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Figure 1: Watermarked elephant model with different attacks and their corresponding detector responses: for each each attack the correlation coefficient between the
extracted watermark and 99 different random watermarks are shown (75 on X-axis is the correlation with the real watermark). (a), (e) Additive noise (σ2 = 0.007),
(b), (f) Low pass filter 9 iterations, (c), (g) scaling in X direction, (d), (h) cropping 1700 vertices and smoothing 7 iterations.

ABSTRACT

We propose a robust and imperceptible spectral watermark-
ing method for high rate embedding of a watermark into 3D
polygonal meshes. Our approach consists of four main steps:
(1) the mesh is partitioned into smaller sub-meshes, and then
the watermark embedding and extraction algorithms are ap-
plied to each sub-mesh, (2) the mesh Laplacian spectral com-
pression is applied to the sub-meshes, (3) the watermark data
is distributed over the spectral coefficients of the compressed
sub-meshes, (4) the modified spectral coefficients with some
other basis functions are used to obtain uncompressed wa-
termarked 3D mesh. The main attractive features of this ap-
proach are simplicity, flexibility in data embedding capac-
ity, and fast implementation. Extensive experimental results
show the improved performance of the proposed method,

and also its robustness against the most common attacks
including the geometric transformations, adaptive random
noise, mesh smoothing, mesh cropping, and combinations
of these attacks.

Keywords: 3D watermarking, mesh compression, spectral
decomposition.

1 INTRODUCTION

Digital copyright protection of multimedia elements has long
been the center of multimedia security research. Its impor-
tance is increasing rapidly in the field of computer graph-
ics and multimedia communication because of the growing
problem of the unauthorized duplication. Digital watermark-
ing technology provides law enforcement officials with a
forensic tool and an effective means of tracing and catch-
ing pirates. Watermarking refers to the process of adding a
hidden structure, called a watermark, which carries either in-
formation about the owner of the cover or the recipient of
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the original data object. Whenever the rightful ownership is
in question, the owner can extract the embedded watermark
to make an assertion about the object. Such a watermark
can be used for a wide range of applications including copy-
right protection, transaction tracing, copy protection, broad-
cast monitoring, data authentication, indexing, and medical
safety [1–3].

The problem of 3D mesh watermarking is a relatively
new area as compared to 2D watermarking [1]. It has re-
ceived less attention partly because the technology that has
been used for the image and video analysis cannot be eas-
ily adapted to 3D objects that can be represented in sev-
eral ways including voxels, NURBS, and polygonal meshes.
Early algorithms on 3D watermarking [4–6] consist of em-
bedding the watermark information directly by modifying ei-
ther the 3D mesh geometry or the topology of the triangles.
These methods are usually simple and require low computa-
tional cost. However, they are not robust enough to different
types of attacks. Recently, several watermarking algorithms
in the frequency domain have been proposed for 3D mesh
[7–9] that are mainly based on multi-resolution mesh analy-
sis (spectral decomposition and wavelet transform) and show
good resistance against attacks. In [7] the generalized spread
spectrum technique was proposed, and a set of scalar basis
functions has been constructed over the mesh vertices using
multi-resolution analysis where the watermark perturbs the
vertices of each mesh along the direction of the surface nor-
mal, weighted by the basis functions. In [9] the original mesh
is decomposed into a series of details at different scales by
using the spherical wavelet transform, and the watermark is
then embedded more in the approximation part than in the
detail part. In [10] a watermarking scheme for subdivision
surfaces has been presented. In [8] a watermarking algo-
rithm based on the mesh spectral matrix has been proposed.
The watermark is embedded by modifying the spectral coef-
ficients and this idea was generalized in [11] to watermark
point-based 3D geometries. In [12] the normal vector dis-
tribution has been used. A blind watermarking scheme ro-
bust against affine transformation attacks was proposed in
[13]. Watermarking of texture attributes has been proposed
in [14]. Wavelet blind watermarking scheme has been pro-
posed in [15] where it is assumed that the host meshes are
semi-regular, a wavelet decomposition is applied first to em-
bed the watermark at a suitable resolution level. A robust
and fast spectral watermarking scheme for large meshes us-
ing a new orthogonal basis functions based on radial basis
function has been proposed in [16]. In [17] the mesh Lapla-
cian matrix was used to encode the 3D shape into a more
compact representation by retaining the smallest eigenvalues
and associated eigenvectors which contain the highest con-
centration of the shape information.

Motivated by the need for more robustness against attacks
(especially to mesh compression and mesh smoothing), we
propose a robust imperceptible watermarking approach us-
ing the spectral mesh compression. Our approach uses the

mesh Laplacian matrix to embed a watermark in the spec-
tral coefficients of a compressed 3D mesh. Extensive nu-
merical experiments are performed to demonstrate the much
improved performance of the proposed method.

The remainder of this paper is organized as follows. In
section 2, we briefly review some background material and
describe the spectral compression of the mesh geometry.
In Section 3 we introduce the proposed approach and de-
scribe in detail the watermark embedding and extraction al-
gorithms. In Section 4, we present some experimental re-
sults, and we show the robustness against the most common
attacks. Finally, we conclude and point out future directions
in Section 5.

2 MESH COMPRESSION

2.1 3D Model Representation

In computer graphics and computer-aided design, 3D objects
are usually represented as polygonal or triangle meshes. A
triangle mesh M is a triple M = (V ,E ,T ), where V =
{v1, . . . ,vm} is the set of vertices, E = {ei j} is the set of
edges with cardinality |E |, and T = {t1, . . . , tn} is the set of
triangles. Each edge ei j = [vi,v j] connects a pair of vertices
{vi,v j}. Two distinct vertices vi,v j ∈ V are adjacent (written
vi ∼ v j) if they are connected by an edge ei j ∈ E . The neigh-
borhood of a vertex vi is the set v�

i = {v j ∈ V : vi ∼ v j}.
The degree di of a vertex vi is the cardinality of v�

i . Let
vi = (xi,yi,zi) ∈ V , 1 ≤ i ≤ m, then the mesh vertex matrix
V is the m×3 matrix whose ith row is the vector vi.

2.2 Laplacian Matrix of a Triangle Mesh

The mesh Laplacian matrix of a triangle mesh M =
(V ,E ,T ) is given by: L = A−D, where A is the adjacency
matrix between the vertices, defined by:

Ai j =
{

1 if vi ∼ v j

0 otherwise

and D is the m×m diagonal matrix whose (i, i) entry is di.
Figure 2 illustrates an example of a 3D triangle meshes and
its sparse Laplacian matrices.
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Figure 2: 3D triangle mesh and its Laplacian matrix.
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2.3 Spectral Mesh Compression

In [17] the 3D mesh geometry was represented as a linear
combination of a few basis functions. The idea is to apply
the eigen-decomposition to the mesh Laplacian matrix, and
then discard the largest eigenvalues and their corresponding
eigenvectors in order to reduce the dimensionality of the new
spectral basis. A significant compression ratio with a very
small loss in the mesh quality is obtained because this small
number of basis functions contains the optimal concentration
of the shape information. The eigen-decomposition of the
Laplacian matrix L is given by

L = BΛBT (1)

where B = (b1 b2 . . .bm) is an orthogonal matrix whose
columns bi are the eigenvectors of L which we refer to as
Laplacian basis functions, and Λ = diag{λi : 1 ≤ i ≤ m} is a
diagonal matrix of the eigenvalues of L arranged in increas-
ing order of magnitude. We express the mesh vertex matrix
in the subspace spanned by the Laplacian matrix eigenvec-
tors as follows:

VT = CT BT =
m

∑
i=1

cT
i bT

i (2)

where C = (c1 c2 . . .cm)T is an m× 3 matrix of the spectral
coefficient vectors, that is, C = BTV where C is the projec-
tion of the mesh vertex matrix onto the Laplacian basis vec-
tors. Moreover, Eq. (2) can be written as:

VT =
r

∑
i=1

cT
i bT

i︸ ︷︷ ︸
compressed

+
m

∑
i=r+1

cT
i bT

i = CT
r BT

r +
m

∑
i=r+1

cT
i bT

i (3)

where r is usually chosen to be smaller than m, and hence this
yields a compressed mesh version Mr of the original mesh
M with a very small loss in the mesh quality. The matrix
Br = (b1 b2 . . .br) contains the spectral basis vectors, and
the matrix Cr = (c1 c2 . . .cr)T contains the spectral coeffi-
cient vectors. If we rewrite V and C in the form of 3-column
matrices, that is

V = (vx vy vz) =

⎛
⎜⎜⎜⎝

x1 y1 z1

x2 y2 z2
...

...
...

xm ym zm

⎞
⎟⎟⎟⎠

and

C = (cx cy cz) =

⎛
⎜⎜⎜⎝

cx1 cy1 cz1
cx2 cy2 cz2
...

...
...

cxm cym czm

⎞
⎟⎟⎟⎠ ,

The spectral coefficients in the x, y, and z-dimension are
given by cx = BT vx, cy = BT vy, and cz = BT vz respectively,
see Figure 3 for an example. Figure 4 shows two examples of
the mesh compression results using Laplacian-based method
with 500 basis functions.
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Figure 3: (a) 3D rabbit model, and its spectral coefficients in the (b) x-
dimension, (c) y-dimension, and (d) z-dimension.

(a) r = 500 basis (b) r = 500 basis

Figure 4: Spectral compression of the 3D models using Laplacian compression
(a) Elephant model (b) Rabbit model.

2.4 Mesh Partitioning

The computation of the eigenvalues and the eigenvectors of
a large m×m Laplacian matrix is prohibitively expensive
O(m3). To circumvent this limitation, we partition a large
3D mesh into smaller sub-meshes. The embedding and ex-
traction algorithms are then applied to each sub-mesh. In our
approach we used the MeTiS software [18] for mesh parti-
tioning, and we used sub-meshes of 500 vertices on average
as illustrated in Figure 5.

3 PROPOSED METHOD

In this section, we describe the main steps of the proposed
watermark embedding and extraction algorithms, Figure 6
and Figure 8 show the flow diagrams. The goal of our pro-
posed approach may be described as embedding the water-
mark in the global shape features which are represented by
the low frequency components of the 3D mesh. In this case
we are not only increasing the robustness against attacks
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(a) (b)

Figure 5: MeTis mesh partitioning. Each sub-mesh is colored by a random
color. Black triangles represent edge cuts. (a) Elephant model: 4067 vertices,
8 sub-meshes. (b) Rabbit model: 20100 vertices, 40 sub-meshes.

but also increasing the watermark imperceptibility. The pro-
posed algorithm embeds the watermark information into the
spectral coefficients of the compact representation of the 3D
model.

3.1 Watermark Embedding Process

The 3D mesh is partitioned into smaller sub-meshes and
the watermark embedding procedure is applied to each sub-
mesh. Let S be a sub-mesh of n vertices and W be a pseudo-
random vector of {-1,1} used as a watermark of size k such
that k << n. For all sub-meshes the watermark embedding
process consists of the following steps:
1. Compute the Laplacian matrix L of size n×n.
2. Compute the eigenvalues and the associated eigenvectors
(basis functions) of L.
3. Project the mesh vertices onto the basis functions to get
the spectral coefficients matrix C = BTV of the original sub-
mesh S.
4. Use r basis functions (r < n) to obtain the compressed
sub-mesh Sr.
5. Repeat the steps (1-3) on the compressed 3D sub-mesh Sr

to get the spectral coefficients matrix Cr.
6. Duplicate the watermark d times, where d = �n/k�. Let
the new watermark sequence be Wd . Modify the compressed
spectral coefficients Cr by the watermark sequence Wd . So,

Ĉr = Cr +αWd (4)

where Ĉr is the modified compressed spectral coefficients
matrix, and α is a constant (watermark strength).
7. Express the compressed watermarked sub-mesh ver-
tices in the subspace using the modified spectral coefficients.
Thus,

VT
Wr

= Ĉ
T
r BT =

r

∑
i=1

ĉT
ir b

T
i

where VT
Wr

is the compressed sub-mesh vertex matrix.
8. Use the remaining basis functions that are not used in step
(4) to obtain the uncompressed watermarked sub-mesh with

vertex matrix given by

VT
W = VT

Wr
+

n

∑
i=r+1

cT
i bT

i (5)

where C = {ci}n
r+1 is the spectral coefficients matrix of the

high frequency basis functions. Figure 7 shows two different
3D models with their corresponding watermarked meshes.

Figure 6: Watermark embedding process.

3.2 Watermark Extraction Process

We provide a private watermarking scheme, that is, the orig-
inal unwatermarked object is necessary for the extraction
process. Let the original unwatermarked mesh be M and the
watermarked probably attacked mesh be M̂.

i) Mesh Registration

Before applying the extraction process, we need to estimate
the optimal rotation, scaling and translation to get M̂ back to
its initial scale and location if it is changed. This registration
process is very important in order to extract the watermark
successfully. We use the iterative closest point (ICP) method
[19, 20] to select the optimal transformation (translation and
rotation) to align two surfaces. Sometimes it is necessary
to provide initial alignment, especially with the cropping at-
tack. For the scaling transform, if both meshes represent the
non-cropped objects or represent exactly the same surface
patches of an object, we need to align both meshes to their
initial position using ICP and then measure the ratio between
the length of their corresponding axes.
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(a) (b)

(c) (d)

Figure 7: Original 3D models (a)-(c) and their corresponding watermarked
models (b)-(d). Elephant model with (4076 vertices, 7999 faces) and tank
model with (15186 vertices, 13902 faces).

ii) Remeshing

After registration, a remeshing is usually necessary to deal
with the changes resulted by the attacks that may modify
the mesh topology like simplification algorithms. To map
the original topology we used the remeshing method [21] by
tracing a ray through each vertex of the original mesh in the
same direction of the normal vector of that vertex. If an inter-
section point is not found, create a vertex with the same co-
ordinate as its reference in the original mesh. After applying
the registration and remeshing processes to the watermarked
and probably attacked mesh, we apply the watermark extrac-
tion algorithm which can be summarized as follows: The 3D
mesh is partitioned into smaller sub-meshes using the same
procedure as in the embedding process. For each sub-mesh:
1. Apply the first four steps of the embedding process with
the same number of basis functions to the initial and the
watermarked sub-meshes to obtain compressed versions of
each.
2. Apply the steps (1− 3) of the watermarking algorithm
on the compressed 3D sub-meshes. Then, to extract the
watermark vector we compare the spectral coefficients of
the initial compressed sub-mesh with the spectral coeffi-
cients of the watermarked and probably attacked compressed
sub-mesh. wi

x = (x̂i − xi)/α , wi
y = (ŷi − yi)/α , and wi

z =
(ẑi − zi)/α , where (X̂ ,Ŷ , Ẑ), (X ,Y,Z) are the spectral vec-
tors of the compressed watermarked and the compressed ini-
tial sub-meshes respectively, and α is a constant saved in the
secret key during the embedding process.
3. Construct W = (Wx +Wy +Wz)/3, where Wx, Wy, and Wz

are the extracted watermark vectors in step (2).
4. Find the average watermark vector Wd from W which

Table 1: characteristics of the 3D models used in our experiments.

Model # vertices # faces # patches # watermarks

Camel 4001 8050 7 750
Rabbit 20100 39999 40 3768

Max Planck 5040 10067 10 945
Elephant 4067 7999 8 762

Tank 15186 13902 31 2847
Mesh part 2496 5000 4 468

contains d = �n/k� watermark copies. Finally the extracted
vector is given by the decision rule:

Ŵd = {wdi}k
i=1 =

{ −1 if wdi < 0
1 otherwise

(6)

5. If the correlation coefficient between Ŵd and W is greater
than a predefined threshold, then the watermark is present.

Figure 8: Watermark extraction process.

4 EXPERIMENTAL RESULTS

Our experiments were performed using a variety of 3D mod-
els represented as triangle meshes. Table 1 shows the char-
acteristics of the 3D models used in our experiments. We
conducted experiments to test the robustness against attacks.
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4.1 Robustness

Robustness is an important factor that we need to consider
when designing a watermark system for copyright protec-
tion. Attacks do not necessarily mean the removal of the wa-
termark; they can be operations to make the watermark un-
detectable [22, 23]. We tested the robustness of the proposed
algorithm with different 3D models (see Table 1) against var-
ious attacks including mesh transformation, mesh simplifica-
tion, additive random noise, mesh smoothing, compression,
and cropping. A watermark sequence of 16 bits is gener-
ated randomly of {−1,1}. In the experiments we display the
attacked models with the detector response for the real wa-
termark, and 99 randomly other generated watermarks. For
all the detector response figures the correlation between the
original watermark and the extracted watermark is located
at 75 on the X-axis and the dotted line at 0.8 on the Y-axis
represents the threshold. The threshold is chosen manually
to decrease false-positive (presenting incorrectly the water-
mark in the model) and false-negative alarm (falling to de-
tect the watermarked model). If the correlation is larger than
0.8, then the watermark is present. In all the experiments
the strength factors that have been used are 0.01 for the Max
Planck model, 0.009 for the camel model, and 0.02 for the
elephant model.

4.1.1 Additive Random Noise

In order to test the robustness of the watermark, an addi-
tive Gaussian noise was added to the watermarked mesh by
summing a random vector to each vertex in the model. See
Figure 9(a) for the attacked Max Planck model by Gaussian
random noise (σ2 = 0.0035). The watermark could be ex-
tracted without any loss. The detector response is illustrated
in Figure 9(c). The watermark is lost when we increased the
noise (σ2 = 0.0045) for the Max Planck model.

4.1.2 Mesh Smoothing

Smoothing algorithms may be used by an attacker to destroy
the watermark by moving the node geometry of the water-
marked mesh. We used the Laplacian filter algorithm [24]
that adjusts the location of each mesh vertex to the centroid
of its neighbouring vertices. Hence the high frequency com-
ponents are those that are most affected by low pass filter-
ing. Our proposed algorithm is robust against smoothing at-
tack as we expected because the watermark was embedded
in the low frequency components. Figure 9(b) depicts the
attacked Max Planck model by 7 smoothing iterations, and
Figure 9(d) shows the detector response. As can be seen,
the mesh is significantly smoothed but the watermark is still
perfectly detectable.

4.1.3 Geometric Transformations

These are the simplest attacks used to test the watermark de-
tectors. The proposed algorithm is robust against geometric
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Figure 9: Robustness against random noise and Laplacian smoothing attacks.
(a) Max Planck model with (σ2 = 0.0035) additive noise. (b) Max Planck
model after (7 iterations) of the low pass filter. (c), (d) Detector responses
for (a), (b) respectively.

attacks because the transformations applied to the mesh can
be inverted using mesh registration. In Figure 10(a) the at-
tacked Max Planck model is obtained in two steps. First,
the model is scaled in the Z direction by a factor of 2. Sec-
ond, the scaled model is rotated around Y-axis by 20o. Fig-
ure 10(c) depicts the watermark extraction response after the
registration process was applied. Clearly the detector is still
able to recover the watermark.

4.1.4 Mesh Compression

Mesh compression has recently become one of the most
effective attacks because the new compression techniques
[17, 25] reach a very significant compression ratio with very
small loss in the mesh quality. We evaluated the robustness
of our method against a compression attack [17]. The pro-
posed method is robust against compression because the wa-
termark is embedded in the spectral coefficient of the com-
pressed mesh. Figure 10(b) depicts the compressed Max
Planck model constructed with 3000 basis functions from the
original mesh of 5040 basis functions. The detector response
is shown in Figure 10(d).

4.1.5 Mesh Cropping

This technique may be used by an attacker to destroy the
watermark by removing part of the watermarked mesh. We
verified the robustness of the proposed scheme against mesh
cropping by trying to extract the watermark from the cropped
3D mesh. Since the watermark is embedded repeatedly us-
ing mesh partitioning the watermark can be fully recovered
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Figure 10: Robustness against geometric transformation and compression at-
tacks. (a) Max Planck model is scaled in Z direction by factor of 2 then
rotated by 20o around Y-axis. (b) Compressed Max Planck model of 3000
basis functions. (c), (d) Detector responses for (a), (b) respectively.

from the deteriorated cropped mesh. Figure 11(a) depicts
the cropped Max Planck model (600 vertices have been re-
moved). The watermark is recovered perfectly from the
cropped model as it is shown in the detector response in Fig-
ure 11(c).

4.1.6 Mesh Simplification

This method may also be used by an attacker to reduce the
number of faces of the 3D mesh. This reduction could re-
move or destroy the watermark. See Figure 11(b) for the
simplified Max Planck model. The mesh is simplified down
from 5040 vertices and 10067 faces to 2502 vertices and
5000 faces. Our proposed method is robust against the sim-
plification attack because of the remeshing process. The de-
tector response for the attacked mesh in Figure 11(b) is illus-
trated in Figure 11(d).

We also tested the performance of our proposed algorithm
using a combination of the previous attacks. Figure 12 (a,b)
show the watermarked Max Planck model with multiple at-
tacks. In Figure 12(a) the watermarked model is passed
through low pass filtering (7 iterations), and then a crop-
ping attack has been applied to remove 540 vertices from
the smoothed mesh. Figure 12(b) depicts the attacked model
after adding additive random noise of (σ2 = 0.0025) and be-
ing simplified down to 80% of the original vertices. In both
cases the proposed algorithm was able to recover the wa-
termark fully (see the detector responses for (a,b) in (c,d)
respectively). More experiments with different models are
shown in Figure 1.
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Figure 11: Robustness against cropping and mesh simplification attacks. (a)
Cropped 600 vertices from Max Planck model (b) Max Planck simplified down
to 2502 vertices and 5000 faces. (c), (d) Detector responses for (a), (b)
respectively.

5 CONCLUSIONS

In this paper, we proposed a simple and computationally in-
expensive watermarking methodology for embedding a wa-
termark in the frequency domain of 3D models. The key idea
is to encode a watermark vector repeatedly into the spectral
coefficients of the compressed 3D mesh. The performance
of the proposed method was evaluated through extensive ex-
periments that clearly showed a perfect resiliency against a
wide range of attacks. For future work, we plan to analyze
the relationship between the number of basis vectors used in
the compression process, watermark length, mesh partition
size, and strength factor to further improve the robustness
against attacks.
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