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Abstract—Broadcasting is an information dissemination
problem in a connected network, in which one node, called
the originator, disseminates a message to all other nodes
by placing a series of calls along the communication lines of
the network. Once informed, the nodes aid the originator in
distributing the message. Finding the minimum broadcast time
of a vertex in an arbitrary graph is NP-complete. The problem
is solved polynomially only for trees, unicyclic graphs, and
tree of cycles. In this paper we will consider broadcasting in
a new class called the Fully Connected Trees (FCT). We will
present a O(n log n) algorithm to find the broadcast time of
any originator in an arbitrary FCT.

I. INTRODUCTION

Computer networks have become essential in several as-
pects of modern society. Moreover single processor systems
are becoming obsolete because they solve problems serially.
Parallelism has become the direction of choice for most
modern day computing systems. Even though having several
processors on a single system board is possible and widely
implemented, one cannot have thousands of processors all
connected to a single board. For such a big number of pro-
cessors there is usually an interconnection network connect-
ing all the processing units. The performance of information
dissemination in networks often determines their overall ef-
ficiency. One of the fundamental information dissemination
problems is broadcasting. Broadcasting is a process in which
a single message is sent from one member of a network to
all other members. Inefficient broadcasting could degrade
the performance of a network seriously. Therefore, it is of a
major interest to improve the performance of a network by
using efficient broadcasting algorithms.
Broadcasting is an information dissemination problem

in a connected network, in which one node, called the
originator, must distribute a message to all other nodes
by placing a series of calls along the communication lines
of the network. We assume that each call requires one unit
of time and involves only one informed node and one of
its uninformed neighbors. In one unit of time, many calls
can be performed in parallel. A broadcast scheme of an
originator u is a set of calls that completes the broadcasting
in the network.

Formally, any communication network can be modelled as

a connected graph G = (V,E), where V is the set of vertices
(or nodes) and E is the set of edges (or communication lines)
between the vertices in graph G.

Given a connected graph G = (V,E) and a message
originator, vertex u, the broadcast time of vertex u, b(u,G)
or b(u), is the minimum number of time units required to
complete broadcasting from the vertex u. The broadcast time
b(G) of the graph G is defined as max{b(u)|u ∈ V }. For
surveys of results on broadcasting and related problems, see
[13], [6], [14], [15] The problem of finding the broadcast
time of an arbitrary vertex in an arbitrary graph is proved to
be NP complete [20]. The problem stays NP -complete even
in more restricted classes of graphs such as planar graphs
[16] and bounded degree graphs [3] and [18].

Many papers have presented approximation and heuristic
algorithms to determine the broadcast time of any vertex in
G (see [1], [4], [5], [7], [8], [19], [21]). The best theoret-
ical upper bound is presented in [5]. Their approximation
algorithm generates a broadcast algorithm with broadcast
time O( log(|V |)

loglog(|V |) )b(G). The heuristics in [1] and [12] are
the best existing heuristics for broadcasting in practice with
O(|V |2 · |E|) and O(|E|) respectively.

The broadcast problem has been solved with a linear
algorithm only for trees [20], unicyclic graphs [10], [11]
and tree of cycles [9]. Also there is an O(n4k+5) broadcast
algorithm for partial k-trees [2]. In this paper we consider
the broadcast problem in fully connected trees (FCT).

Assume that we have an unweighted complete graph
where every vertex is the root of a tree. We will call the
resulting graph fully connected trees. We will study the
broadcast problem in this kind of graphs.

Definition 1. Consider n trees Ti = (Vi, Ei) rooted at
ri where 1 ≤ i ≤ n. We define the fully connected
tree, FCTn = (V,E), to be a graph such that V =
V1∪V2∪· · ·∪Vn and E = E1∪E2∪· · ·∪En∪EKn where
EKn = {(ri, rj)|1 ≤ i, j ≤ n, i 6= j} The roots of the trees,
ri, will be called root vertices and the rest of the vertices
will be called tree vertices.

The rest of this paper is organized as follows: in the next
section we present a broadcast algorithm for fully connected
trees where the originator is a root vertex and analyze



Figure 1. A fully connected tree FCT5 with 5 trees Ti rooted at ri,
1 ≤ i ≤ 5. Note that the roots ri induce a subgraph which is the complete
graph K5.

its complexity. In section 3 we consider the broadcast
problem where the originator is a tree vertex. Section 4 is a
conclusion.

II. A BROADCAST ALGORITHM FOR ROOT VERTICES

In this section we consider the broadcast problem in
fully connected trees. An upper bound on broadcast time
can be obtained if the broadcast algorithm first informs
all the vertices of the complete graph and afterwards each
vertex informs the tree attached to it. In this case the
time needed to inform all the vertices will be tmax =
dlog ne + max{b(vi, Ti)}, where b(vi, Ti) is the broadcast
time of the vertex vi in the tree Ti. Similarly one can
see that a lower bound on the broadcast time is tmin =
min{dlog ne,max{b(vi, Ti)}}.

A. The Broadcast Algorithm

First we will develop an algorithm that answers the
following question: Given a time τ , a graph FCTn, and
an originator vo, is it possible to complete broadcasting in
FCTn in at most τ time units? Obviously τ should be
greater than or equal to tmin. Also, if τ is greater than tmax

then the answer to the above question is trivially true. The
interesting situation is when tmin ≤ τ ≤ tmax.

The algorithm takes the graph FCTn, originator vo which
is a root vertex, and the candidate broadcast time τ as
input parameters. The main idea of the algorithm is to
do broadcasting assuming that the broadcast time is τ . If
τ ≥ b(vo, FCTn) then the algorithm will return TRUE
and will inform all the vertices of the graph. Otherwise,

it will return FALSE, meaning that τ is too small to be the
broadcast time. If all the vertices of the graph are informed
in τ time units or less all we can conclude that the broadcast
time is less than or equal to τ . In order to conclude is that
τ is the broadcast time we need to be able to inform all
the vertices in τ time units and our algorithm should also
return FALSE when τ−1 is given as input for the candidate
broadcast time.

The first step of the algorithm will be to assign weights to
every root vertex of the fully connected tree. The weight of
each vertex ri is initialized to the broadcast time b(ri, Ti). At
every time unit t, where 0 ≤ t ≤ τ , each vertex will have to
determine if τ is enough to broadcast the information to all
the vertices. The algorithm terminates if a vertex can decide
that τ will not be enough to inform all the vertices of the
FCTn. Otherwise, the algorithm continues and the informed
vertices pass the message to uninformed neighbours. This
process iterates until either all the vertices are informed or
one of the informed vertices concludes that τ cannot be the
broadcast time.

When a tree vertex is informed there is not much it can
do other than following the well known broadcast algorithm
in trees. However, when a root vertex is informed it has the
option of passing the information to another root vertex or
pass it down to the tree attached to it. Deciding on how
every informed root vertex should choose an uninformed
neighbour to pass the information to is the main step of the
algorithm.

In order to make the description of the algorithm simpler
each root vertex ri will be assigned a weight w(ri, t). These
weightes will be equal to the broadcast time of ri in the
connected uninformed subtree of Ti rooted at ri. In more
details, the weight of each root vertex, ri, at any time t will
be calculated as follows: If ri has no uninformed children
which are tree vertices then its weight is zero because ri
can do nothing to speed up the process of informing the
vertices of the subtree Ti. If ri has one or more uninformed
child, let the tree Ti,t rooted at ri be the sutbree of Ti

which consists of only those vertices of Ti that are still not
informed. The weight of ri at time t, w(ri, t), will be equal
to the broadcast time of ri in the tree Ti,t, b(ri, Ti,t). Next,
we will describe how does an informed root vertex, ri, at
time t decide whether it has to inform another root vertex
or a tree vertex. Two cases may arrise:

1) ri does not have uninformed children which are tree
vertices, in this case w(ri, t) = 0. In this case there is
nothing ri can do to speed up the broadcast process in
the tree attached to it. Therefore, ri should inform an
uninformed root vertex with the highest weight among
the vertices.

2) ri has uninformed children which are tree vertices.
In this situation ri has 2 options. One is to inform
an uninformed root vertex and the other is to inform
an uninformed neighbouring tree vertex. The choice



Algorithm 1: The decision algorithm to decide if a given
time τ is enough to inform all the vertices of a graph
FCTn.

Algorithm: The Decision Algorithm:
DecisionAlgo(G, v, t)
Input: FCTn = (V,E), originator vo, candidate

broadcast time τ
Output: FALSE if τ cannot be the broadcast time,

TRUE if broadcasting can be accomplished in
time less or equal to τ

Initialize VI such that VI = vo ;
foreach t such that 0 ≤ t ≤ τ − 1 do

foreach v ∈ VI do
if v is a root vertex then

if w(v, t) > τ − t then
v informs another uninformed root
vertex at time t which has the highest
weight among the uninformed root
vertices ;
Append the newly informed vertex to
VI ;

else
if w(v, t) = τ − t then

v informs one of its children which
are tree vertices ;
Append the newly informed vertex
to VI ;

else
return FALSE ;

end
end

else
v informs a tree vertex based on the tree
broadcast algorithm in the uninformed
subtree rooted at v ;
Append the newly informed vertex to VI ;

end
end

end
return TRUE ;

between informing a root vertex versus a tree vertex is
done by comparing the time needed to inform the un-
informed subtree attached to it, b(ri, Ti,t) = w(ri, t),
with the remaining time τ − t. If τ − t > w(ri, t) then
v informs another root vertex. If τ − t = w(ri, t) then
v has to inform one of its children i.e. a tree vertex
according to the broadcast algorithm in trees. The case
where τ − t < w(ri, t) is not being considered here
because as soon as that happens we conclude τ cannot
be the broadcast time and the algorithm return FALSE.

In Algorithm 1 we describe the decision algorithm that
given a graph FCTn, an originator vo, and a candidate
broadcast time τ , decides if the broadcast time of the graph

is less than or equal that τ . If the candidate time τ happens
to be the broadcast time, then this algorithm also generates
the optimal broadcast scheme. Note that in the psuedocode
VI represents the set of informed vertices which at the start
of the algorithm contains only vo.

Algorithm 2: The broadcast algorithm of an root vertex
originator vo in a graph FCTn.

Algorithm: The Broadcast Algorithm
BroadcastAlgorithmFCTn(G, vo, t1, t2)
Input: FCTn = (V,E), originator vo, the minimum of

a time range, and the maximum of a time range.
Output: Broadcast time τ such that τ = b(vo, FCTn)

t = t1 + b t2−t1
2 c if t1 = t2 then

if DecisionAlgo(G, vo, t1) then
return t

else
return -1

end
end
if t1 + 1 = t2 then

if DecisionAlgo(G, vo, t1) AND
!DecisionAlgo(G, vo, t2) then

return t1
end
if !DecisionAlgo(G, vo, t1) AND
DecisionAlgo(G, vo, t2) then

return t2
else

return -1
end

end
if DecisionAlgo(G, vo, t1) then

return BroadcastAlgorithmFCTn(G, vo, t1, t)
else

return
BroadcastAlgorithmFCTn(G, vo, t+ 1, t2)

end

Now we describe a broadcast algorithm for completely
connected trees using the decision algorithm presented
above. The algorithm does a binary search for the broad-
cast time in the range of possible values. As mentioned
above we already know the minimum and maximum of
the range which are tmin and tmax. The binary search
reduces the size of the range by applying the decision
algorithm on the midpoint of the range. If the algorithm
returns that broadcasting can be performed, then the lower
half of the range is considered for the recursive call of
the search algorithm. However, if the result of the algo-
rithm is negative, meaning that the midpoint of the range
cannot be the broadcast time, then the upper half of the
range is considered and the algorithm is again applied
recursively. The psuedocode of the algorithm is presented



Figure 2. A fully connected tree FCT5 with 5 trees Ti rooted at ri,
1 ≤ i ≤ 5. The originator is r1 and at time t = 1 the informed vertices
are r1 and r3. This figure shows that at time t = 2 the two vertices that
get informed are r2 and v3,1.

in Algorithm 2. The initial call of the algorithm will be
BroadcastAlgorithmFCTn(FCTn, vo, tmin, tmax) where
tmin = min{dlog ne,max b(vi, Ti)} and tmax = dlog ne +
max{b(vi, Ti)}.

We will not present the correctness proof of the broadcast
algorithm because of space limitation. Finally in figure 2
we provide a simple example which depicts the different
operations performed by the decision algorithm. We are
given a graph which is a fully connected tree with 5 trees,
Ti where 1 ≤ i ≤ 5. The originator is vertex r1, the root
of tree T1, and the candiate broadcast time τ = 6. The
figure represents a snapshot of the state of the graph at time
t = 1 where the informed vertices are r1 and r3. In order to
decide which vertices should be informed next at time t = 2,
the weights w(vi, t) should be calculated for t = 1. Since
there are no tree vertices informed yet, the weights will be
calculated as follows: w(vi, 1) = b(vi, Ti). Hence, we obtain
that w(r1, 1) = 1, w(r2, 1) = 3, w(r3, 1) = 5, w(r4, 1) = 2,
and w(r5, 1) = 2. The remaining time trem = τ − t
is equal to trem = 6 − 1 = 5. None of the informed
vertices has a weight greater than 5 so the algorithm does
not return FALSE. The informed vertices r1 and r3 inform
new vertices at time t = 2 as follows: Vertex r3 has weight
w(r3, 1) = 5 = trem, therefore it informs a tree vertex
based on the well known tree algorithm. However, vertex r1
informs another root vertex since w(r1, 1) = 1 < trem = 5.
It informs vertex r2 since it has the greatest weight among
the uninformed root vertices. The weights of the vertices
w(ri, 2) remain the same for all vertices except r3. Since
r3 has one child tree vertex that is informed, its weight
w(r3, 2) = 4.

B. Complexity Analysis

In this section we will calculate the complexity of the
algorithm described above. First one can note that the
BroadcastAlgorithm(G, v, t1, t2) does a binary search for
the broadcast time in the range of possible values. The
complexity of a binary search algorithm is O(logN) where
N is the number of values in the range that is being searched
in. However, every time we need to verify if a certain value
in the range is less than, greater than, or equal to what we
are looking for, we are running the DecisionAlgo(G, v, t)
which has a linear complexity in the number of vertices of
the graph G. Assume that n is the number of vertices of
the graph G. The DecisionAlgo(G, v, t) can calculate its
decision in a linear time because every root vertex has to cal-
culate its weight and compare with the remaining time. Once
the weights are calculated once at the beginning of the al-
gorithm, updating the weights at every new time unit can be
done in a constant time. Also initializing the weights at the
beginning of the algorithm is a linear operation in terms of
the number of vertices of the graph because the tree broad-
cast algorithm has to run which is linear itself. Therefore, the
complexity of the BroadcastAlgorithm(G, v, t1, t2) has a
complexity of O(n log(t2 − t1)). Also note that t1 and t2
can be also linear in n which implies that the complexity of
the algorithm is O(n log n).

III. BROADCASTING FROM ANY ORIGINATOR

In the previous sections we assumed that the originator
is always one of the root vertices. In this section we will
develop a broadcast algorithm for any originator in an
arbitrary fully connected tree FCT . Assume we are given
a fully connected tree G such that the originator vo is in
the tree Ti rooted at one of the root vertices ri. There is a
unique path P in Ti connecting ri to the originator vo. The
vertex on the path P neighbouring ri will be denoted by
vi. Let uj , 1 ≤ j ≤ k, be the neighbors of vo in the tree.
One of these vertices falls on the path P , call this vertex
ui. The subtree of Ti rooted at the vertex vi will be called
T (see Fig 3a). The remaining subtree of Ti, rooted at ri,
after removing the edge (ri, vi) will be called T ′i . We will
construct a new graph G′ which is again a fully connected
tree but the tree T ′i is attached at the root vertex ri instead
of the tree Ti. Figure 3a shows all the details described
above. It is worth noticing that one can redraw the graph
G differently by drawing the tree T rooted at the originator
vo and vertex vi as one of its leaf vertices, this is shown in
figure 3b. It can be observed that the graph G′ is attached to
the tree T by a bridge (vi, ri). Since graph G′ is connected
to the tree T by a bridge, the broadcast algirthm in G′ is
independent of the broadcast algorithm in T . Once vertex ri
is informed, it can not inform any other vertex in T so its
job is to inform the vertices of G′ in the fastest possible way.
However, since G′ is a fully connected tree and ri is a root
vertex, we have a broadcast algorithm to solve the broadcast



problem of vertex ri in G′. Therefore, the main remaining
difficulty is finding the time at which the vertex ri should
be informed so that the broadcast time in the whole graph
G is optimal.

In order to answer this question we will use the ideas from
the algorithm for broadcasting in trees. Normally, vertex vo

informs a child vertex that has the highest broadcast time in
the subtree rooted at it. The subtrees rooted at the children
of vo are labeled by Hj ,1 ≤ j ≤ k, as shown in figure 3b.
The broadcast times b(uj , Hj), 1 ≤ j ≤ k, can be easily
calculated except for the case where uj = ui. This is the
case where there is the graph G′ attached to vi which might
change the time needed by ui to inform all of the vertices
of Hi and G′. Since G′ is a fully connected tree we can
solve the broadcast problem for the originator ri and obtain
a broadcast tree TG′ . We construct a tree H ′i by attaching
the tree Hi to TG′ by the edge (vi, ri). The time needed for
ui to inform all the vertices of Hi and G′ is equal to the
broadcast time of the vertex ui in the tree H ′u.

In conclusion, the broadcast problem of a non root vertex
in an arbitrary fully connected tree can be solved by solving
two problem: one is the broadcast problem in a fully
connected tree with an originator that is a root vertex and
the second one is the broadcast problem in a tree. The
complexity of the problem still remains O(n log n) because
finding the broadcast time of a tree is linear and hence the
complexity is determined by the algorithm that calculates
the broadcast time of a root vertex in an arbitrary FCT.

IV. CONCLUSION

In this paper we present a O(n log n) algorithm to find
the broadcast time of any originator in an arbitrary Fully
Connected Trees (FCT). This result can be used in design-
ing polynomial algorithms for more complicated network
topologies that involve cliques.
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