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Abstract

We introduce a new weighted Laplace test statistic for
software reliability growth modelling. The proposed model
not only takes into account the activity in the system but also
the proportion of reliability growth within the model. This
generalized approach is defined as a weighted combination
of a growth reliability model and a non-growth reliability
model. Experimental results illustrate the effectiveness and
the much improved performance of the proposed method in
software reliability modelling.

1 Introduction

During the development process of computer software
systems, many software defects may be introduced and of-
ten lead to critical problems and complicated breakdowns
of computer systems [1, 2]. Hence, there is an increasing
demand for controlling the software development process
in terms of quality and reliability. Software reliability can
be evaluated by the number of detected faults or the soft-
ware failure-occurrence time in the testing phase which is
the last phase of the development process, and it can be also
estimated for the operational phase. A software failure is
defined as an unacceptable departure of program operation
caused by a software fault remaining in the software sys-
tem [1–3].

It is, however, very difficult for developers to produce
highly reliable software systems efficiently because of the
diversified and complicated software requirements. Soft-
ware reliability models can provide quantitative measures
of the reliability of software systems during software devel-
opment processes [4, 5]. In recent years, several software
reliability models have been proposed [6, 7]. In particu-
lar, software reliability models that describe software fault-
detection or software failure-occurrence phenomena in the
testing phase are referred to as software reliability growth
models (SRGMs). The SRGMs have been proven to be suc-

cessful in estimating the software reliability and the number
of errors remaining in the software, and are very useful to
assess the reliability for quality control and testing-process
control of software development [4–9].

The rest of this paper is organized as follows. In the
next section, we formulate the problem and we briefly re-
view the mathematical aspects of non-homogeneous Pois-
son processes. In Section 3, the likelihood function of the
cumulative number of failures is derived. In Section 4, we
propose a weighted Laplace test statistic which is defined
in terms of a weighted combination of a growth reliabil-
ity model and a non-growth reliability model. Section 5
presents experimental results to demonstrate the much im-
proved performance of the proposed approach in software
reliability growth modelling. Finally, we conclude in Sec-
tion 6.

2 Problem Formulation

Software failure data are usually available to the user in
three basic forms:

1. in the form of a sequence of ordered failure times
0 < t1 < t2 < . . . < tn

2. in the form of a sequence of interfailure times τi where
τi = ti − ti−1 for i = 1, . . . , n

3. in the form of cumulative number of failures.

It is easy to verify that the failure and interfailure times are
related by ti =

∑i
j=1 τj .

The cumulative number of failures N(ti) detected by
time ti (i.e. the cumulative number of failures over the
period [0, ti)) defines a non-homogeneous Poisson process
(NHPP) with failure intensity or rate function λ(ti) such
that the rate function of the process is time-dependent. The
mean value function m(ti) = E(N(ti)) of the process is
given by m(ti) =

∫ ti

0
λ(u)du.
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3 The Likelihood Function

Assume we model the failure times using an NHPP with
failure intensity function λ(t;θ), where θ is an unknown
parameter vector. Table 1 shows examples of NHPP models
with different failure intensity functions λ(t;θ), where θ =
(α, β).

Model name m(t) λ(t)

Log-linear
exp(α + βt)

β
exp(α + βt)

Exponential α(1 − exp(−βt)) αβ exp(−βt)

Power law

(
t

α

)β
β

α

(
t

α

)β−1

Table 1. NHPP models.

Under the NHPP assumption, the failure times ti define
intervals for which only failure counts ni = N(i)−N(i−1)
in the interval (ti−1, ti) are recorded, that is ni is the num-
ber of failures during the ith unit of time. The probability of
seeing ni events in the interval (ti−1, ti) is then given by

P (N(ti−1) − N(ti) = ni)

=
(m(ti) − m(ti−1))ni

ni!
exp(−(m(ti) − m(ti−1))).

If we consider k time intervals, then the likelihood function
is given by

L(θ)=
k∏

i=1

(
∫ ti

ti−1
λ(u;θ)du)ni

ni!
exp

(
−
∫ ti

ti−1

λ(u;θ)du

)

and the marginal probability that there are exactly N =∑k
i=1 ni events is given by

G(θ) =
(m(tn))N

N !
exp(−m(tn))

Hence the conditional log-likelihood function is given by

L(θ) = log(L(θ)) − log(G(θ))

=
k∑

i=1

ni log
(∫ ti

ti−1

λ(u;θ)du
)

− N log
(∫ tk

0

λ(u;θ)du
)

+ C,

where C = log(N !) − log(
∏k

i=1 ni!) is a constant.

4 Proposed Method

During testing and development of new systems, relia-
bility trend analysis is needed to evaluate the progress of

the development process [4, 5, 10, 11]. The hypotheses we
wish to test are:

H0 : HPP

H1 : NHPP

where H0 and H1 are the null and the alternative hypotheses
respectively.
Under the null hypothesis, we define the Laplace trend as

U =
L(θ0)′

E(−L(θ0)′′)
,

where θ0 is a component of the vector θ such that its value
makes the intensity function λ(t;θ) time independent.

Assuming a type I error probability α =
P{reject H0|H0 is true}, the Laplace trend values may be
interpreted as follows:

• U < −zα: reliability growth

• U > zα: reliability deterioration

• −zα < U < zα: stable reliability,

where zα is the is the upper α percentage of the standard
normal distribution Z such that P{Z ≥ zα} = α (i.e. zα

is the 100(1 − α) percentage point of the standard normal
distribution). If “H0 : HPP” is true, the distribution of the
Laplace test statistic U is approximately normal N(0, 1).
Hence, if “H0 : HPP” is true, the probability is 1 − 2α that
a value of the test statistic U falls between −zα and zα.

The objective of system reliability trend tests is to deter-
mine whether the pattern of failures is significantly chang-
ing with time. For example, when the occurrence of the
events is an NHPP with a log-linear failure intensity func-
tion λ(t) = exp(α + βt), then the null hypothesis may be
expressed as H0 : β = 0. Moreover, it can be shown that in
the case of a log-linear failure intensity function [4, 5, 11],
the Laplace test statistic is given by

U(k) =

k∑
i=1

(i − 1)ni −
k − 1

2

k∑
i=1

ni√√√√k2 − 1
12

k∑
i=1

ni

4.1 Anisotropic Laplace trend

The main limitation of the Laplace trend is that it does
not take into account the presence or the absence of activity
in the system. To circumvent this problem, we replace the
Laplace trend factor U(k) with an anisotropic Laplace trend
factor A(k) that is defined as follows

A(k) =
{

g(U(k)) if no activity
U(k) otherwise,
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where g is a “reliability growth-stopping” function as shown
in Table 2. The g-function is chosen to satisfy g(x) → 0
when x → ∞ so that the reliability growth is stopped when
there is no activity in the system [12].

Function g(x)

Green [13]
tanh(x)

2x
(if x �= 0)

Gaussian [14] exp
(
− x2

2σ2

)
Lorentzian [14]

1
1 + x2/σ2

Table 2. reliability growth-stopping functions.

The parameter σ of the Gaussian and Lorentzian g-
functions may be estimated using tools from robust statis-
tics as follows

σ̂ = 1.4826 MAD{(U(k) − U(k − 1))k},

where MAD denotes the median absolute deviation [15].

4.2 Weighted Laplace trend

Let w ∈ [0, 1] be a weight parameter denoting the pro-
portion of software reliability growth during the period
[t�, t� + tw]. Then, we define a weighted failure intensity
function as follows

λw(t) = λ(t)1(0≤t≤t�) + wλ(t)1(t�≤t≤t�+tw)

+ (1 − w)λ(t�)1(t�≤t≤t�+tw),

where λ(t) is the failure intensity function, and 1S denotes
the indicator function of a subset S.

When w = 1, the weighted failure intensity function re-
duces to the original intensity function, and when w = 0,
the function λw becomes a constant (straight line). More-
over, for w ∈ (0, 1), the weighted failure intensity function
λw has a less heavier tail that λ(t) in the interval [t�, t�+tw]
indicating a slow reliability growth of the Laplace trend as
illustrated in Figure 1.

Therefore, we may define a weighted anisotropic
Laplace test statistic as follows

Aw(k) = A(k)1(0≤k≤t�) + wA(k)1(t�≤k≤t�+tw)

+ (1 − w)A(t�)1(t�≤k≤t�+tw),

where A(k) is the anisotropic Laplace test statistic.

5 Experimental Results

We tested our proposed anisotropic Laplace test statistic
on a real software failure data which was taken from an SAP
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Figure 1. Weighted failure intensity function.

development system. The data contains daily software fail-
ures that was recorded for a period of 175 days. Moreover,
there are no activities in the system during the test phase
process on the days 121, 122, 128, 142, 143, 144, 145, 146,
147, 148, 149, and 150.
Figure 2 displays the scatter plot of cumulative failure num-
ber versus failure time, and it clearly illustrates an improv-
ing system since the probability of failures stabilizes sub-
stantially after a period of 150 days.
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Figure 2. Cumulative Number of Failures vs.
Failure Time.

5.1 Weighted Laplace trend

Figure 3 through Figure 5 depict the much improved per-
formance of the weighted anisotropic Laplace trends Aw(k)
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with a weight parameter w = 0.5 in comparison with the
anisotropic Laplace trends Ak. The no-activity periods of
the weighted anisotropic Laplace trend are displayed with
black-star points, whereas the no-activity periods of the
anisotropic Laplace trend are displayed with red-star points.
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Figure 3. Weighted anisotropic Laplace trend
using Green’s function, with w = 0.5.
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Figure 4. Weighted anisotropic Laplace trend
using Gaussian function, with w = 0.5.

5.2 Weighted adjusted anisotropic Laplace trend

The Laplace test statistic is a test for the null hypoth-
esis H0 that the data come from an HPP. Thus rejection
of H0 means that the process is not an HPP, but it could
still in principle be a renewal process and hence still has
no trend. In order to improve the test performance when
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Figure 5. Weighted anisotropic Laplace trend
using Lorentzian function, with w = 0.5.

the null hypothesis is a more general renewal process, the
Lewis-Robinson (LR) test should be used [16]. The LR test
is basically a scaled version of the Laplace test and it is de-
fined as

ULR =
U(k)

ĈV (τ)
,

where ĈV (τ) is an estimate of the coefficient of variation
of the interfailure times τi, and it is calculated in terms of
the mean and the standard deviation of interfailure times as
follows

ĈV (τ) =
στ

τ̄
,

with τ representing the variable of interfailure times.

The reason for dividing the Laplace trend by the coeffi-
cient of variation is to account for non-exponential distrib-
utions of the interfailure times and also in order to insure
that ULR follows a standard normal distribution whenever
the data come from a renewal process. Moreover, when
the null-hypothesis is a renewal process model with non-
exponential interarrival times, this adjustment maintains the
type-I error probability better than the Laplace test [16].

Figure 6 through Figure 8 show the weighted adjusted
anisotropic Laplace trends with a weight parameter w =
0.5. The weighted adjusted anisotropic Laplace trends with
a weight parameter w = 0.1 are depicted in Figure 9
through Figure 11. Note that the no-activity periods of the
weighted adjusted anisotropic Laplace trends are displayed
with black-star points, whereas the no-activity periods of
the adjusted anisotropic Laplace trends are displayed with
red-star points.
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Figure 6. Weighted adjusted anisotropic
Laplace trend using Green’s function (w =
0.5).
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Figure 7. Weighted adjusted anisotropic
Laplace trend using Gaussian function (w =
0.5).

6 Conclusions

In this paper, we proposed a new weighted Laplace test
statistic for software reliability growth modelling. The pro-
posed model not only takes into account the activity in
the system but also the proportion of reliability growth
within the model. This generalized approach is defined as
a weighted combination of a growth reliability model and
a non-growth reliability model. The experimental results
clearly indicate a much improved performance of the pro-
posed anisotropic Laplace test statistic in software reliabil-
ity growth modelling.
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Figure 8. Weighted adjusted anisotropic
Laplace trend using Lorentzian function (w =
0.5).
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Figure 9. Weighted adjusted anisotropic
Laplace trend using Green’s function (w =
0.1).
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