Homework & 7

duestion 1

Exercises for Section 7.6, Exercise 3 (p. 324)

From eq. 7.158 and 7.147,

$$\varepsilon_x^o = a_{16} N_{xy} = (0.0271 \times 10^{-9}) (10^5) = 2.71 \times 10^{-6}$$

 $\Delta L_x = \varepsilon_x^o L_x = (2.71 \times 10^{-6}) (250 \text{mm}) = 6.78 \times 10^{-4} \text{mm}$

Therefore the deformed length is 250.000678 mm.

$$\varepsilon_y^o = a_{26} N_{xy} = (-22.6 x 10^{-9}) (10^5) = -2260 x 10^{-6}$$

$$\Delta L_y = \varepsilon_y^o L_y = (-2260x10^{-6}) 125 \text{mm} = -0.282 \text{mm}$$

So the deformed width is 124.718 mm.

$$\gamma_{xy}^o = a_{66}N_{xy} = (57.8x10^{-9}) (10^5) = 5780x10^{-6} \text{radians}$$

$$\gamma_{xy}^o = 0.331 \text{ degrees}$$

Corner A becomes less than 90°.

Exercises for Section 7.7, Exercise 1 (p. 326)

From eq. 7.89a

$$A_{11} = 102.4x10^6$$
N/m $A_{12} = 18.94x10^6$ $A_{22} = 16.25x10^6$ $A_{66} = 20.2x10^6$ $h = 150x10^{-6}$ m $H = 6x150x10^{-6} = 900x10^{-6}$ m

From eq. 7.184

$$\overline{E}_x = 89.2 \text{GPa}$$

 $\overline{E}_y = 14.16 \text{GPa}$
 $\overline{G}_{xy} = 22.4 \text{GPa}$
 $\overline{v}_{xy} = 1.166$
 $\overline{v}_{yx} = 0.1850$

The modulus \overline{E}_x is more than six times larger than the modulus \overline{E}_y since the majority of the fibers are in the x direction. However, there are enough off-axis fibers to make \overline{G}_{xy} five times greater than G_{12} . A value of $\overline{v}_{xy} > 1$ means that if the laminate is subjected to a tensile load in the x direction, the laminate contracts in the y direction more than it stretches in the x direction!