Exercise for Section 9.3 (p. 369)

The analog to Table 9.9 for the principal material coordinate system stresses in each layer of the $[\pm 45/0_2]_S$ laminate due to the loading $N_x = n$, $N_y = -0.200$ MN/m, $N_{xy} = 0$ follows. The program stress f was used to compute the stresses.

Table 1: Principal material system stresses (Pa) in [±45/0₂]_S laminate

Layer	σ ₁	σ_2	τ ₁₂	
+45°	+227n - 409x10 ⁶	+21.7n - 39.1x10 ⁶	-71.6n - 34.5x10 ⁶	
-45°	+227n - 409x10 ⁶	+21.7n - 39.1x10 ⁶	+71.6n + 34.5x10 ⁶	
0°	+1471n + 189.5x10 ⁶	-52.7n - 74.9x10 ⁶	0n + 0	

Following the procedure outlined by eqs. 9.43 through 9.73 results in the following values of n for each layer and each failure mode:

Table 2: Summary of loads n (kN/m) to cause failure in $[\pm 45/0_2]_S$ laminate: Maximum stress criterion

Layer	Failure mode						
	σ_1^C	σ_1^T	σ_2^C	σ_2^T	-τ ^F ₁₂	+ \tau_{12}^F	
+45°	-3700	+8410	-7410	+4100	+915	-1877	
-45°	-3700	+8410	-7410	+4100	-1877	+915	
0°	-979	+891	+2370	-2370	+∞	-00	

Failure due to +N: n = +891 kN/m. Failure is due to tensile stress in the fiber direction in the 0° layers. This is considered a catastrophic failure.

Failure due to -N: n = -979 kN/m. Failure is due to compressive stress in the fiber direction in the 0° layers. This is also considered a catastrophic failure.