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Abstract: The core part of the Web Ontology Language (OWL) is based on Description 
Logic (DL) theory, which has been investigated for more than 25 years. OWL 
reasoning systems offer various DL-based inference services such as (i) 
checking class descriptions for consistency and automatically organizing them 
into classification hierarchies, (ii) checking descriptions about individuals for 
consistency and recognizing individuals as instances of class descriptions. 
These services can therefore be utilized in a variety of application domains 
concerned with representation of and reasoning about knowledge, for example, 
in biological sciences. Classification is an integral part of all biological 
sciences, including the new discipline of genomics. Biologists not only wish to 
build complex descriptions of the categories of biological molecules, but also 
to classify instances of new molecules against these class level descriptions. In 
this chapter we introduce to the non-expert reader the basics of OWL DL and 
its related reasoning patterns such as classification. We use a case study of 
building an ontology of a protein family and then classifying all members of 
that family from a genome using DL technology. We show how a technically 
straight-forward use of these technologies can have far-reaching effects in 
genomic science.  

Key words: Protein Classification, OWL DL, Reasoning, Reasoning Patterns, Protein 
Phosphatases.   
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1. INTRODUCTION 

In this Chapter, we look at an example where the strict semantics of 
OWL-DL, when used to define the classes of a protein family, can be used to 
great effect in biological data analysis. Conceptually, this is a straight-
forward example of knowledge of a domain being used in computational 
form. We first give the biological context, problem and motivation for this 
work.  We then look at the analysis technique and in the second half of the 
chapter move from the biological aspects to the description logic aspects of 
this work. One simple message is that OWL-DL has been used to make 
biological discoveries. We also show that a great deal can be done with only 
using a subset of OWL-DL's expressivity. 

 

1.1 Background 

Bioinformatics encompasses computational and mathematical techniques 
for analysing, managing and storing biological data. It is a relatively new 
discipline in science which has grown as a direct result of advances in 
technologies and techniques in biochemistry, molecular biology and genetics 
[1]. The development of new techniques in DNA and protein sequencing, for 
example, has lead to an exponential growth in the production of biological 
sequence data. In order to make use of this data, however, it needed to be 
analysed, categorised and recorded in a systematic way. 

The majority of bioinformatics data was, and continues to be, published 
in public repositories, which are distributed throughout the world.  These 
resources provide a rich source of research material for the bioinformatician. 
Algorithms for searching, predicting, or classifying data in these repositories 
have been developed to help with the task of extracting and integrating the 
biological information between them. The data repositories and analysis 
tools together provide a ‘toolkit’ for the bioinformatician. 

Producing algorithms to analyze sequence data is only a fraction of the 
problem faced by bioinformaticians. Managing data and annotating it with 
the knowledge previously derived from experiments in laboratories or in 
silico are also important considerations [2]. For example, PubMed [3], the 
digital archive of life sciences journal literature, contains in excess of 15 
million citations. Each citation represents the collection of one or more 
fragments of biological knowledge. Associating knowledge from this 
resource with the genes and proteins relating to it in biological sequence 
resources is an enormous task [4], [5]. The scale of the problem, the 
complexity of the data, and the inevitable and constant revision of 
knowledge over time makes this a grand challenge in bioinformatics.   
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Molecular biology aims to help better understand the functions and 
processes that occur in living systems by starting from the basic building 
blocks of life. DNA encodes the genetic information of life, which means 
DNA contains all the information, in the form of genes, a cell needs to 
replicate and function. Genes are described as the basic unit of heredity and 
almost always produce a functional product, a protein. Proteins are complex 
molecules that carry out the majority of biological functions within a cell. 
Understanding what genes and proteins are present helps scientists 
understand how living organisms work. 

In bioinformatics, genes and proteins are generally represented as 
sequences. DNA is made up of a series of nucleic acid molecules, adenine 
(a), guanine (g), cytosine (c) and thymine (t). The order of these four 
molecules encodes the sequence of the resulting protein products. Proteins 
are made up of amino acid molecules. There are twenty different amino 
acids used within cells. 

A collection of three nucleic acids, encodes an amino acid. Some amino 
acids have more than one nucleic acid code (known as a codon), some have 
only one. Figure 1 shows the relationships between nucleic acids and amino 
acids. 

 

 

Figure #-1. The relationship between DNA and protein sequences. Each three letter DNA 
codon encodes an amino acid. Sequences of amino acids form proteins. 
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As can be seen in figure 1, amino acids are complex molecules. Each has 

a different shape and set of physical properties. For example, some have a 
positive or negative charge and some are hydrophobic (e.g leucine). The 
sequence of amino acids in a protein therefore helps determine its final 
three-dimensional structure. This structure in turn helps determine the 
chemical and physical interactions of this protein within the cell. These facts 
mean that analysing the sequences of proteins and genes can tell the scientist 
a lot about the functions of the gene products in vivo. If the function of a 
protein is conserved through evolution, this means that sequence features can 
also be conserved. Consequently, comparing protein and gene sequences 
across different species allows inferences to be made about the functions of 
unknown or uncharacterised proteins and genes by similarity measures to 
better characterised and experimentally verified protein and gene functions. 
This is true at the level of individual sequences and also at the level of the 
whole genome, the entire collection of genes. By organising and classifying 
genes and proteins into functional groups (families), one can compare typical 
functional properties across different species.  

This process of classification is important, but knowledge-intensive. 
There are many tools and resources available to help scientists assess the 
similarity between biological sequences, but the tools themselves do not 
perform the classification step. The results obtained from similarity search 
tools must be analysed by scientists, and this is the rate-limiting step. The 
pace at which data is produced far outstrips the pace at which it is analysed 
and classified. 

In this chapter we discuss a method for automated classification that 
could reduce this bottleneck. We use an ontology to capture the knowledge 
that a human uses to recognize types of proteins from a particular protein 
family. By combining this knowledge with existing tools for detecting 
sequence features we are able to perform a thorough, systematic analysis of a 
protein family and how it differs between organisms, illustrating the utility 
of such a method in comparative genomics. This methodology does not 
develop or test new bioinformatics algorithms for detecting sequence 
features. Instead, it provides a novel method for interpreting the results of 
these techniques and algorithms to perform automatic protein classification. 

 

1.2 Analysing protein domains 

Approaches to analysing the large data sets produced in genome 
sequencing projects have ranged from human expert analysis, which is 
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considered to be the ‘gold-standard,’ to the simple automation of tools such 
as BLAST [6] and Interpro [7]. 

Analysis of proteins by experts enables classification to be driven by 
expert knowledge, which draws on the collective knowledge in the 
community. Experts can interpret the information from the biological 
literature and apply it to the observed results. This is, however, a time-
consuming process and many academic institutions cannot support large 
teams of bioinformaticians required for such activities. The alternative 
choice is automated classification. This tends to be quicker, but the level of 
detail is often reduced, which means proteins are often only classified into 
broad functional classes. 

For example, taking the top BLAST hit as a basis for classification of an 
unknown protein can infer relationships between the unknown protein and 
previously characterized proteins, allowing the new sequences to be 
annotated as ‘similar to’ a characterized protein. This has value, but it also 
has intrinsic problems. One of the largest problems is that the databases of 
characterized sequences contain sequences with differing degrees of 
annotation. Some sequences were experimentally characterized in laboratory 
experiments and annotated by human experts, whilst others were already 
classified using similar automated methods, and so are annotated as ‘similar 
to’ another protein already [8]. Annotating new sequences against these 
proteins has great potential for propagating errors if the original assignment 
is incorrect. Also, the annotations do not provide information regarding the 
experimental details of the similarity assignment, i.e. which version of 
BLAST was used, with what parameters, and what was the resulting 
similarity score. Without this data provenance, the annotation should not be 
re-used for further comparisons. 

Another problem with similarity methods is that both full length and 
truncated sequences can be contained within the same BLAST indexed 
database. If the unknown sequence shows high similarity to a characterized, 
truncated sequence, there is no method for determining if the unknown 
sequence is also truncated, or if the unknown sequence simply shows high 
similarity with the known sequence for part of its length. 

Like similarity measures, using automated classification methods on 
protein motif and domain matching techniques (discussed further in section 
1.3) can also be a valuable ‘first pass’ for large scale annotation, but it too 
can be limited at a detailed level. These methods report the presence of 
functional domains, but it is the unique combinations of these domains that 
determine the protein function. Human experts are still required to interpret 
these combinations of functional domains in order to provide functional 
annotation. 
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In both automated similarity assignment and protein motif detection, 
there is a danger of under or over annotation. Proteins can either be 
classified at a level that is too general to provide useful inferences from 
related proteins, or proteins can be classified beyond the evidence that can be 
derived from sequence data, inferring properties and relationships that are 
incorrect. Both cases propagate errors, demonstrating the limitations of 
current automated methods. 

 

1.3 Classifying proteins into families 

Many proteins are assemblies of sequence motifs and domains. Each 
domain or motif might have a separate function within the protein, such as 
catalysis or regulation, but it is the overall composition that gives each 
protein its specific function. Recognition of domain and motif composition is 
a powerful bioinformatics technique which can be employed in the 
classification of proteins.  

There are many tools dedicated to discovering protein features and 
functional domains and motifs (hereafter referred to as p-domains). 
Examples include, PROSITE [9] and Pfam [10]. These tools each employ 
different methods of analysis to detect sequence features and p-domains, for 
example, PROSITE uses simple pattern-matching to single motifs, whereas 
Pfam uses hidden markov models (HMMs). Researchers routinely use many 
different p-domain detection tools together to build up a consensus of 
results. To facilitate this process, InterPro encapsulates many of these tools, 
and allows scientists to perform analyses over all of them with one query 
submission to the tool InterproScan.  

Interpro currently enables the querying of sixteen different algorithms 
and tools and in this work, we define p-domains as any sequence features 
identified by tools within the Interpro Collective. 

InterproScan provides a mechanism for the automation of p-domain 
analysis, but not for the interpretation of that analysis. It reports the presence 
of p-domains, but not the consequences for family or subfamily membership. 
In certain cases, the presence of a p-domain is diagnostic for membership of 
a particular protein family; for example, the G-protein coupled receptor like 
domain in G-protein receptors. However, further classification into 
subfamilies is not usually possible without further interpretation over the 
results of p-domain analyses. Previously, this has not been attempted. In this 
method we have replaced this human intervention step with further 
automation which uses knowledge captured in an ontology.  

Ontologies provide a technology for capturing and using human 
understanding of a domain within computer applications [11]. The use of 
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ontologies to capture human knowledge in biology and annotate data 
accordingly is becoming well established. For example, the Gene Ontology 
describes all gene products common to eukaryotic genomes. Individual 
proteins are annotated with terms from this ontology to promote a common 
understanding across the community about their function(s) [12].  

Other uses of ontologies, however, are more unusual in biology. For 
example, the use of reasoning over formal ontologies and their instances, 
enabling data interpretation has not been explored. In this study, we present 
a new method which uses ontological reasoning for data interpretation and 
illustrates the advantages of such an approach. This method allows the 
combination of advantages gained from human expert analysis with the 
benefits of the increased speed in automated annotation methods. We use a 
protein family-specific ontology, defined in the OWL language [13], to 
capture the human understanding of a protein family together with p-domain 
analyses, using InterproScan, to automate the analysis of each protein in that 
family. 
In this chapter, we use the protein phosphatase family as a case study. The 
method we have developed enables the analysis of all protein phosphatases 
in a genome. We find that in classifying proteins, our system can perform at 
least as well as a human expert. In this context, the biology of protein 
phosphatases is not important. They provide a useful case study for the use 
of ontology technology to provide automated recognition over identified 
protein sequence features. The provision of this extra step and the 
consequent biological findings are important; the fact we used protein 
phosphatases is not so important.  

1.4 The Protein Phosphatase family 

Phosphorylation and dephosphorylation reactions form important 
mechanisms of control and communication in almost all cellular processes 
including, metabolism, homeostasis, cell signaling, transport, muscle 
contraction and cell growth. These reactions allow the cell to respond to 
external stimuli, such as hormones and growth factors [14], as well as 
responding to cellular stress and cytokines [15]. 

The enzymes primarily involved in catalyzing phosphorylation events 
can be divided into two families, protein kinases and protein phosphatases. 
Kinases are involved in the phosphorylation of the amino acids serine, 
threonine and tyrosine [16] and phosphatases are involved in the removal of 
phosphates from these residues. It is the careful balance between these two 
opposing reactions that controls the phosphorylation state of a multitude of 
biological molecules and ultimately controls almost all biological processes 
[17].  
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Protein phosphatases all perform the same chemical reaction in the cell, 
the removal of a phosphate group, but the phosphatases are diverse in 
biological function and catalytic activity. They can be broadly divided into 
two subfamilies, the serine/threonine phosphatases and the tyrosine 
phosphatases. Recent reviews on the protein phosphatase family ([18], [19] 
and [20]) focus on either one or the other. There have been extensive studies 
into the characterisation of each in the human genome. Whilst the distinction 
between the broad classes of serine/threonine and tyrosine subfamilies is 
often easy to determine, some closely related proteins have little difference 
between them. The difficulty of fine-grained classification is therefore 
increased with the subtlety of the differences between closely related 
proteins, which can perform different biological functions. In figure 2 we 
show the differences in domain architecture of one subfamily of 
phosphatases, the receptor tyrosine phosphatases. 

Protein phosphatases are popular targets for medical and pharmaceutical 
research as they have been associated with a number of serious human 
diseases, such as cancers, neurodegenerative conditions and, most recently, 
diabetes [21], [22], [23] and [24]. 

 
 
 

 

Figure #-2. The differences in domain architecture of the receptor tyrosine phosphatase 
subfamily. Yellow = phosphatase catalytic domain. Green bar = transmemebrane region, 
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purple = immunoglobulin domain, red circle = fibronectin domain, green square = MAM 
domain, light blue oval = carbonic anhydrase domain, grey square = adhesion recognition site, 

dark blue = glycosylation and black = cadherin-like domain  

 

2. OWL DL REASONING PRINCIPLES 

The case study presented here uses OWL DL reasoning to solve a 
problem in analyzing protein sequence data. We can computationally find 
the sequence features in a given protein sequence. The problem is that we 
need to computationally recognize the consequences of the presence of a 
particular set of protein features. This is bioinformatics knowledge and 
exactly the kind of knowledge that can be captured in an OWL ontology. 
Before presenting the results of using this ontology, we provide an abstract 
view on the underlying algorithmic principles and computational tools 
employed. The goal is to enable computational biologists to transfer the 
applied techniques to their domain of interest and apply them to their 
problem solving needs. In the following we assume some familiarity with 
the ideas of OWL DL but we present a short review of the main notions of 
OWL DL in order to keep this chapter self-contained. 
The core part of OWL, called OWL DL and its subset OWL Lite, is based on 
Description Logic (DL) theory [25] , which has been investigated for more 
than 25 years. Description logics can be viewed as a family of knowledge 
representation languages, primarily intended to specify knowledge of any 
kind in a formal way. This formal specification provides the basis for OWL 
DL reasoning tools that process OWL DL knowledge bases (KBs), or 
ontologies, and offer various inference services. An OWL DL reasoner can 
be considered as a domain-independent problem solving engine that can be 
utilized in arbitrary application domains provided the domain knowledge is 
specified (or encoded) in OWL DL. However, OWL DL reasoners are not 
general problem solvers in the sense of "Do What I Mean". Their inference 
services are grounded on the formal properties of knowledge representation 
languages such as OWL DL. So, how can one make a meaningful use of 
such reasoning services? To do so we have to map the domain-specific 
problem solving process to an inference service supported by an OWL DL 
reasoner. In the following we explain this process by discussing OWL DL 
and the reasoning services provided by OWL DL reasoners. 
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2.1 Basic Reasoning Services 

First, we briefly review the language elements of OWL DL (OWL 
Specification 2004). They mainly consist of anonymous (unnamed) or 
named classes, properties, and their restrictions and individuals. Classes can 
be considered as descriptions of common characteristics of sets of 
individuals. Class descriptions can be either complete, i.e., they specify 
sufficient conditions for class membership, or partial i.e., they specify only 
necessary conditions for class membership. Properties are divided into object 
and data type properties. Object properties can be used to express binary 
relationships between sets of individuals, while data type properties can be 
viewed as binary mappings from individuals to data values. Individuals are 
members (otherwise known as instances) of classes and can be used to form 
enumerated classes. Using these elements one can compose class 
descriptions consisting of all language elements combined by set-based 
operators such as intersection-of, union-of, and complement-of. Properties 
are used in class descriptions by listing restrictions on the values of those 
properties such as type, specific value, and cardinality (number of values). 
These restrictions characterize instances of classes more precisely. 
Statements about domain knowledge can be formed by combining these 
elements and are expressed as axioms describing (i) that the set of instances 
in two classes are subsets of one another, equivalent, or disjoint, (ii) 
characteristics of properties such as transitivity or that the values of one 
property are a subset of another one, (iii) class membership and property 
values of individuals, and (iv) similarity and difference between individuals. 
 

Given these language elements the following types of reasoning services 
are typically supported by OWL DL reasoners. Classes can be checked for 
consistency, (also sometimes called satisfiability) i.e., is a class description 
meaningful at all and can it have at least one instance. Another service 
consists of computing inferred subset or subclass relationships, also known 
as subsumption relationships, i.e., all individuals that are instances of a 
subclass must be also instances of its superclasses. It is important to note that 
a subsumption relationship is only induced by the corresponding sub- and 
superclass descriptions. Based on class subsumption all named classes of a 
KB can be automatically organized in a taxonomy or subsumption hierarchy. 
This process is also often referred to as the classification of a KB. Analogous 
to subsumption, equivalence or disjointness between classes can be inferred 
too. The class satisfiability checking and classification process usually 
provides important feedback to designers of KBs because they might learn 
about unsatisfiable class descriptions, which are usually considered as design 
errors, or inferred and possibly unexpected subsumption relationships, which 
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might match or violate principles of the application domain. Again, the latter 
case would correspond to a design error in the KB, where some class 
descriptions incorrectly or imprecisely model the application domain. 

 
The second class of supported inference services is concerned with 

individual descriptions. Descriptions of individuals can be checked for 
consistency, i.e., whether they comply with the class and property statements 
declared in a KB. The case that individual descriptions are recognized as 
inconsistent corresponds either to an application domain modeling error or 
indicates a violation of the domain principles encoded in the KB. The 
individual descriptions consistency check is a prerequisite for the following 
other individual inference services. The most basic one is a test for class 
membership, i.e., is a given individual an instance of one or more classes 
declared in a KB. The services can be even more refined because the 
reasoner can automatically determine the most specific classes that 
instantiate a given individual. It is important to note that class membership 
for individuals can usually only automatically be recognized if the class 
description is complete. The membership of an individual in the superclasses 
of a given class is immediately implied due to the transitivity of the 
subsumption relationship. If this service, to determine the most specific 
classes of an individual, is applied to all individuals declared in a KB, it is 
traditionally referred to as realization of a KB. 

 

2.2 Reasoning Paradigms 

Individual descriptions in a KB usually rely heavily on the classes and 
properties declared in a KB, although OWL also allows users to introduce 
names that have not been declared yet. The structure of OWL DL statements 
about individuals and their relationships with other individuals or values  can 
be compared with relational data descriptions known from relational 
databases (DBs). The information about individuals resembles, to some 
extent, a simple database schema, where a one-column table exists for each 
named class, containing all individual names that are instances of this class, 
and a two-column table for each property, containing pairs of individuals 
(object property) or values associated with individuals (datatype property) 
known to be related by the property. Occurrence in a table is based on either 
explicit assertions or implicit OWL DL reasoning results. In contrast to 
standard DBs it is assumed that the information in these tables is incomplete. 
This principle is called an open-world assumption in contrast to a closed-
world assumption from DBs, where the non-occurrence of information is 
interpreted as "this information does not hold". The open-world assumption 
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is also closely related to another basic reasoning principle for OWL DL, the 
monotonicity of reasoning. This means that knowledge derived by inferences 
can only extend the already known knowledge. It cannot contradict known 
knowledge and it cannot cause the retraction of known knowledge. These 
principles could be either considered as advantageous or disadvantageous. In 
the context of the WWW it makes sense to consider information as 
incomplete. However, the information about the state of a domain is usually 
also evolving in a non-monotonic way because previously known facts 
might not hold anymore. It is important to note that the monotonicity of 
reasoning holds for a given version of a KB but different versions of KBs 
might evolve in a non-monotonic way. However, reasoning about such a 
change between versions is beyond the state of the art of current OWL DL 
reasoners. 

 

2.3 Querying Individual Descriptions 

The open-world assumption also affects how queries about individual 
descriptions are answered. Besides the basic inference services for individual 
descriptions some OWL DL reasoners also support query answering with 
functionality similar to DBs. Again, query answering about OWL DL 
individual descriptions might involve reasoning in contrast to standard DBs, 
where query answering mostly involves table look-ups. One of the currently 
most advanced query languages [26], called nRQL (New RacerPro Query 
Language), is implemented in the OWL DL reasoner Racer [27] and its 
successor RacerPro (Racer Systems 2006). The nRQL language supports 
query answering about OWL DL individual descriptions. The supported 
query language elements allow one to retrieve all individuals that are 
instances of a class, all individual pairs that are elements of object 
properties, and all individual-value pairs that are elements of data type 
properties and optionally satisfy specified constraints. All these elements can 
be combined to form complex queries with query operators such as 
intersection, union, complement, and projection. These operators are similar 
to standard relational DB operators. The DB join operator is implicitly 
available in nRQL through the use of query variables and the intersection 
operator. Moreover, nRQL supports closed-world reasoning over named 
individuals (sometimes also called negation as failure), which is especially 
useful for measuring the degree of completeness of modeling the domain of 
discourse in a KB. The nRQL query language is oriented towards computer 
scientists and uses a Lisp-like syntax. In order to facilitate the use of nRQL 
by scientists from other domains the OntoIQ tool has been developed [28]. It 
offers users a graphical and easy-to-use user interface to compose, execute, 



#. Applying OWL Reasoning to Genomic Data 13 
 
and store nRQL queries. Queries can be also composed with the help of 
predefined query patterns. nRQL and OntoIQ1 have been successfully used 
in the context of a fungal enzyme project [29], [30]. 

3. POTENTIAL APPLICATIONS OF REASONING 
PATTERNS 

In the previous section we reviewed main OWL DL language elements 
and discussed OWL DL reasoning principles and services. In this section we 
come back to the question "how can one make a meaningful use of such 
reasoning services?" In general, there exist two possible approaches. The 
first one is applicable if the above-mentioned reasoning services can be 
directly used to solve the domain-specific application problems. This is 
usually possible if the necessary domain knowledge can be directly encoded 
into OWL DL. For instance, this is the case with the study presented in this 
chapter. The second and more difficult approach requires the translation of 
the knowledge about the problem domain into OWL DL in such a way as to 
use the reasoning services as general problem solver. For instance, one might 
encode the structure of a labyrinth into an OWL DL KB and then use queries 
to find a path from a certain point within the labyrinth to its exit. 

 

3.1 Classification Pattern 

The classification pattern makes a direct use of the classification 
mechanisms implemented in OWL DL reasoners. In order to apply this 
pattern the domain knowledge needs to be encoded as mostly complete class 
descriptions specifying meaningful sets of entities in the application domain. 
The solution to an application problem would consist of the inferred class 
taxonomy, i.e., a problem is solved if selected classes are subsumed by other 
classes or, in other words, the subsumers of classes describe the problem 
solution. A biological example of this would be that all protein phosphatases 
should be subsumed by the class enzyme, and all enzymes should be 
subsumed by the class protein. 

3.2 Realization Pattern 

This pattern builds on top of the classification pattern. Besides the class 
taxonomy useful knowledge is also encoded in individual descriptions. The 

 
1 OntoIQ download page: http://www.cs.concordia.ca/FungalWeb/Downloads.html 
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problem solution results from computing for selected individuals their most 
specific instantiators, i.e., the most specific (complete) classes that 
instantiate these individuals. This pattern usually also requires that the 
envisioned instantiators have complete descriptions. This is the pattern that 
was successfully employed in the case study reported in this chapter. Protein 
phosphatase class descriptions were constructed from the types and numbers 
of p-domains they contained. By analyzing the p-domains in the individuals, 
and comparing them to the class descriptions, the most specific class 
instantiating an individual could be identified.  

 

3.3 Query Pattern 

The query pattern can be used independently of the previous patterns or 
in addition to the realization pattern. This pattern partially views individual 
descriptions as stored in a deductive DB and query results are interpreted as 
solutions for the application problem. A typical use of the query pattern 
would be to add functionality to the realization pattern by allowing more 
complex query conditions that can be utilized to encode problem solutions. 
For instance, arbitrary queries allow one to query (possibly cyclic) individual 
graph structures where the edges of a graph consist of properties holding 
between pairs of individuals. The realization pattern can be often considered 
as queries enforcing individual tree structures only. Both query pattern 
variants might collapse into one pattern if a query involves enumerated 
classes. The successful use of the query pattern is reported elsewhere 
[29],[30]. 

 

4. USING OWL DL IN BIOLOGICAL 
CLASSIFICATION 

The previous section introduced OWL DL, the notion of reasoning, and 
some common reasoning patterns. This section details the practical 
application of these technologies to the biological case study, and goes on to 
discuss the implications of this for the biological community. 

4.1 The Ontology Classification Method 

This study combined automated reasoning techniques with traditional 
bioinformatics sequence analysis techniques to automatically extract and 
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classify the set of protein phosphatases from an organism. Figure 3 shows 
the components in our protein classification experiment.  

 

 

Figure #-3. The Architecture of the ontology classification method 

 
 
The method includes the following stages: 
 

1. An OWL class-level ontology describes the protein phosphatase family 
and the different domain architectures for members of different 
subfamilies. This ontology is pre-loaded into the Instance Store.   

2. Protein instance data is extracted from the protein set of a genome by 
first screening for diagnostic phosphatase domains and then analyzing the 
p-domain composition of each using InterproScan.  

3. The p-domain compositions are then translated into OWL descriptions 
and compared to the OWL definitions for protein family classes using the 
Instance Store which, in turn, uses a Description Logic reasoner, Racer, 
to classify each instance. For every protein sequence, it returns the most 
specific classes from the ontology that this protein could be found to be 
an instance of. 
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4.2 The Ontology 

All the data used for developing the phosphatase family ontology was 
extracted from peer-reviewed literature from protein phosphatase experts. 
The human protein phosphatases have been well characterized 
experimentally, and detailed reviews of the classification and family 
composition are available [18],[19]. These reviews represent the current 
community knowledge of the relevant biology. If, in the future, new 
subfamilies are discovered, the ontology can easily be changed to reflect 
these changes in knowledge. 

The differences between phosphatase subfamilies can be expressed by 
the differences of their p-domain compositions. These p-domain 
architectures represent ‘rules’ for protein subfamily membership, and these 
rules can be expressed as class definitions in an OWL-DL ontology.  The use 
of an ontology to capture the understanding of p-domain composition 
enables the automation of the final analysis and classification step which had 
previously required human intervention, thus allowing for full automation of 
the complete process. 

More precisely, for each class of phosphatase, the ontology contains a 
(necessary and sufficient) definition. For this family of proteins, the 
definition is, in most cases, a conjunction of p-domain compositions. For 
example, figures 4 and 5 show two classes from the phosphatase ontology. 
Figure 4 shows a tyrosine receptor phosphatase, instances of which have at 
least one tyrosine phosphatase catalytic domain and at least one 
transmembrane domain. The former gives the enzyme its catalytic activity 
and the latter anchors the protein to a cell membrane. A specific kind of 
receptor tyrosine phosphatase would have other domains and these are 
specified in subclasses of this class. These two domains are, however, 
sufficient to recognize any particular protein sequence to be a member of 
this class. The ability of OWL to model incomplete knowledge, through its 
open world assumption, is very useful at this point. 

 

 

Figure #-4. The complete OWL class description for a receptor tyrosine phosphatase. Note 
the possibility that other domains may be added. 
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Figure 5 shows an R5 phosphatase. This has many more p-domains. They 
are necessary for R5 phosphatase activity and the presence of all is sufficient 
to recognize any sequence as a member of the class. Note that there is a 
closure axiom stating that these are the only kinds of domain that can be 
present. This is to ensure that a sequence that has the p-domain architecture 
shown in Figure 5 plus additional p-domains will not be recognized as an R5 
phosphatase. For example, the LAR protein (leukocyte antigen related 
protein, accession number P10586) contains two tyrosine phosphatase 
catalytic p-domains, one transmembrane p-domain, nine fibronectin p-
domains and three immunoglobulin p-domains. The tyrosine phosphatase 
catalytic p-domains and the transmembrane p-domain are sufficient for the 
protein to belong to the receptor tyrosine phosphatase class, but the extra 
immunoglobulin p-domains and the lack of a carbonic anhydrase p-domain 
means that it cannot belong to the R5 phosphatase class. This protein is 
another type of receptor tyrosine phosphatase. From figure 2 we can deduce 
it is an R2B. 

 

 

Figure #-5. A complete description of an R5 phosphatase. Note the closure axiom restricting 
the kinds of domain that might appear in instances of this class. 

 
 

4.3 The Instance Store 

We use the Instance Store application in this study [31]. The Instance 
Store combines a Description Logic reasoner with a relational database. The 
reasoner in this case performs the task of classification; that is, from the 
OWL instance descriptions given, it determines the appropriate ontology 
class for an instance description. The relational database provides the 
stability, scalability and persistence necessary for this work 
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4.4 The Data Sets 

This study focuses on protein phosphatases from two organisms, human 
and a pathogenic fungus, Aspergillus fumigatus. The human phosphatases 
have already been identified and extensively described in previous studies 
[18]. They have been carefully hand-classified by domain experts and form a 
control group to assess the performance of the automated classification 
method. The Aspergillus proteins have been less well characterized and the 
protein phosphatases in this organism required identification and extraction 
from the genome before classification could proceed.  

Previous classification of human phosphatases by domain experts 
provides a substantial test-set for the ontology. If the ontology can classify 
the proteins as well as the human experts have, studies on new, unknown 
genomes can be undertaken with greater confidence. The Aspergillus 
fumigatus genome offers a unique insight into the comparison between the 
automated method and the manual. The A. fumigatus genome has been 
sequenced and annotation is currently underway by a team of human experts 
[32]. 

5. RESULTS 

 
The purposes of performing the studies with the human and A. fumigatus 

sequence data differed. The human study was a proof of concept to 
demonstrate the automated ontology classification method could be 
effective, and the A. fumigatus study was focused on biological discovery.   

For the human phosphatases, the classification of proteins obtained by 
the automated ontology method was compared with the human expert 
classification. For each subclass of protein phosphatases, the numbers of 
individual proteins in the human classification were compared to the number 
obtained from the automated method. The results were the same number of 
individuals for each class. 

The comparison between the classifications clearly demonstrated that the 
performance of the automated ontology classification system was equal to 
that of the human annotated original. The ontology class definitions were 
sufficient to identify the differences between protein subfamilies and 
demonstrate the usability of the system on uncharacterized genomes. 

An interesting result from the analysis was that, using the ontology, we 
were able to identify additional functional domains in two dual specificity 
phosphatases, presenting the opportunity to refine the classification of the 
subfamily into further subtypes. 
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Alonso et al [18], describe the ‘atypical’ dual specificity phosphatases as 
being divided into seven subtypes. The largest of these have the same p-
domain architecture; they contain tyrosine phosphatase and dual specificity 
catalytic p-domains alone. However, several proteins have additional 
functional domains that have been shown to confer functional specificity 
[33]. Classifying the proteins using the ontology highlighted more of these 
‘extra’ p-domains. For example, the dual specificity phosphatase 10 protein 
(DUS10, Uniprot accession: Q9Y6W6) contains a disintegrin domain. The 
UniProt record reflects this, but the domain does not appear in any 
phosphatase characterization/classification studies. The domain architecture 
of DUS10 is conserved in other species (figure 6), which suggests a specific 
function for the domain, but current experimental evidence does not explain 
what this might be. 

 

 

Figure #-6. The domain architecture of the dual specificity phosphatase 10 protein across 
different organisms 

 
The results of the classification of phosphatases for the A. fumigatus 

genome were more interesting from a biological perspective.  
The A. fumigatus genome has been partially annotated. It has been 

sequenced, and is being annotated by human experts. Therefore, the protein 
data currently consists of both predicted and known proteins. The predicted 
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proteins may contain descriptions based upon automated similarity searches, 
producing entries termed ‘hypothetical’ or ‘putative’, but their annotation is 
limited. 

Using the ontology system to classify the phosphatases allowed a 
comparison between the proteins already annotated and those with partial 
annotation from similarity searching. The classification also enabled a 
comparison between the protein phosphatases in the human and A. fumigatus 
genomes. Figure 7 shows the differences in protein family composition. 

 

 

Figure #-7. The number of protein phosphatases the in human and A.fumigatus genomes. 
Human proteins are shown in pale grey, A.fumigatus in dark grey. These numbers represent 
the higher level classes of phosphatase. For example, the R5 phosphatase from figure 4 is a 

subclass of receptor tyrosine phosphatase, and so is a child of the R-PTP class. 

 
In the case of the A.fumigatus proteins, the most interesting results were 

proteins that did not fit into any of the defined subfamily classes. These 
proteins represented differences between the human and A.fumigatus protein 
families and therefore potential differences in metabolic pathways. Since A. 
fumigatus is pathogenic to humans, these differences are important avenues 
of investigation for potential drug targets.  The most interesting discovery in 
the A. fumigatus data set was the identification of a novel type of calcineurin 
phosphatase. Calcineurin is well conserved throughout evolution and 
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performs the same function in all organisms.  However, in A. fumigatus, it 
contains an extra functional domain.  The ontology classification method 
highlighted this difference by failing to classify the protein into any of the 
defined subfamily classes. Further bioinformatics analyses revealed that this 
extra domain also occurs in other pathogenic fungus species, but in no other 
organisms, suggesting a specific functional role for this extra p-domain.   

6. DISCUSSION 

This study demonstrates the use of the reasoning capabilities of 
description logic ontologies to perform protein classifications. By harnessing 
this technology, classifications that had previously relied on human 
interpretation steps could be derived from definitions of ontological classes 
and simple sequence analysis data alone.  

Bioinformaticians perform protein classification by analyzing sequences 
using a series of bioinformatics tools and interpreting their results based on 
prior knowledge. Automating the use of the tools can be a trivial problem 
compared with automating the interpretation step. Users may require local 
implementations of tools and databases or data files for analysis, or they may 
perform these analyses using middleware services and workflows. However, 
the process of inserting and collecting data is a mechanical one and can be 
scripted. 

Automating the biological interpretation of bioinformatics results is 
where the difficulty lies. An analysis of the functional domains in a given 
protein, using InterProScan for example, produces a list of domains. The 
number of each domain and, potentially, the order could also be captured, 
but it is the bioinformatician that infers that the presence of domains x, y and 
z, for example, indicates membership of a particular family. Capturing the 
knowledge used to perform these inferences, using defined classes in an 
ontology allows this final step to also be automated, increasing the speed at 
which proteins from a particular family can be extracted from a genome and 
classified. The most useful application for this technology is the analysis of 
protein families from genomes as and when they are sequenced, enabling 
fast comparisons between what is known to be present in other species. In 
the pharmaceutical industry in particular, this has implications for the 
discovery of new drug targets. Bioinformatics has been increasingly used to 
quicken the pace of target identification [34]. Performing in silico 
experiments on publicly available data is faster and much less expensive 
than many laboratory experiments. The automated classification technique 
enables whole protein families from many species, perhaps pathogenic and 
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non-pathogenic to be analyzed in unison, identifying differences that could 
be easily exploited when targeting pharmaceuticals. 

The automated classification technique has proven to produce 
biologically significant results in the protein phosphatase domain and work 
is continuing to analyze protein phosphatases in other species, currently, the 
trypanosomes. The work has also been expanded to analyze different protein 
families, the potassium ion channels and the ADAMTS proteins.  

In the future, there are plans to increase the expressivity of the protein 
class descriptions. As work on other protein families continues, new 
considerations are emerging. For example, for the protein phosphatases, the 
order of p-domains was not important, simply counting the number of each 
was sufficient to distinguish between proteins from different subfamilies. 
However, extending this work to other protein families would require 
ontology class descriptions to specify the order of p-domains.  

The automated classification method presented here focuses on protein 
family classification using protein domain architectures; however, it is not 
confined to such relationships. Any analysis which uses sequence data alone 
can potentially use the ontology-driven method. For example, substrate 
recognition or protein-protein binding interactions.  

The biological significance of the results obtained from the small proof 
of principle study in this work demonstrates that it is a powerful application 
of ontology reasoning, and since classification and data annotation are now 
slower than data production, it could have far-reaching implications on 
bioinformatics data analysis. 

Ontology use in the bioinformatics community has grown steadily over 
recent years. As data and information sources reached sizes that could not be 
realistically managed manually, and as the need for large-scale integration 
and interoperation between these resources increased, computational 
methods were sought to help address these issues. In this work, the 
application of ontologies to classifying protein family information has been 
presented. The resources produced have demonstrated the utility of such 
technologies and the distinct advantages gained by their use. It is hoped that 
this system can be employed and exploited in future work for drug target 
identification and new genome annotation. 
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