tools, such as the numbers of concepts, relations, average number of child classes and 
occurrences of multiple-inheritance. This specifically pertains to OWL-DL (decidable First 
Order Logic) and OWL Lite (not expressive) but not to OWL full (undecidable). Note: the 
range of knowledge that can be captured in the language (i.e. its expressiveness) limits the 
means to reason  with the captured knowledge (i.e. its decidability).  

 
2.1 Ontology Adoption 

 
We set out to create a data set of publicly available ontologies and study their contents and evo-
lution over time. The ontologies were found using Google queries and a free-running web 
crawler [21] that searched over 2 million web pages on a daily basis. Figure 1 plots the number 
of ontologies observed to be available over time on the World Wide Web. The first official re-
lease of the DAML+OIL ontology standard was in December 2001, while the OWL standard 
was released in February 2004. Interestingly, the rise in the number of ontologies available is 
similar to a power curve; a behavior that is consistent with the adoption of most Internet tech-
nologies. One might ask whether the rate of increase will be sustained and whether the ontolo-
gies created are small experimental ‘me too’ ventures or robust applications of the OWL tech-
nology. One way to resolve this is to review the rate of ontology change and update.   

To asses this we retrieved and stored OWL and DAML+OIL ontologies along with a time-
stamp. Each day, we re-visited these ontologies and noted any changes, including suspension of 
availability. In each case, we attempted to query the Internet Way-Back Archive [22] for previ-
ously archived copies of the ontologies. When available, this data gave us two interesting 
pieces of information: the earliest point in time when the ontology was made available and any 
observed changes made to the ontologies. Hence we were capable, not only of tracking the cur-
rent activity on selected ontologies, but also of looking backwards in time for changes that have 
since been made over time.  
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Fig. 1. Number of ontologies available on the internet 
 

Figure 2 plots the number of ontologies which changed each month over a time period of 4 
years from September 2002 onwards. The figure must be interpreted carefully as a small bias 
exists in the graph due to the creation of new ontologies. Also change data for post-January 
2005 period was not available. An analysis of the graph reveals that ontological development is 
undergoing considerable expansion. On average 200 ontologies were updated each month. It is 
not possible to establish if this is a reflection of their use in a production setting or in ongoing 
experimentation. It is, however, an indication that not all of the available ontologies are stale, 
static remnants of a technological fad. It is to be expected that many more ontologies are avail-
able, and frequently updated, either commercially or internally within organizations. We con-
cern ourselves only with ontologies available on the Internet, therefore our data set may not be 
a completely representative sample of all ontologies in actual use. 

Overall we found references to over 5,100 ontologies, 60% of which were in OWL format. 
A similar magnitude of ontologies was reported by [19], who found 4000 Semantic Web On-
tologies (SWO). We selected a set of 1,600 ontologies for further analysis based on their rela-
tive complexity and an encoding which allowed ontologies to function with all of our tools and 
software libraries without error. A similar position was adopted by other researchers selecting 
DAML ontologies for group analysis [23] These authors found coding errors in 50% of ontolo-
gies and were able to use 38% of their selected ontologies for subsequent evaluation and analy-
sis.  

2.2  Accessing Ontology Content  

OWL files were parsed for Universal Resource Identifier tags [24] which were then deposited 
in a relational database, allowing for simple keyword searches and a series of ontology evalua-
tions. As a means of exploring the content of the available ontologies, we developed a simple 
query web interface [25] that allowed us to search for strings, i.e. ordered sequences of sym-



bols, letters or words within the ontologies. In this way, we were able to query all retrieved on-
tologies for similar class names, irrespective of the structure of the ontologies. As a result it 
became possible to search for commonality between ontologies and potential semantic junc-
tions for integration between ontologies. Ontology alignment and matching are important re-
search areas [26] with great significance to Semantic Web initiatives. Our analysis involved 
simple clustering experiments based on the labels assigned to properties, classes and individu-
als. For example, the term ‘service_description’ occurred as a unique concept in 11 different 
ontlogies, as determined from the ontology name and its publishing source. Other terms such as 
‘enzyme’ found in 14 different ontologies, occured in 249 entities but not as simple concept 
name, instead in entities which contained some usage of the word e.g. Enzyme Purification or 
Acetyl co-enzyme_A. The results showed that while there are a number of distinct integration 
opportunities, in the great majority of cases they involve very specific portions of ontologies, 
primarily those which described web-based services and transaction processes. This clearly 
suggests that we are still in the ‘early adoption’ phase of this technology and not yet able to 
expect ‘global’ interoperability of ontologies in any one domain. A systematic and coordinated 
approach is necessary to focus and coordinate the interoperability of ontologies, particularly if 
important information systems which are critical in our daily lives begin to depend on ontology 
compatibility. 
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Fig 2. Number of ontologies observed to have been updated or changed 

2.3 Ontology Contributors  

We also sought to review the contributors to ontology development. We classified the organiza-
tions publishing ontologies into several categories as depicted in (Figure 3). The categories 
were large and small corporations, government institutions, individuals, standards bodies, uni-
versities and non-academic research institutions. Predictably, universities and research estab-
lishments represent the major organizations publishing ontologies on the web. We thought it 



interesting to add the ‘Individuals’ category to illustrate the fact that a number of ontologies are 
being published by people who are contributing out of personal interest. Government organiza-
tions were the most prolific. This is primarily due to several health related ontologies released 
by US government institutions. 

Individuals 3 MB

Standards Body 14 MB

Corporations, 
small 10 MB

Corporations, 
big 7 MB

Research 
Establishments 
72 MB

Government 294 MBUniversities 
167 MB

 

Fig. 3. Classification of ontology contributors according MB of data published 

2.4 Domain Content 

Using our query tool, we manually reviewed for content about 1,000 ontologies selected for 
size and adequate encoding. These were then hand-classified into an ad-hoc set of topics using 
the pooled entities in the ontologies, namely the labels on the concepts relations and instances 
(see Figure 4). For example, the inspection of several ontologies revealed the use of terms rep-
resenting organizational roles, and associated titles and relationships that led us to create the 
“organization” category. The resulting classifications are not perfect, but they proved satisfac-
tory for purposes of gross aggregation. We created a small generic category called ‘toy’ used to 
classify example ontologies created to demonstrate specific ontological constructs. 

Again the categories with the most ontology coverage were those of web services and or-
ganizations, followed by biomedicine. These had a three-fold higher occurrence than the next 
distinguishable categories of Transportation and ontologies for ‘Toy’ domains (see Figure 4). 
The domain of biomedicine could be further subdivided into biology (40) cancer (5) and genet-
ics (114). The largest of such ontologiess include the OWL versions of the Gene Ontology. 
Within the classified categories the numbers of entities (classes, properties, and individuals) 
was enumerated. The result of our evaluation identified the domain of genetics as the domain 



most richly represented with ontological entities. Clearly the domain of biomedicine is a sig-
nificant source of ontology content. In the group of unclassified ontologies most of these on-
tologies had one or less parent (super) class and hence, a low number of entities, and it is this 
which made it impossible to classify them. There would appear to be a significant number of 
immature ontologies in the public domain, suggesting considerable low-level experimentation 
with OWL. This may reflect strong interest in the technology, albeit a preliminary step in the 
full-scale adoption of this knowledge representation vehicle.  
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Fig. 4.  Domain content classification of ontologies 

2.5 OWL Deployment 

Having established that OWL ontologies are indeed broadly accepted in the public domain by 
major institutions as knowledge representation vehicles which cover a variety of subject do-
mains, we then considered domain independent features of these ontologies. We are interested 
in the degree to which the OWL language has been deployed. Specifically we wish to evaluate 
whether the OWL language elements in contemporary ontologies have captured ‘implicit 
knowledge’. We describe implicit knowledge as information represented in such a way that a 
reasoner can derive additional information beyond the explicit description. For example in the 
case of the concept ‘malignant melanoma’, this medical term can be described as equivalent to 
an aggregate of explicitly modeled OWL elements declaring a ‘cancer’ of the ‘skin’ that is an 
‘aggressive and life-threatening manifestation’ etc. Such a conceptualization, along with decla-
rations of the properties of, and constrains on, these concepts, facilitate reasoning tools to logi-
cally derive further non-obvious insights into the domain of the given ontology. Our ongoing 



interest is to identify those sufficiently well-developed ontologies which could support reason-
ing.  

Wolstencroft etal. [27] illustrate an example where, in conjunction with domain context, they 
use reasoning to enhance a discovery process. They used classification-based reasoning over 
OWL tags in the ‘Phosphatase ontology’, specifying necessary and sufficient conditions on 
membership for protein instances to belong to a protein class, primarily according to the spe-
cific phosphatase domain architecture of the protein instance. They also used closure axioms to 
limit the domains allowable for a specific class membership.  

Furthermore we wished to determine whether in the context of the currently available on-
tologies, the expressiveness of DL-based reasoning tools and query languages is a limiting fac-
tor in knowledge mining from ontologies. To investigate this set of issues we analyzed more 
than 800 ontologies randomly gathered from the internet and counted the occurrence and fre-
quency of several tags (called ‘DL-interesting’ in the following), which are candidates for being 
able to support the derivation of implicit knowledge, described above. Figure 5 shows a histo-
gram of the OWL and RDFS tags we studied in 845 ontologies. RDF Schema tags used in the 
RDF knowledge representation language are also employed in OWL ontologies. Our results 
show the most common tags to be RDFS tags, namely the tags for declaring sub classes, rela-
tionship-axioms and hierarchies of relations. These tags also predate the introduction of OWL 
tags and are presumably more frequently occurring for this reason. The most frequently occur-
ring OWL tags were those denoting cardinality and equivalence of classes. With almost equal 
usage constructs for declaring hierarchies of relations cardinality, class equivalence, intersec-
tion, disjointedness, inversion and uniqueness. Tags declaring functional and transitive relations 
were used in fewer than 100 ontologies. Likewise inverse functional and symmetric relations 
were infrequently used. 
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Fig. 5.  Occurrence of OWL/RDFS tags in more than 800 ontologies 
 

In order to reduce noise introduced into our analysis by the low level occurrence of tags we 
normalized our data using a similar approach to other authors [23,28]. The resulting analysis 

DL-interesting RDFS/OWL Tags

N
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r 



revealed 63 non-redundant patterns of tag-usage [29] and their abundance. Clearly RDFS tags 
are found in the majority of ontologies.  Table 1 [29] details 30 of the 63 usage patterns identi-
fied in our analysis. We comment briefly on the most heavily used patterns which serves to 
characterize the status quo with respect to the usage of DL-interesting tags in the modeling of 
domain knowledge.  

Firstly the most deployed tag usage, the RDFS subclass tag alone - Pattern 32, results in 
simple hierarchical ‘is a’ ontologies. Secondly a significant number of ontologies contained 
none of the DL-interesting tags investigated in this study, Pattern 1. Most characteristic was the 
occurrence of the combination of tags rdfs:subclass, rdfs:domain and rdfs:range, Pattern 23, for 
specifying hierarchies and relationship-axioms. Furthermore they were the most significant tags 
across all usage-profiles occurring in some combination that included at least one of these three 
tags. OWL tags for representing cardinality and disjointness were used frequently in conjunc-
tion with the RDFS tags but in general OWL tags occurred in less than a third of the patterns. 
Taken together our one-time snapshot demonstrates the heavier usage of RDFS over OWL pre-
sumably because OWL was introduced more recently. Ontology Engineers in general are likely 
to be more accustomed to database modeling, which involves some use of cardinality, or object 
modeling using subclasses and axioms yet less with logical or mathematical notions such as 
inverse of functional relations. This would explain the less frequent deployment of OWL tags.  

Our current assessment is that implicit knowledge recorded in OWL tags is relatively sparse 
in most ontologies and that reasoning over the majority of conceptualisations is limited to the 
use of subsumption taxonomies and axioms. This level of complexity is trivial for a reasoner 
and we came across only 9 ontologies with 6 or more different DL-interesting tags. Few if any 
of the ontologies were currently mature enough to challenge the capabilities of existing reason-
ing tools like RACER, suggesting we are well-tooled to interrogate OWL knowledgebases but 
that in general the community’s skills in knowledge representation to support new discoveries 
through the disclosure of implicit knowledge remains immature. This appears somewhat para-
doxical, however our analysis-snapshot did not ascertain the speed at which OWL is being 
adopted and the time period of our analysis was curtailed. Moreover, a growing interest in on-
tology engineering is fuelled by the availability of industrial strength commercially available 
editors [30] and a widespread concern about the quality of ontologies has emerged [3]. In the 
last two years the Semantic Web paradigm has received considerable fanfare and established 
itself in on the agenda of many scientific communities and permeated research work presented 
at their top conferences. This is particularly true in the life science domain [31]. It is therefore 
realistic to anticipate in the near future the emergence of a larger subset of advanced ontologies 
which can be reasoned over for new insights.  

 
2.6 DL-Derived Ontology Metrics 

 
Ontologies have distinct compositions and structures which are relevant domain-independent 
critera for ontology assessment. The OWL-DL and OWL Lite species of OWL make it possible 
to use description logics to rapidly access structural and organizational features of ontologies. 
The added value of using DL-based evaluation goes beyond the rapid enumeration of elemental 
components of ontologies, such as classes, properties and instances. It lies also in being able to 
compute and enumerate internal features of the ontology’s architecture. For our investigations 
we used the OWL reasoner [15] and its high performance query language nRQL [32] which is 
comprehensive enough for users to custom design new queries and evaluate ontologies for dis-
tinctive but relevant structural attributes such as multiple-inheritance. Multiple-inheritance, the 
presence in an ontology of terms with multiple parents, is sometimes considered the result of 
poor conceptualization of domain knowledge. It can also present obstacles to ontology integra-



tion, since in such cases is_a relations are permitted to mean different things in different con-
texts [13]. Consider: dog is_a mammal; dog is_a pet; nurse is_a person, nurse is_a hospital role.   

Our DL-based analyses of more than 100 randomly selected OWL ontologies and almost 70 
ontologies manually selected for enriched numbers of RDFS tags disclosed that on average the 
depth of most ontologies was relatively shallow, most were only 3-4 levels deep, though depths 
of up to 17 levels were encountered. On average each class had around 0.4 subclasses, suggest-
ing relatively lean subclass hierarchies in most ontologies. Multiple-inheritance within class 
hierarchies (measured by the average number of parents) was only 0.76, although we noted 
significant reuse of parent classes in some ontologies. The average number of classes or con-
cepts within ontologies was typically below 100, supported on average by a higher number of 
properties, commonly referred to as relations. Interestingly all selected ontologies made use of 
at least 18 properties but classes were instantiated by a very low average of 20 individuals per 
ontology. This result suggests that most ontologies are not yet designed to support large scale 
data mining or discovery initiatives.  

3 Conclusion and Future Work 

An era is emerging in which the need for evaluations and classifications of ontologies has been 
collectively recognized and this becomes all the more urgent where ontologies are being put 
forward to serve as robust knowledge representation components of the Semantic Web. While 
the criteria by which ontologies should be evaluated depend upon their role and purpose within 
an application domain, we have conducted evaluations of the ontologies available across the 
internet which is of quite general significance. 

Firstly we observe a rapid increase in the numbers of ontologies available on the web since 
the publication of the Web Ontology Language (OWL) reference guidelines, though a lag phase 
existed before uptake was evident. We observe that changes are being made to ontologies at a 
relatively stable rate. This suggests active revision and maintenance by the ontology publishing 
community which is dominated by government and academic institutions conceptualising web 
service and biomedical related domains. Our studies also show that most OWL ontologies are 
constructed from relatively simple combinations of RDFS tags deployed in conjunction with 
select OWL tags.   

A large portion of the results presented in this study were the product of considerable manual 
effort, and it would be challenging to conduct such evaluations regularly to monitor the evolu-
tion of the Semantic Web. This motivated us to take advantage of the accessibility of OWL 
ontologies to DL-based querying tools. These allowed us rapidly to assess the state of the art 
across a multitude of ontologies, highlighting elementary yet profound structural parameters 
relevant to ontology developers and the knowledge representation community at large. These 
investigations highlighted the relatively shallow depths of most publicly available ontologies, 
the relatively low but real existence of multiple-inheritance, and the relatively lean structure of 
most ontologies. We see that classes in ontologies are still associated with relatively small real 
world instance-data and that the ontologies are in general still quite small, with numbers of 
classes falling on average well below 100 per ontology. 

We advocate the importance of metrics to monitor and assess the state of the art with respect 
to quantity and quality of ontologies. We see the need for further development of ontology 
evaluation tools and continued investigations of the range and appropriateness of criteria by 
which ontologies should be assessed. Particularly we urge for the uptake of DL-based ap-
proaches that use generic query algorithms to produce architectural information about ontolo-
gies. We foresee that the results of such analyses becoming significant in supporting integration 
of ontologies and thereby contributing the realization of the Semantic Web vision.  



Acknowledgements 
 

This work was financed by the Génome Québec funded project Ontologies, the semantic web 
and intelligent systems for genomics.  

References 

[1]  van Harmelen F., Patel-Schneider P.F. and Horrocks I. (Editors) DAML+OIL, Reference description 
of the DAML+OIL (March 2001) ontology markup language, 
http://www.daml.org/2001/03/reference (2001).  

[2]  Bechhofer S., van Harmelen F., Hendler J., Horrocks I., McGuinness D. L., Patel-Schneider P. F. and 
Stein L. A. http://www.w3.org/TR/owl-ref/, 

[3]  Obrst L., Ceusters W., Mani I., Ray S., and Smith B., “The Evaluation of Ontologies: Toward Im-
proved Semantic Interoperability,” in Semantic Web: Revolutionizing Knowledge Discovery in the 
Life Sciences, C. J. O. Baker and K.-H. Cheung, Eds. Springer, 2007, Ch. 7, pp. 139–158. 

[4]  Simon J., Dos Santos M., Fielding, J., and Smith, B., Int. Journal Med. Inform., Formal ontology for 
natural language processing and the integration of biomedical databases,(2005) 

[5]  Doms A. and Schroeder M., Nucleic Acids Research, GoPubMed: Exploring PubMed with the Gene-
Ontology, 33,(2005) 

[6]  Doniger, S.W. and Salomonis, N. and Dahlquist, K.D. and Vranizan, K. and Lawlor, S.C. and Conk-
lin, B.R., Genome Biology, 1, MAPPFinder: using Gene Ontology and GenMAPP to create a global 
gene-expression profile from microarray data, 4, 2003 

[7]  Qi D. and Bult C.J. and Blake J.A., Kadin J.A., Richardson J.E.,  Ringwald M., Eppig J.T. and the 
Mouse Genome Informatics Group Computational Systems Bioinformatics, Aug. 8-11 2005, Stan-
ford University, California, USA, Computational Systems Bioinformatics, Data Integration in the 
Mouse Genome Informatics (MGI) Database, 2005 

[8]  Wolstencroft K. and Brass A. and Horrocks I. and Lord P., Sattler U., Stevens R. and Turi D., 4th 
International Semantic Web Conference (ISWC), November 6-10, 2005, Galway, Ireland, A Little 
Semantic Web Goes a Long Way in Biology 2005 

[9]  Mitrovic A. and Devedzic V., Int. J. of Continuous Engineering Education and Life-long Learning 
(IJCEELL) 3, A Model of Multitutor Ontology-Based Learning Environments 14 2004 

[10] Lopez-Perez A., Facultad de Informatica, Universidad Politecnica de Madrid,   Integracion de la 
aplicacion OntoMetric en la plataforma WebODE,(2004) 

[11] Voelker J. and Vrandeci D. and Sure Y., 4th International Semantic Web Conference (ISWC), No-
vember 6-10, 2005, Galway, Ireland, Automatic Evaluation of Ontologies AEON 2005 

[12] Maedche, A. and Staab, S., Proceedings of the European Conference on Knowledge Acquisition and 
Management EKAW-2002. Madrid, Spain, 251-263, Springer-Verlag Berlin, LNCS/LNAI, Measur-
ing Similarity between Ontologies, 2473, (2002) 

[13] Smith, B. and Koehler, J. and Kumar A., Database Integration in the Life Sciences (DILS 2004), 
Rahm E. Springer-Verlag, Berlin, On the Application of Formal Principles to Life Science Data: A 
Case Study in the Gene Ontology (2004) 

[14] Guarino, N. and Welty, C., Communications of the ACM, 2, Evaluating Ontological Decisions with 
OntoClean, 45, (2002) 

[15] Haarslev V. and Moeller R., Proceedings of International Joint Conference on Automated Reasoning 
(IJCAR 2001), June, Siena, Italy, RACER System Description, (2001) 

[16] Hartmann, J., Spyns P., Giboin, A., Maynard D., Cuel R., Su'arez-Figueroa, M. C. and Sure, Y., EU-
IST Network of Excellence (NoE) IST-2004-507482 KWEB, Methods for ontology evalua-
tion,(2005) 

[17] Buitelaar P., Eigner T., and Declerck T., OntoSelect: A Dynamic Ontology Library with Support for 
Ontology Selection. In Proceedins of the Demo Session at the International Semantic We Confer-
ence. Hiroshima, Japan 2004.  



[18] Patel C., Supekar K., Lee Y., and Park E.K. OntoKhoj: A Semantic Web Portal for Ontology Search-
ing, Ranking and Classification. In Proceedings of the Workshop on Web Information and  Data 
Management, ACM 2003.      

[19] Ding L., Pan R., Finin T., Joshi A., Peng Y., and Kolari P. (2005) Finding and Ranking Knowledge 
on the Semantic Web. In: Proceedings of the 4th International Semantic Web Conference Date: No-
vember 07, 2005, LNCS 3729, p. 156 ff. 

[20] Alani H and Brewster C. EON2006, Evaluation of Ontologies for the Web 4th International EON 
Workshop May 22nd, 2006 Edinburgh International Conference Center, Edinburgh, United Kingdom 

[21] Cafarella M., Cutting D.: Building nutch: Open source search. Queue 2 (2)(2004) 54-61. 
[22] Internet Archive, Wayback Machine http://www.archive.org/ Last accessed 22/5/2006 
[23] Tempich C and Volz R., Towards a Benchmark for Semantic We reasoners – An analysis of the 

DAML ontology library. 2nd International Workshop on Evaluation of Ontology-Based Tools 
(EON2003) at ISWC 2003 Sanibel Island 2003, Florida 2003. 

[24] http://www.w3.org/Addressing/  
[25] http://www.cs.concordia.ca/FungalWeb/PublicOntologiesDatabase/ 
[26] Noy N., and Stuckenschmidt H. (2005) Ontology Alignment: An annotated Bibliography 

http://drops.dagstuhl.de/opus/volltexte/2005/48/  
[27] Wolstencroft K, Stevens R., and Haarslev V. Applying OWL Reasoning to Genomics: A Case Study. 

In: Baker C. J. O. and Cheung K.-H. Eds., Semantic Web: Revolutionizing Knowledge Discovery in 
the Life Sciences. Springer, 2007 ch. 7, pp. 139–158. 

[28] Baker C. J. O., Shaban-Nejad A., Xu S., Haarslev V. and Butler G. (2006), Semantic Web Infrastruc-
ture for Fungal Enzyme Biotechnologists, Journal of Web Semantics Special Edition on Semantics 
Web for the Life Sciences (2006).  

[29] http://www.cs.concordia.ca/FungalWeb/EcologyTable1and2.html  
[30] http://www.topbraidcomposer.com/  
[31] Baker C. J. O. and Cheung K.-H. Eds., Semantic Web: Revolutionizing Knowledge Discovery in the 

Life Sciences. Springer, 2007. 
[32] Wessel M. and Moeller R. , Proc. of the 2005 Description Logic Workshop (DL 2005), CEUR Elec-

tronic Workshop Proceedings, http://ceur-ws.org/, A High Performance Semantic Web Query An-
swering Engine, (2005). 

 
 

 
 


