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Abstract Purpose: Sufficient collateral blood supply is crucial for favorable out-
comes with endovascular treatment. The current practice of collateral scoring relies
on visual inspection and thus can suffer from inter and intra-rater inconsistency.
We present a robust and automatic method to score cerebral collateral blood sup-
ply to aid ischemic stroke treatment decision making. The developed method is
based on 4D dynamic CT angiography (CTA) and the ASPECTS scoring protocol.

Methods: The proposed method, ACCESS (Automatic Collateral Circulation
Evaluation in iSchemic Stroke) estimates a target patient’s unfilled cerebrovascu-
lature in contrast-enhanced CTA using the lack of contrast agent due to clotting.
To do so, the fast Robust Matrix Completion (fRMC) algorithm with in-face ex-
tended Frank-Wolfe optimization is applied on a cohort of healthy subjects and a
target patient, to model the patient’s unfilled vessels and the estimated full vas-
culature as sparse and low-rank components respectively. The collateral score is
computed as the ratio of the unfilled vessels to the full vasculature, mimicking
existing clinical protocols.

Results: ACCESS was tested with 46 stroke patients and obtained an overall
accuracy of 84.78%. The optimal threshold selection was evaluated using a receiver
operating characteristics (ROC) curve with the leave-one-out approach and a mean
area under the curve (AUC) of 85.39% was obtained.

Conclusion: ACCESS automates collateral scoring to mitigate the shortcom-
ings of the standard clinical practice. It is a robust approach, which resembles how
radiologists score clinical scans, and can be used to help radiologists in clinical de-
cisions of stroke treatment.
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1 Introduction

Stroke is one of the leading causes of disability and death worldwide. Statistics
from the World Heart Federation show that each year 15 million people suffer
from stroke among which 5 million become permanently disabled and 6 million
people die 1. There are two kinds of stroke: ischemic, where a blood clot forms in
a cerebral artery, and hemorrhagic, where a cerebral vessel ruptures and bleeds
into the brain. Ischaemic stroke is much more frequent with 8 out of 10 people
suffering from it.

When diagnosis and treatment of stroke are not performed in time, patients
become disabled due to a lack of blood and oxygen, which causes neuronal cell
death in the affected part of the brain. Treatment strategies are chosen based on a
number of factors including time window, infarct volume, penumbra size, and col-
lateral circulation. A patient can be treated after 6 hours of symptoms onset with
endovascular treatment, where a catheter with a mechanical device attached to
the tip is used to remove the clot. This mechanical intervention allows blood flow
to quickly be restored. However, not all stroke patients are suitable candidates for
endovascular treatment, due to the risks associated with it. One important indi-
cation for successful endovascular treatment is the presence of sufficient collateral
circulation (i.e., collaterals) [6].

Grading the extent of collateral circulation is an important factor for treat-
ment decision making, and a number of approaches have been developed to visu-
ally quantify collateral circulation, including ASITN/SIR Collateral Score, Miteff
System, Mass System, modified Tan Scale, and ASPECTS (Alberta Stroke Pro-
gram Early CT Score)[25]. With these approaches, performance depends on the
experience, training, and specialty of radiologists, and thus can result in inter-
and intra-rater inconsistency which have been shown to be an issue in a number
of studies [12] [5] [19]. Grotta et al. [12] concluded that it is difficult to get the
agreement in recognizing and quantifying early ischemic changes even by expe-
rienced clinicians. A recent study by Grunwald et al. [13] showed that between
individual neuroradiologists, the intraclass correlation coefficient ranges from 0.42
to 0.86 and score agreements range from 36.2% to 81.6%. Automated scoring sys-
tems aim to provide robust methods that do not suffer from inter- and intra-rater
inconsistencies.

2 Related Work

A number of automatic and semi-automatic methods have been developed to facil-
itate treatment decisions in ischemic stroke. Kersten-Oertel et al. [17] developed a
method that considered differences of mean intensities on the left and right hemi-
spheres. The results of this method showed a good correlation (72 = 0.71) between
the radiologist and computed score but the method itself had difficulty dealing
with individual variations, e.g. from calcification, as well as, normal vasculature
asymmetry between hemispheres. Boers et al. [3] also considered the ratio between
left and right hemispheres for quantitative measurement of collateral status and
obtained a good correlation, p of 0.75 (p < .001) between visual and quantita-
tive collateral score. In their work, multiscale segmentation was done on baseline

1 http://www.world-heart-federation.org/cardiovascular-health /stroke/.
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CTA with better result for arteriovenous acquisition phase to obtain the vascula-
ture before the collateral evaluation. In the work by Xiao et al. [29], support vector
machines (SVM) were used to score collateral supply after extracting blood vessels
automatically using low-rank decomposition. The results of this method showed
good separation between good and intermediate versus poor collaterals with an
overall accuracy of 82.2%. The drawback of this machine learning-based method
is that performance is affected by limited training data. A random-forest-based
classifier was developed by Kuang et al. [18], where non-contrast CT (NCCT) was
used to automate the ASPECTS assessment. The intra-class correlation coeffi-
cient between the automated ASPECTS method and the DWI ASPECTS score
by experts was found to be 0.76, but NCCT may not be sensitive enough for those
with good collaterals. Shieh et al. [27] developed a computer-aided decision sys-
tem for thrombolysis therapy using NCCT. Their scoring based on a contralateral
comparative method is independent of ground truth and obtained an area under
the curve (AUC) of 90.2%. Collateral assessment with 4D CTA was performed
by Frolich et al. [11] using the semi-quantitative regional leptomeningeal collat-
eral score (rLMC), proving that temporally fused maximum intensity projections
(tMIPs) can better depict the collateral flow. Their study obtained an inter-rater
agreement with an intraclass correlation coefficient of 0.78. However, their experi-
ments were limited to certain time points rather than the entire 4D CTA series and
confined to only subjects with good collaterals. Zhang et al. [31] have integrated
the velocity and extent of collaterals in the peak phase and tMIPs to obtain a
collateral grading score (CGS) using 4D CTA. Using the rLMC semi-quantitative
approach to set the CGS cutoff, the method resulted in an AUC of 0.80. Table 1
summarizes the main highlights of the existing approaches for collateral grading.

In this paper, we describe an automated image-processing approach ACCESS
(Automatic Collateral Circulation Evaluation in iSchemic Stroke) for evaluating
collateral circulation with the ASPECTS protocol as the reference, which has been
shown to be a reliable, systematic and robust approach. The ASPECTS score is
based on the extent of contrast opacification in arteries distal to the occlusion
clot [24]. Our goal is to use robust low-rank and sparse decomposition to obtain
unenhanced collaterals in a patient from the group behavior of normal controls.
The developed model is based on the assumption that from the group of normal
controls and one target patient taken as columns in a low-rank matrix completion
framework, the unfilled collaterals of a stroke patient can be reconstructed in the
sparse component whereas the unchanged full vasculature appears in the low-rank
component. Based on this concept, we developed a novel automated approach for
collateral scoring which considers the ratio of unenhanced collaterals to the full
vasculature and determines the collateral score using this ratio. ACCESS uses
the fast robust matrix completion (fRMC) method [26] to extract blood vessels
benefiting from the in-face extended Frank-Wolfe algorithm [10], a method for
solving a defined convex optimization problem.

3 Materials and Methods

The ACCESS pipeline is shown in Fig. 1 and described in detail in the following
section.
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Table 1: A brief survey of existing collateral scoring techniques using CTA.

Ref Data Scoring Cases Method and Results
Shieh et | NCCT ASPECTS 103 Contralateral automatic comparative
al.[27] method; AUC of 90.2%
Frolich et | 4D CTA rLMC 82 Manual grading; tMIP best for collat-
al.[11] eral prediction; intra-class correlation
of 0.78
Zhang et | 4D CTA rLMC 80 CGS used by combining velocity & ex-
al. [31] tent of collaterals; AUC of 0.80
Kersten 4D CTA ASPECTS 29 Intensity differences between left
et al.[17] & right hemisphere; Correlation of
method to radiologist had 72 = 0.71
Xiao et | 4D CTA ASPECTS 37 Machine learning method based on
al.[29] SVM; Overall accuracy of 82.2%
Kuang et | NCCT ASPECTS 257 Random forest based classifier; Intra-
al.[18] class correlation coefficient between
proposed method & experts was 0.76
Boers et | CTA Tan  Sys- | 422 Vascular ratio between left & right
al.[3] tem [28] hemispheres; Correlation of 0.75 be-
tween visual and quantitative score
Grunwald | CTA Tan  Sys- | 98 Automated e-CTA score; 90% agree-
et al.[13] tem [28] ment with radiologist, intra-class cor-
relation coefficient of 0.93
ACCESS| 4D CTA ASPECTS 54 Automatic collateral circulation scor-
(Pro- ing; An average AUC of 85.39%
posed
method)

3.1 Scanning protocol

Eight healthy subjects were used as reference scans, and 46 subjects with ischemic
stroke were used to evaluate our method. All subjects underwent imaging at the
Montreal Neurological Hospital (Montreal, Canada). The 4D CTA images were
captured on a Toshiba’s Aquilion ONE 320-row detector 640-slice cone-beam CT
(Toshiba medical systems, Tokyo, Japan). The scanner provides whole-brain perfu-
sion and dynamic vasculature information in one single examination with a single
rotation of the gantry. The routine stroke protocol performs a series of intermittent
volume scans over a period of 60 seconds with a scanning speed of 0.75 s/rotation.
A total of 19 volumes are captured for each patient with low-dose scanning for
every 2s during the arterial phase and 5s during the venous phase. Isovue-370
(Iopamidol) was used as a non-ionic and low osmolar contrast medium (Iodine
content, 370 mg/ml).

3.2 Pre-processing

Prior to evaluating collateral supply for each stroke patient, we followed a number
of pre-processing steps to: (1) register all the subjects (healthy and with stroke)
to a standard template space, (2) extract blood vessels (3) refine group-wise blood
vessel alignment and (4) enhance vessels using probabilistic segmentation.
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1 REGISTER SUBJECT TO TEMPLATE & MASK BRAIN 2 BLOOD VESSEL EXTRACTION USING LOW RANK

10F

3 REGISTER TARGET VESSELS TO HEALTHY SUBJECT
L3

5 UNFILLED COLLATERALS USING LOW RANK 6 COMPUTE COLLATERAL SCORE

Fig. 1. The overall workflow of the ACCESS method.

3.2.1 Image Registration

To process all the subjects in the same space we performed image registration
in two stages. In the first stage, all 18 CTA volumes of an individual subject are
rigidly registered to that of the first time point. Next, the first volume is registered
non-linearly to a CTA brain template using the symmetric image normalization
method (SyN) [2] from ANTs (Advanced Normalization Tools)?. Then, the non-
linear transformation is applied to all other volumes of that subject. Thus all
subject volumes are registered first to each other and then to the template. The
CTA brain template was created following the unbiased group-wise registration
approach [9] using 12 healthy subjects’ brains. A brain mask was created from
the template using active contour segmentation in ITK-SNAP (www.itksnap.org)
and used to remove the skull of all subjects for further analysis. In the second
registration stage, we further refine the vessel alignment, in order to estimate the
unfilled blood vessels in the patient through low-rank and sparse decomposition.
Therefore, additional nonlinear registration using SyN is performed in this stage
between a randomly selected healthy subject’s temporal 3D average taken as tem-
plate and the rest of the 3D subjects participated in further experiments. Note that
the temporal 3D average of each subject (averaging along multiple time points)
for vessel alignment is obtained after blood vessel extraction described in Section
3.2.2.

2 stnava.github.io/ANTSs



6 Aktar et al.

3.2.2 Blood Vessel Extraction

To evaluate collaterals, it is necessary to determine how blood flows over time for
each subject. Thus, the static background with grey and white matter, as well as,
any calcification, which can affect the scoring are not considered. Similar to the
approach proposed by Xiao et al. [29], the flow of the contrast agent in the blood
vessels are separated from the static background with calcification. However, rather
than using the augmented Lagrange multiplier method by Lin et al. [21] to recover
low-rank and sparse components, we use the more robust fRMC method [26].
This method does not require any parameter tuning and converges very quickly
[l] whereas [21] is sensitive to parameter tuning and has a slower convergence
rate. For applying low-rank decomposition to a 4D CTA scan, a matrix, D =
[Csl, c?, ... ..C;g] is considered with all the volumes taken as columns of the matrix.
The low-rank representation is as below:

min rank(B)st. D=B+V (1)

The minimization of ranks of background, B as in equation (1) for separating the
correlated and static background features from the dynamic blood vessels, V is
performed by,

min|[B - D|[% st. ||B|.<é 2)

where ||.||r indicates the Frobenius norm, ||.||« represents the nuclear norm of a
matrix and § is the constraining upper bound for the nuclear norm of low-rank
matrix, B. We can see from Equation 2 that there is no tunable parameter to obtain
the low-rank and sparse matrix for fRMC. Since D is a large non-singular matrix
with multiple volumes as columns, the square of its Frobenius norm is greater than
both its nuclear norm and the nuclear norm of its component, B. Therefore, § can
be comfortably set to any value greater or equal to the square of the Frobenius
norm of D. Similar to the study of Ashikuzzaman et al. [1] and the reference study
of fRMC by Rezaei et al. [20] for background subtraction, we set it to ten times
the Frobenius norm of D. Thus, we do not need to set any parameters manually
for extracting blood vessels and further unfilled collaterals using fRMC. The rank
minimization in fRMC is solved using the extended Frank-Wolfe optimizer [10]
which requires a lower number of iterations and less computation in each iteration
that makes the fRMC method fast. The choice of its convergence parameters,
v1 and 2 mostly affect the convergence speed and rank of the matrix with 0 <
71 < 2 < 1 [26]. We provide further insight of these parameters in Section 5.
Finally, we extracted the sparse matrix containing blood vessels by subtracting
the background from the original data matrix. The columns obtained in the sparse
matrix represent the blood flow in each volume over time. Given this, we can then
take the average of the 19 volumes containing blood flow over time to perform
collateral scoring in 3D.

3.2.3 Enhancement of Vascular Structures

Vessel enhancement is an important prerequisite for computer-aided clinical pro-
cedures to highlight the blood vessels and suppress noise and other non-vascular
structures. There is much literature on vessel segmentation. Here, we review a few



Automatic Collateral Circulation Scoring in Ischemic Stroke 7

recent techniques, but interested readers can refer to [23]. Yang et al. [30] devel-
oped a vessel segmentation technique following contrast enhancement, boundary
refinement, and content-aware regions of interest adjustment by checking shape
consistency and connectivity. Rather than considering a region-based method that
may be sensitive to unnatural intensity variations, Meijs et al. [22] segmented full
cerebral vasculatures in 4D CT using weighted temporal variance and local his-
togram features as inputs to a random forest classifier and obtained an overall
accuracy of 0.995. Vessel segmentation by Jin et al. [16] utilized the low-rank and
sparse decomposition technique to segment vessels from group behavior of the
sequence of XCA images and further removed spatially varying noisy residuals
through local-to-global adaptive threshold filtering.

In our approach, we used the vessel enhancement by Jermen et al. [15] to in-
crease the visibility of the blood vessels in MIPs as well as to make the contrast
agent response uniform. This enhancement method outperforms traditional ves-
selness filtering approaches by enhancing rounded structures along with elongated
ones. The filter allows local structures to be distinguished by analyzing the eigen-
values of the Hessian matrix at each point in the image. Let, A;,7 = 1,2, 3 denote
the three eigenvalues of the Hessian matrix of a 3D image with the ideal eigenvalue
relationship A2 & Az A |A2,3| >> |A1]. This relation, however, can’t be maintained
if the magnitudes of A2, A3 are very low. So, to ensure robustness in case of lower
eigenvalues, a regularization on the value of A3 at multiple scales is done by:

A3 if A3 > 7mmazzAs(x,s),
Ap(s) = TmazxzAs(x,s) if 0 < A3 < tmazgAs(z, s),
0 otherwise

where s is the vessel scale and 7 is the cutoff threshold (value between 0 to 1),
which results in a uniform response. Finally, the elliptic cross-section structures
are confined to the ratio A2 > A\,/2 > 0 and the vessel enhancement function is
defined as:

0 ifA2 <0V A, <0,
V=<1 ifAz > X,/2 >0,

3
ANy — A2) [Az%/\p} otherwise

Vp can be computed for both bright and dark structures and the filter response
is between 0 and 1 but ideally 0 for non-vascular and 1 for vascular structures.

Using this vessel enhancement method, we segmented vessels in all subjects
before using them to estimate unfilled collaterals via the second low-rank and
sparse decomposition.

3.3 Collateral Circulation Evaluation

For evaluating collateral circulation, the score is categorized into three types: good,
intermediate and poor. These scores are defined based on the collateral supply in
the occluded MCA territory according to ASPECTS [24]. The ASPECTS score,
which we used as ground truth in our experiments, is based on the agreement of
the visual assessment of the acquired 4D CTA scans by two radiologists. A score
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(a) Good Collaterals (b) Intermediate Collaterals (c) Poor Collaterals

Fig. 2. Example MIP CTAs of different collateral circulation scores.

of good means 100% collaterals, intermediate means greater than 50% and lower
than 100% and poor means below 50% and greater than zero (Fig. 2). Since fRMC
uses an optimizer to minimize the rank, more variability between individuals can
affect the results. To mitigate individual variability, we blurred the data with a
Gaussian kernel (o = 2mm). Among our 54 subjects, we had 8 normal controls,
14 poor, 17 intermediate, and 15 good subjects.

To measure collateral supply, we compare filled vessels (by contrast agent)
with unfilled ones. To obtain the unfilled vessels in a patient, a group of 8 normal
subjects and a target subject is created. Normal subjects are considered as healthy
with 100% collateral supply. The target collateral score can then be defined using
the normal controls. We used the same robust approach fRMC with extended
Frank-Wolfe solver in order to obtain the unfilled vessels of a target case into a
sparse matrix from the group behavior. Since all the normal controls contain very
similar vasculature, the full vasculature is obtained into the low-rank matrix. The
data matrix here is defined as, D = [Csl7 c?,....C8, C?] where columns, C} to
C? are the normal subjects and C? is the test case. Next, low-rank minimization
is performed as in Equation (2) which is defined here as:

min ||fvasc— D||F  st. ||fvasc|l. <8 (3)

where f_vasc stands for full vasculature from where we obtain the unfilled collat-
erals by, uf_colls=D-f _vasc. Finally, the collateral score is measured as below:

Ratio,r = uf_colls/ f vasc (4)
and collateral score in the target subject,

Score,s = (1-r) x 100. (5)

4 Experimental Results
4.1 Blood Vessel Extraction
To overcome the inter-volume intensity differences within a scan session, the in-

tensity profiles of all the volumes of a subject are normalized (using Minmax) with
respect to the first volume. The fRMC approach is then applied to separate blood
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Fig. 3. Example of low-rank decomposition. Left: original sagittal view of a subject
(red arrow points to a calcification). Middle: sparse image containing blood vessels.
Right: low-rank image with calcification.

Fig. 4. Left: a healthy subject used as a reference image. Right: an individual
registered to the reference image.

vessels from the background which results in the removal of any calcification (e.g.
Fig. 3).

4.2 Image Registration

A two-stage registration was performed by Huck et al. [14] to create a cerebral
vascular atlas, which used standard parameters from the ANTSs tool to align seg-
mented vessels in fine details. Similar to their work, we found that the standard
parameters for the SyN algorithm from ANTs worked well for registration to the
template as well as the alignment of blood vessels. To align the blood vessels, a
SyN deformation on 4 scale levels was done (with iterations of 100x100x50x20).
We evaluated the alignment by checking the overlap of blood vessels in multiple
subjects extracted by applying low-rank and sparse decomposition. Areas with
fewer than 40 connected pixels were ignored to avoid the smallest vessels, which
are quite different in each individual and can cause scoring error. The registration
performance of an individual subject’s blood vessel to a healthy subject is shown
in Fig. 4.

4.3 Vessel Enhancement

The blood vessels of an example subject segmented by scaling responses between 0
to 1 using Jermen vessel enhancement function [15] is shown below in (Fig. 5). The
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Fig. 5. Vessel enhancement of a subject (axial, sagittal and coronal view).

scale, s, ranging from 0.5mm to 2.5mm with a 0.5mm interval was chosen based
on the work of Jermen et al. [15] on 3D DSA cerebral vasculature segmentation.
The regularization parameter, 7 , is varied over the chosen scales from 0.5 to 1 to
show the effect on the segmentation outcome in Section 4.5; 7= 0.5 resulted in a
uniform response in our dataset.

4.4 Automatic Collateral Circulation Evaluation

To reduce computational complexity and for better visibility, the 2D MIP of the
sparse and low-rank matrices in axial directions were taken. Demonstration of low-
rank matrix completion to obtain the unfilled vessels in an individual with respect
to the cohort of normal subjects is shown in Fig. 6.

From the sparse images, we can see that there are a lot of unenhanced vessels
obtained. This is due to the variability of the small vessels in individual subjects
which appear as changes in the sparse matrix. Post-processing is performed with
thresholding in order to ignore the small vessels’ variability, as well as some un-
wanted portions obtained in the sparse component due to contrast variations. To
remove very small vessels, all connected components with fewer than 40 pixels
were removed from the binary images obtained by thresholding. To overcome the
effect of manual thresholding and make ACCESS more robust, we performed a
sensitivity analysis in Section 4.5 to obtain this optimal threshold. Furthermore,
the main sinus and arteries are removed before collateral scoring.

The images in Fig. 7 show the binary of the sparse and low-rank components
after thresholding.

Finally the collateral score is calculated according to the formula of Equations 4
and 5 using the optimal parameters obtained by the sensitivity analysis. Since there
is variability between vessels of individual subjects, which cannot be registered
perfectly and the final operation is performed on 2D, the radiologists’ scores can
be conflicting to use here directly. Thus the scoring performance of ACCESS was
evaluated after determining the optimal threshold for each class by computing
ROC curves [7] (Fig. 8). A ROC curve is drawn with the experimental scores and
the true class labels. The sensitivity and specificity for different threshold settings,
which are varied between 0-100, based on the scores were calculated. Choosing for
the optimal points on the curve for the thresholds to define the good, intermediate
and poor collaterals, we found scores under 55.45% should be considered as poor,
between 55.45 and 70.5% intermediate and above 70.5% good. To overcome the
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Overlap of
Original Subject Low-rank Sparse original and sparse

Fig. 6. 2D MIP representation for Low-rank and sparse decomposition for a poor,
intermediate and good subject. The overlaid image is shown for better visibility
of unfilled vessels (green) with the original collaterals (pink).
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effect of over-estimation, we performed a leave-one-out approach to draw the ROC
curves and the final curve is drawn from the average of 46 iterations of true positive
and false positive rates. An AUC of 85.39% was obtained from the ROC, with AUC
of 90.95%, 83.53% and 81.70% for good, intermediate and poor classes respectively.
Table 2 shows the confusion matrix. An overall accuracy of 84.78% is obtained from
the true positive and true negative results.

Table 2: Confusion Matrix showing ACCESS Results.

Radiologist score
K Good Intermediate Poor
Automatic score

Good 13 2 0
Intermediate 1 14 2
Poor 1 1 12

4.5 Sensitivity Analysis

In this section, we perform sensitivity analysis for our pipeline on parameter choices
of vessel enhancement. Since we do not have any ground truth data for direct
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Binary sparse Small vessels removed Binary low-rank

Fig. 7. Post-processing results of 2D MIP of poor, intermediate and good collat-
erals.
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Fig. 8. ROC curves for Good, Intermediate and Poor Collateral Scores Evaluation.

segmentation performance analysis, we assessed the impact of parameters in vessel
enhancement (regularization parameter, 7 and thresholding value) on the overall
performance of ACCESS. The reference study by Jermen’s enhancement filtering
[15] has shown that probabilistic segmentation of blood vessels can be obtained by
setting 7 to a value between 0.5 to 1 for a uniform response. Therefore, we tested
the scoring results for multiple 7 values. We achieved the best result for 7=0.5.
In every experiment with different 7, we varied the threshold value within 0.01 to
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Fig. 9. Average AUC of three classes for varying threshold values.

0.09 (chosen based on the mean intensity of low-rank and sparse images) to obtain
the best sensitivity and specificity with the highest AUC in the ROC. Table 3
shows the AUC for each 7 with the optimum threshold value.

Table 3: Influence of 7 on the Final Evaluation.

T AUC Good | AUC Intermediate | AUC Poor | AUC Average
0.5 0.909 0.823 0.816 0.849
0.6 0.875 0.798 0.839 0.837
0.7 0.914 0.656 0.843 0.804
0.8 0.909 0.641 0.843 0.798
0.9 0.923 0.637 0.816 0.792
1 0.904 0.660 0.825 0.797

Since 7=0.5 shows the best performance, we achieved the segmentation with
this value. Fig. 9 shows how the scoring is sensitive to the varied threshold values.
Note that the final ROC curve shown in Fig. 8 from the cross-validation results is
done using the optimum threshold value.

4.6 Inter and Intra-rater Variability Analysis

A subset of 27 test cases from the data were rated individually by the two separate
radiologists. To show the effect of visual inspection and human rater’s variability,
we used the consensus ground truth and the separate ratings by the radiologists
as well as one of the authors (MA), who served as the third independent rater.
The rating is performed based on ASPECTS by assessing the degree of collaterals
visually. The subjects’ collaterals are scored as “good” if both sides have equal
extent of collaterals in any of the phases from arterial to venous with contrast.
The same criteria are followed for intermediate and poor subjects with medium
and very low extent of collaterals in the affected side of MCA territory compared
to the healthy side respectively. To evaluate the inter-rater variability of the two
radiologists and the author in the subset of 27 cases, we computed Fleiss’ Kappa
(k) statistics [8], which ranges between 0 and 1, (with values from 0.0 to 0.2
indicating slight agreement, 0.21 to 0.40 indicating fair agreement, 0.41 to 0.60
indicating moderate agreement, 0.61 to 0.80 indicating substantial agreement, and
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0.81 to 1.0 indicating almost perfect or perfect agreement based on the guidelines
of Landis et al. [20]) for three raters. With an overall k=0.455 (p < 0.0005),
the result represents moderate strength of agreement among the raters. The two
radiologists’ rating variability on the same subset of cases is obtained by computing
a paired Cohen’s kappa (k) statistics [4], yielding k=0.471 (p < 0.001). It should
be noted that the collateral score influences the clinical outcome significantly. For
example, a “poor” case misclassified as being “good” can cause excessive bleeding
leading to hemorrhagic stroke with EV'T while a “good” case being misclassified as
“poor” ignores a patient from EVT. Due to the raters’ variability, poor treatment
decisions might be made, which would adversely impact patients. In the subset, the
two radiologists have disagreement in scoring poor vs. intermediate in 10% of cases,
11% for poor vs. good and 35% for good vs. intermediate cases. These findings
(56% of cases misclassified) fall in the middle of the range of what Grunwald et al.
[13] found where score agreements range from 36.2% to 81.6%. Further, to show
the agreement between ACCESS and radiologists’ scores, we computed Cohen’s
kappa [4] with k=0.771 (p < .0005) and obtained a substantial agreement between
the automated approach and radiologists’ score. To verify the scoring quality of
the independent rater (MA), we computed Cohen’s kappa coefficient [1] between
the independent rater and the consensus of two expert raters and obtained a
substantial agreement with k=0.649 (p < 0.0005). Finally, to assess intra-rater
variability, two separate ratings were performed with an interval of 5 days by the
same rater MA to compute kappa statistics with k=0.530 (p < 0.0005). Based on
the statistics, we can see how the inter- and intra-rater variability between human
raters potentially affect the collateral scoring.

4.7 Computation Times

Processing was done on a Windows 7 machine equipped with an Intel(R) Core(TM)
i7-4770 CPU @ 3.40GHz and 28 GB of RAM. Registration using ANTS took an
average of 19 minutes to register an individual to the template and a further 16
minutes for vessel alignment. The other processing steps are faster, calcification
removal takes under 2 minutes, vessel enhancement for individual 3D scans takes
10 seconds and the overall scoring from the sequence of 8 patients is completed
within 25 seconds. In order to reduce the processing time of registration, in the
future, we will port the pipeline to the GPU.

5 Discussion and Future Work

The novelty of ACCESS is using the group behavior of normal controls to score
the collaterals in ischemic stroke patients. We used the robust fRMC approach to
obtain the sparsity and low-rank metrics of blood vessels in 4D CTA. Most previous
methods used other imaging techniques or didn’t consider the fRMC approach to
score collaterals, and thus direct comparisons with the state-of-the-art methods
are beyond the scope of the paper.

Our proposed method has several advantages over previous techniques. First,
very few automated techniques rely on 4D CTA which gives detailed and dynamic
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filling information of collaterals. The automatic approaches that do exist for col-
lateral supply evaluation use single-phase CTA, which may result in inaccurate
estimation of collaterals due to suboptimal selection of a time point for scanning.
Second, our approach is less dependent on feature selection and training data,
potentially making it more robust in practice. Specifically, machine learning-based
automatic approaches can be reliable only when there is a large dataset to over-
come overfitting. In contrast, the developed ACCESS method is reliable as it is
less independent of training. Thus not only does our method take advantage of
full dynamic flow information from 4D CTA but it is also automatic and yields
results inline or better than previous methods. Furthermore, the assessment of the
final score resembles the definition of collateral circulation status, which is more
intuitive for the physicians to employ.

Experiments as well as existing studies [14] have proved that the reference
parameters from the state-of-the-art medical imaging registration toolkit, ANTS,
used in the registration blocks of the pipeline are robust for our applications (i.e.,
registration to the template and fine alignment of vessels). To test the impact of
vessel segmentation parameters and the threshold used in post-processing, a sen-
sitivity analysis was performed to obtain the optimal parameters for final evalua-
tion. Based on the optimal parameters, collateral grading performance is analyzed
using a ROC curve to find cutoffs for scores from different cutoff value settings
in a leave-one-out approach. The experimental design of parameter choices with
best sensitivity and specificity gives the satisfactory AUC for scoring collateral
circulation. This also makes our method more robust.

As noted previously, fRMC is independent of tunable parameters. To assess the
impacts of the convergence parameters, y1 and 72 in the extended Frank-Wolfe
optimizer, we evaluate the performance of ACCESS varying 1 and 2 in the step
size of 0.1 following the range of 0 < 71 < 72 < 1 with best 7 obtained from
previous sensitivity analysis. It can be seen in Fig. 10 that ACCESS performance
in terms of AUC is fairly stable across different 71 and 72. Note that when only
~1 is set to 0, the AUC decreases slightly (from 0.85 to 0.81).

Although our method doesn’t require many data for the evaluation, in the
future, the cohort of normal subjects can be enriched for better performance. A
more thorough validation of ACCESS is still needed, with a larger dataset from
different CT scanners and acquisition protocols, and this will be explored in future
work.

The extent of collaterals in intermediate and good subjects were very similar
in some cases. Since inter- and intra-rater variability still remains for scoring those
subjects, we will seek further validation of our method with ground truth labels
collected from consensus of more raters to improve data annotation quality.

6 Conclusion

In this paper, we proposed the ACCESS method for automatic scoring of collateral
circulation in the context of treatment decision making in ischemic stroke. To the
best of our knowledge, it is the first approach with low-rank and sparse decom-
position for collateral score evaluation in ischemic stroke using 4D CTA. With an
analogue to existing collateral scoring protocols and being less reliant on machine
learning methods that require large amounts of training data, the approach may
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Fig. 10. Demonstration of 1 and 72 choices on AUC of the overall system.

be more robust than human-rater scoring and more easily comprehensible in the
clinical environment.
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