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Global Ultrasound Elastography
in Spatial and Temporal Domains

Md Ashikuzzaman, Claudine J. Gauthier and Hassan Rivaz

Abstract—In this paper, a novel computationally efficient
quasi-static ultrasound elastography technique is introduced by
optimizing an energy function. Unlike conventional elastography
techniques, three Radio-Frequency (RF) frames are considered
to devise a non-linear cost function consisting of data-intensity
similarity term, spatial regularization terms and most impor-
tantly, temporal continuity terms. We optimize the aforesaid
cost function efficiently to obtain Time Delay Estimation (TDE)
of all samples between the first two and last two frames of
ultrasound images simultaneously, and spatially differentiate the
TDE to generate axial strain map. A novelty in our spatial
and temporal regularizations is that they adaptively change
based on the data, which leads to substantial improvements in
TDE. We handle the computational complexity resulting from
incorporation of all samples from all three frames by converting
our optimization problem to a sparse linear system of equations.
Consideration of both spatial and temporal continuity makes the
algorithm more robust to signal decorrelation than the previous
algorithms. We name the proposed method GUEST: Global
Ultrasound Elastography in Spatial and Temporal directions. We
validated our technique with simulation, experimental phantom
and in-vivo liver data and compare the results with two recently
proposed TDE methods. In all experiments, GUEST substantially
outperforms other techniques in terms of Signal to Noise Ratio
(SNR), Contrast to Noise Ratio (CNR) and Strain Ratio (SR) of
the strain images.

Index Terms—Real-time ultrasound elastography, Time-delay
estimation, Temporal and spatial regularization, Sparse systems

I. INTRODUCTION

Ultrasound Elastography is a non-invasive medical imaging
technique to infer mechanical properties of tissue by utiliz-
ing ultrasound Radio-Frequency (RF) data. Elastography is
increasingly being applied in diagnosis, image-guided surgery
and numerous other clinical applications [1], [2]. Among
several types of clinically adopted elastography techniques, it
can broadly be classified into two classes: “dynamic” which in-
volves constant monitoring of tissue response to time-varying
forces to quantify the mechanical properties of the tissue, and
“quasi-static” which estimates slow deformation of tissue due
to an approximately constant force [3]–[6]. Within the broad
class of quasi-static elastography, our work is based on free-
hand palpation elastography. Free-hand palpation elastogra-
phy often suffers from decorrelation between pre- and post-
compression images due to out-of-plane motion of the probe,
blood flow in vessels, incoherent motion of fluid in fluid-filled
lesions and the 3D nature of tissue deformation even with
purely an axial probe motion [7]. Despite these drawbacks, this
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method has generated interest due to its ease-of-use, since free-
hand palpation elastography involves holding the probe and
pressing the region of interest without requiring any additional
tool [8]–[12].

Time Delay Estimation (TDE) is a necessary step in all
ultrasound elastography methods. Unfortunately, TDE is an ill-
posed problem because one sample of RF data by itself does
not provide enough information for tracking. Therefore, two
distinct classes of methods have emerged to solve this problem.
In the first class, RF data is divided into several windows
and it is assumed that the displacements of all samples in
a particular window are same. The additional samples in
the window provide enough information for tracking [13]–
[17]. The second class penalizes displacement discontinuity
between neighboring samples and calculates a displacement
estimate for all samples of RF data. These methods are named
regularized optimization-based or energy-based techniques [7],
[18]–[22]. The windowing in the first class and discontinuity
penalty in the second class can be considered as hard and soft
regularization respectively. Between the two aforementioned
techniques, window-based or block matching algorithms are
more commonly used. In window-based techniques, RF data
is divided into several blocks and displacement of each block is
found either by looking at the maximum cross correlation [4],
[23]–[26] or zero phase crossing [17], [27], [28]. Block
matching algorithms make an inherent compromise between
spatial resolution and accuracy based on the size of window.
On the one hand, a more accurate displacement field can
be obtained if the window size is ten times the ultrasound
wavelength or even larger [29]. The accuracy is higher because
a large correlation window reduces the estimation variance,
also known as jitter error [26], [30]. Since the RF signal is non-
stationary, a large window induces signal decorrelation [26],
[31] and hence amplifies noise. On the other hand, better
spatial resolution can be achieved by sacrificing accuracy
and selecting smaller windows. The displacement estimation
can be performed in either the axial direction [4], [32], [33]
or both axial and lateral directions [34]–[36]. The downside
of the two-dimensional search is that it is computationally
more expensive. In addition, the lateral displacement field is
substantially less accurate than the axial displacement field
due to the low resolution of ultrasound in this direction.

TDE techniques that are based on minimization of cost
functions are robust to signal decorrelation as the displace-
ment continuity assumption is exploited to reduce estimation
variance. The drawback of optimization based techniques lies
in the fact that these techniques are hard to implement in real-
time due to their computational complexity [20], [37]. This
problem can be alleviated by using Dynamic Programming
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(a) window-based (b) DPAM (c) GLUE (d) GUEST

Fig. 1: Estimation of displacement field in window-based, DPAM, GLUE and GUEST algorithms. Blue dots represent samples
of RF data used in displacement estimation, and the dashed window shows how the data is divided to estimate displacement
fields. In (a), the data in the window is used to estimate the displacement of the central sample. In (b) and (c), displacement
of all samples in an RF-line and the entire image are used, respectively, to estimate the displacement field of all these samples
simultaneously. In (d), three RF frames are considered and both spatial and temporal continuity constraints are enforced.
Displacement of all samples in these frames are calculated simultaneously.

(DP) [18] which efficiently calculates the integer displacement
field between two RF frames. However, integer displacement
field alone does not suffice for the accurate and smooth
TDE requirement. Efficient minimization of a cost function
involving data and displacement continuity terms to calculate
the subsample displacement field was introduced in Dynamic
Programming Analytic Minimization (DPAM) [7]. DPAM
takes the initial integer displacement field from DP [18], and
calculates the subsample axial and lateral displacements of
all samples of one column of RF data. Since each column
of RF data is optimized independently, discontinuity between
the RF lines leads to some vertical stripes in the TDE. GLobal
Ultrasound Elastography (GLUE) [19] resolved this drawback
by considering the whole image for calculating the subsample
displacement field. It is worth mentioning that, like DPAM,
GLUE takes the initial displacement field from DP.

Though the displacement field estimated by GLUE is spa-
tially accurate and smooth, information in the temporal domain
still remains unexploited. In this paper, we introduce a novel
technique called Global Ultrasound Elastography in Spatial
and Temporal directions (GUEST) where three consecutive
RF frames are incorporated instead of two to estimate the
axial and lateral displacement fields. We utilize information
in 3 frames, and enforce temporal continuity constraints on
the displacement field to simultaneously estimate two 2D
displacement fields. In other words, assuming that the 3 frames
are I1, I2 and I3, and the 2D displacement fields between
I1 and I2 is d1, and between I2 and I3 is d2, we impose
temporal constraints on d1 and d2. Window-based methods,
DPAM, GLUE and GUEST can be summarized as follows
(see also Fig. 1):
• Window-based methods: The displacement of each win-

dow (few ultrasound wavelengths) is calculated together.
• DPAM: Displacements of all samples of a single RF

line are calculated together. Axial continuity is utilized
to reduce estimation variance.

• GLUE: Displacements of all samples of a single image
are calculated together. Axial and lateral continuities are

utilized to reduce estimation variance.
• GUEST: The displacement of all samples of multiple

images is calculated together. Axial, lateral and temporal
continuities are utilized to reduce estimation variance.

In addition to utilizing multiple images, another contribution
of this work is the introduction of adaptive regularization
terms. Instead of assuming equal displacements in the spatial
domain or constant velocity in the temporal domain, we
propose data-driven spatial and temporal regularization terms.
Exploiting multiple images and using adaptive regularization
terms leads to substantial improvements in the quality of the
strain images in GUEST compared to GLUE. Specifically,
adaptive spatial regularization prevents underestimation of the
displacement field. Adaptive temporal regularization accounts
for variations in probe velocity, which leads to different strain
levels between consecutive frames. We describe these two
regularization terms in Section II.B.

TDE using three images has been considered before [22].
However, there are two major differences. First, TDE opti-
mization was limited to single RF lines like DPAM. Second,
a linear stress-strain relationship was assumed, which may not
always hold. GUEST is validated using simulation, phantom
and in-vivo data, and is compared to recent window-based and
optimization-based methods [14], [19]. GUEST substantially
outperforms both methods in all experiments. An executable
implementation of GUEST can be found at https://users.encs.
concordia.ca/∼hrivaz/Ultrasound Elastography/.

An executable code of the proposed method will be avail-
able after acceptance of this paper (similar to our previous
work DPAM and GLUE, which are now publicly available).

II. METHODS
Assume I1 and I2 are two RF frames of size m×n collected

from a tissue before and after deformation respectively. Our
aim is to calculate the axial and lateral displacement fields a
and l which accurately map the pre-compression image I1 to
the post-compression image I2. After finding the displacement
fields, it is common to spatially differentiate them to obtain



3

Sample 
in the 
last 
frame

Sample 
in the 
middle 
frame

Sample 
in the 
first 
frame

Difference in 
data intensity 

Difference in 
displacement estimates 

from neighboring 
samples  

Difference in frame 
to frame 

displacement 
estimates

Total cost 
for a 

sample

Fig. 2: An illustration of the cost function.

strain images. We first briefly explain GLUE [19], a closely
related previous technique which calculates a and l. We then
present GUEST and derive the mathematical equations to
calculate displacement fields while enforcing spatio-temporal
continuity constraints.

A. Global Time Delay Estimation (GLUE)

GLUE uses DP [18], an efficient non-iterative method for
global optimization, to get initial time delay estimations in
axial (ai,j) and lateral (li,j) directions, where 1 ≤ i ≤ m
and 1 ≤ j ≤ n denote the location in the image. DP alone
provides integer displacement estimates, which is not enough
to provide an accurate displacement estimation. To this end,
GLUE adds subsample estimation ∆a(i, j) and ∆l(i, j) to DP
displacements. ∆a(i, j) and ∆l(i, j) are obtained from the
minimization of the following regularized cost function:

C(∆a1,1, ...,∆am,n,∆l1,1, ...,∆lm,n) =
n∑

j=1

m∑
i=1

{[I1(i, j)− I2(i+ ai,j + ∆ai,j , j + li,j + ∆li,j)]
2

+ α1(ai,j + ∆ai,j − ai−1,j −∆ai−1,j)
2

+ α2(ai,j + ∆ai,j − ai,j−1 −∆ai,j−1)2

+ β1(li,j + ∆li,j − li−1,j −∆li−1,j)
2

+ β2(li,j + ∆li,j − li,j−1 −∆li,j−1)2}
(1)

where α1 and α2 are regularization parameters for axial
displacements, and β1 and β2 are regularization parameters
for lateral displacements. By minimizing this cost function,
GLUE converts the optimization problem into a linear set
of equations of the classical form Ax = b. By solving
the aforemention linear set of equations, GLUE finds the
subsample displacement field and adds it to the initial estimate
to obtain total displacement field.

B. GUEST: Global Ultrasound Elastography, Spatio-
Temporal

We utilize three frames during tissue compression, and
enforce adaptive spatio-temporal priors on the displacement
field. This is in contrast to GLUE, which only considers spatial
priors, and further does not adapt the priors to better represent
the data. Let I1, I2 and I3 be three RF frames, and a1,
l1, a2 and l2 be axial and lateral DP integer displacement
estimates from frame 1 to frame 2, and from frame 2 to frame
3 respectively.
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Fig. 3: Flow diagram demonstration of the proposed GUEST
algorithm.

GUEST simultaneously estimates refinements ∆a1, ∆l1,
∆a2 and ∆l2 and adds them to integer DP displacement
fields. To that end, we construct a cost function including data
terms, spatial continuity terms and temporal continuity terms
as follows (see also Fig. 2):

C(∆a1
1,1,∆l

1
1,1, ...,∆a

1
m,n,∆l

1
m,n,∆a

2
1,1,∆l

2
1,1, ...,∆a

2
m,n,

∆l2m,n) =

n∑
j=1

m∑
i=1

{Dg +Rs +Rt}

(2)
Here, Dg stands for data of the GUEST method and is

defined as follows:

Dg = [I2(i, j)− I1(i− a1
i,j −∆a1

i,j , j − l1i,j −∆l1i,j)]
2

+ [I2(i, j)− I3(i+ a2
i,j + ∆a2

i,j , j + l2i,j + ∆l2i,j)]
2

(3)

Rs and Rt are adaptive spatial and temporal regularization
terms respectively and are elaborated below.

1) Adaptive Spatial and Temporal Regularizations: Spa-
tial regularization terms considered in GLUE assumed that
displacement of a sample should ideally be the same as the
displacement of neighbouring sample. However, this assump-
tion is not necessarily correct in elastography. Often, such
constraint results in the underestimation of the displacement
field [7]. To compensate for the anticipated underestimation,
we introduce adaptive spatial regularization terms of the form
α(dispi − dispi−1 − ε)2 instead of α(dispi − dispi−1)2,
where ε is the average difference between the displacement
of two neighboring pixels i and i − 1. As such, the spatial
regularization Rs is defined as follows:

Rs = α1(a1
i,j + ∆a1

i,j − a1
i−1,j −∆a1

i−1,j − ε1a)2

+ α1(a2
i,j + ∆a2

i,j − a2
i−1,j −∆a2

i−1,j − ε2a)2

+ α2(a1
i,j + ∆a1

i,j − a1
i,j−1 −∆a1

i,j−1 − ε1a)2

+ α2(a2
i,j + ∆a2

i,j − a2
i,j−1 −∆a2

i,j−1 − ε2a)2

+ β1(l1i,j + ∆l1i,j − l1i−1,j −∆l1i−1,j − ε1l )2

+ β1(l2i,j + ∆l2i,j − l2i−1,j −∆l2i−1,j − ε2l )2

+ β2(l1i,j + ∆l1i,j − l1i,j−1 −∆l1i,j−1 − ε1l )2

+ β2(l2i,j + ∆l2i,j − l2i,j−1 −∆l2i,j−1 − ε2l )2

(4)

where α1, α2, β1, β2 are axial and lateral regularization
weights respectively. εka and εkl are axial and lateral offset
terms respectively that adaptively change based on the level
of strain. The superscript k is 1 when comparing I1 to I2, and
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TABLE I: Definition of the variables, parameters, vectors and matrices

Notation Definition Notation Definition

I1, I2, I3 RF frames α3, β3 Temporal regularization parameters

a1, a2 Axial displacement estimates from DP εka, εkl Adaptive spatial regularization parameters

l1, l2 Lateral displacement estimates from DP γa, γl Adaptive temporal regularization parameters

∆a1, ∆a2 Subsample axial displacements from GUEST D Matrix containing regularization parameters

∆l1, ∆l2 Subsample Lateral displacements from GUEST H , H1 Matrices containing data derivatives

Dg Data intensity similarity term µ Vector containing data differences

Rs Spatial continuity term d Vector containing TDEs from DP

Rt Temporal continuity term ∆d Vector containing subsample TDEs

α1, α2 Axial regularization parameters bt Adaptive temporal continuity vector

β1, β2 Lateral regularization parameters bs Adaptive spatial continuity vector

is 2 when comparing I2 to I3. They are average difference
in axial and lateral displacements between two neighboring
samples and are calculated as follows:

εka =
ak
m−a

k
1

m−1 , εkl =
lkn−l

k
1

l−1
(5)

Before introducing the temporal regularization, it is useful to
revisit some basic physics concepts. Both a and l are displace-
ments with a unit such as mm. However, the ultrasound frame
rate usually does not change during a single data collection
and therefore a and l can also be considered velocity with a
unit such as mm/T , where T is the time interval between
two frames. Now a2 − a1 is the changes in velocity and
therefore can be considered as acceleration with a unit such as
mm/T 2. In free hand palpation elastography, it is unlikely that
velocity of the probe is constant. Therefore, we introduce an
adaptive temporal regularization that takes into account non-
zero accelerations. As such, Rt is defined as:

Rt = α3(a2
i,j + ∆a2

i,j − a1
i,j −∆a1

i,j − γa)2

+ β3(l2i,j + ∆l2i,j − l1i,j −∆l1i,j − γl)2
(6)

where, α3 and β3 denote temporal regularization weights in
the axial and lateral directions respectively. Intuitively, instead
of penalizing a2− a1 or l2− l1, the γ terms allow them to be
different without any penalty. γa and γl approximate axial and
lateral accelerations respectively and are defined as follows:

γa =

n∑
j=1

m∑
i=1
{Kg∗a2

i,j−Kg∗a1
i,j}

mn , γl =

n∑
j=1

m∑
i=1
{Kg∗l2i,j−Kg∗l1i,j}

mn
(7)

where Kg is a Gaussian kernel, which is used to average
displacement estimates to obtain an estimate of acceleration
with small variance.

2) Optimization of the Cost Function: Rs and Rt in (2)
are quadratic in the unknowns, but the data term Dg is highly
nonlinear since all the unknowns appear inside the nonlinear
“functions” I1, I2 and I3. Our goal is now to simplify this
nonlinear function into a quadratic function by using 2D
Taylor series expansion of the data term as follows:

Dg ≈
n∑

j=1

m∑
i=1

{[I2(i, j)− I1(i− a1
i,j , j − l1i,j) + ∆a1

i,jI
′

1,a

+ ∆l1i,jI
′

1,l]
2

+ [I2(i, j)− I3(i+ a2
i,j , j + l2i,j)−∆a2

i,jI
′

3,a −∆l2i,jI
′

3,l]
2}
(8)

This equation is now quadratic in unknowns, and therefore,
the cost function of Eq. 2 can be optimized by setting the
partial derivatives with respect to unknowns to zero. Namely,
we set ∂Ci,j

∂∆a1
i,j

= 0, ∂Ci,j

∂∆l1i,j
= 0, ∂Ci,j

∂∆a2
i,j

= 0 and ∂Ci,j

∂∆l2i,j
= 0

for i = 1, 2, 3, ...,m and j = 1, 2, 3, ..., n. We organize
unknown subsample displacements of 2mn samples in ∆d =
[∆a1

1,1,∆l
1
1,1, . . . ,∆a

1
m,n,∆l

1
m,n,∆a

2
1,1,∆l

2
1,1, . . . ,∆a

2
m,n,

∆l2m,n]T and the known initial estimates in
d = [a1

1,1, l
1
1,1, . . . , a

1
m,n, l

1
m,n, a

2
1,1, l

2
1,1, . . . , a

2
m,n, l

2
m,n]T .

After some algebraic operations, we get:

(H +D)∆d = H1µ−Dd+ bt + bs (9)

H = diag(F1, F3) is a symmetric tridiagonal matrix
where Ft = diag(h

′

t

2
(1, 1), h

′

t

2
(1, 2), .., h

′

t

2
(m,n)). Here,

t ∈ {1, 3}. The entries of Ft are defined by:

h
′

t

2
(i, j) =

[
I

′

t,a

2
(i, j) I

′

t,a(i, j)I
′

t,l(i, j)

I
′

t,a(i, j)I
′

t,l(i, j) I
′

t,l

2
(i, j)

]
(10)

where I
′

t,a(i, j) and I
′

t,l(i, j) denote the derivatives of It in
the axial and lateral directions at the point (i+ ai,j , j + li,j).
H1 = diag(F

′

1, F
′

3) is a diagonal matrix where F
′

t =
diag(I

′

t,a(1, 1), I
′

t,l(1, 1), I
′

t,a(1, 2), I
′

t,l(1, 2), ..., I
′

t,a(m,n),

I
′

t,l(m,n)) and

µ =
[
g1 g2

]T
(11)

where

g1 =
[
I1,1
2 − I1−a1

1,1,1−l
1
1,1

1 . . . Im,n
2 − Im−a

1
m,n,n−l

1
m,n

1

]
(12)
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Q
′

=



α1 + α2 + α3 0 −α2 0 0 . . . . . . 0

0 β1 + β2 + β3 0 −β2 0 . . . . . . 0

−α2 0 α1 + 2α2 + α3 0 −α2
. . . . . . 0

0 −β2 0 β1 + 2β2 + β3 0 −β2
. . . 0

...
. . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . −β2

...
. . . . . . . . . −α2 0 α1 + α2 + α3 0

0 . . . . . . . . . 0 −β2 0 β1 + β2 + β3


(13)

R
′

=



2α1 + α2 + α3 0 −α2 0 0 . . . . . . 0

0 2β1 + β2 + β3 0 −β2 0 . . . . . . 0

−α2 0 2α1 + 2α2 + α3 0 −α2
. . . . . . 0

0 −β2 0 2β1 + 2β2 + β3 0 −β2
. . . 0

...
. . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . −β2

...
. . . . . . . . . −α2 0 2α1 + α2 + α3 0

0 . . . . . . . . . 0 −β2 0 2β1 + β2 + β3


(14)

g2 =
[
I1,1
2 − I1+a2

1,1,1+l21,1
3 . . . Im,n

2 − Im+a2
m,n,n+l2m,n

3

]
(15)

bt, a vector of size 4mn, is defined as:

bt =
[
−ε1 −ε2 . . . −ε1 −ε2 ε1 ε2 . . . ε1 ε2

]T
(16)

where ε1 = α3γa and ε2 = β3γl. The adaptive regularization
term bs is defined as:

bs =
[
b1 b2

]T
(17)

Here, bk (k ∈ {1, 2}) is a vector of size 2mn. bk is defined
as:

bk =
[
bkinit bkmid . . . bkmid bkend

]
(18)

bkinit, b
k
mid and bkend are vectors of size 2n and are defined as

follows:

bkinit =

[
−(α1 + α2)εka,−(β1 + β2)εkl ,−α2ε

k
a,−β2ε

k
l , . . . ,

−α2ε
k
a,−β2ε

k
l ,−α1ε

k
a + α2ε

k
a,−β1ε

k
l + β2ε

k
l

]
(19)

bkmid =
[
−α2ε

k
a −β2ε

k
l 0 . . . 0 α2ε

k
a β2ε

k
l

]
(20)

bkend =

[
(α1 − α2)εka, (β1 − β2)εkl , α1ε

k
a, β1ε

k
l , . . . ,

α1ε
k
a, β1ε

k
l , α1ε

k
a + α2ε

k
a, β1ε

k
l + β2ε

k
l

]
(21)

D is defined as:
D =

[
A B
B A

]
(22)

A is:

A =



Q
′

S
′

O
′

. . . . . . O
′

S
′

R
′

S
′ . . . . . .

...

O
′

S
′

R
′ . . . . . .

...
...

. . . . . . . . . . . .
...

...
. . . . . . . . . R

′
S

′

O
′

. . . . . . O
′

S
′

Q
′


(23)

S
′

= diag(−α1,−β1, ...,−α1,−β1) and O
′

is zero matrix of
size 2n× 2n. B = diag(S

′′
, S

′′
, ..., S

′′
) is a diagonal matrix
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of size 2mn× 2mn where

S
′′

= diag(−α3,−β3, ...,−α3,−β3). (24)

Q
′

and R
′

are tridiagonal matrices of size 2n × 2n and are
defined as Eq. 13 and 14 respectively. For a quick look-up,
we have provided short definitions of the variables, parameters,
vectors and matrices associated with our technique in Table I.
Furthermore, for a better understanding of our method, we
present a flow diagram in Fig. 3.

C. Ultrasound Simulation

The simulation phantom is generated using Field II, a com-
monly used ultrasound image simulator [38]. Once the phan-
tom is generated, it is compressed by ABAQUS (Province, RI),
a FEM package. The mechanical property of the simulated
phantom is assumed to be homogeneous with a cylindrical
inclusion with an elasticity of 0 kPa in the middle (i.e. a
hole). The elasticity modulus of the background is considered
to be 4 kPa. The cylindrical inclusion simulates a vein with
a diameter of 8 mm which easily collapses under pressure.
For simulation in Field II, the parameters of the ultrasound
probe are set to values consistent with a commercial probe.
The frequency of the probe is 7.27MHz, the sampling rate is
40MHz and the fractional bandwidth is 60%. The number of
active elements for beamforming is set to 64.

III. RESULTS

For evaluating the efficacy of our algorithm, we have tested
our algorithm on Finite Element Method (FEM) simulation
data, a CIRS tissue-mimicking breast phantom (Norfolk,VA)
and clinical data. We have compared the results with two
previously published algorithms Hybrid [14] (a window-based
method) and GLUE [19] (an optimization-based method).
Along with qualitative comparison by inspection, we have
used three conventional quality metrics Signal to Noise Ratio
(SNR), Contrast to Noise Ratio (CNR) [4] and Strain Ratio
(SR) to allow quantitative comparisons:

CNR =
C

N
=

√
2(s̄b − s̄t)2

σb2 + σt2
,SNR =

s̄

σ
,SR =

s̄t
s̄b

(25)

where s̄b and s̄t are spatial strain average of background and
target, σb2 and σt

2 represent spatial variance of background
and target, and s̄ and σ denote spatial average and standard
deviation of background window respectively. It is worth
mentioning that windows where the underlying true strain is
relatively uniform should be chosen to calculate SNR and
CNR.
For simulation and phantom experiments, spatial regularization
parameters α1, α2, β1, β2 are set to 5, 1, 5, 1 respectively.
For in-vivo experiments, α1 and β1 are fixed at 20 while
the other two spatial regularization parameters are kept the
same. The temporal regularization parameters α3 and β3

are fixed at 20 for simulation and 1.5 for phantom and in-
vivo experiments. For comparison purposes, results for GLUE
and Hybrid are also generated. The tunable regularization
parameters for GLUE are set to the values as described in
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Fig. 4: Ground truth axial strain from FEM.

GLUE [19], which are also different for different applica-
tions. Ultrasound machines have presets for imaging different
organs. For the Hybrid method, optimal results are obtained
considering window size, inter-window shift, nearest neighbor
factors and weighting factors of 380, 32, 5 and 0.4 respectively
for simulation and phantom experiments. For in-vivo data,
the Hybrid method produces optimal strain images when
nearest neighbor factors are set to 3 while all other parameters
are similar to those of simulation and phantom experiments.
We incorporate three frames for our proposed method, and
therefore have two axial strain fields. To keep the paper
concise, we show only one of the strain images.

A. Simulation Results

We compress the simulation phantom by a maximum of 1%
with the strain between two consecutive frames set to 0.5%.
While dealing with real data, we encounter various unknown
types of noise. Hence it is more realistic to add random noise
to simulation RF data. We add two levels of noise with uniform
distribution having Peak Signal-to-Noise Ratio (PSNR) values
of 18.75 dB and 10.78 dB. Fig. 4 shows the ground truth
axial strain (i.e. the FEM strain).
Along with the results for the case of no additive noise,
we report the results for the aforesaid two levels of additive
noise. Fig. 5 shows the axial strain images for Hybrid, GLUE
and GUEST. For all of the cases, GUEST produces visually
better strain images than Hybrid and GLUE. In Fig. 5, the
inclusion edge might be diffused due to two factors: first,
the regularization terms in GLUE and GUEST; second, the
large kernel size of the least squares method for generating
strain images from displacement estimates. Table II shows
the quantitative comparison of performance among the three
methods. GUEST outperforms Hybrid and GLUE in terms
of SNR, CNR and SR. It is worth noting that since our
inclusion in this experiment is easily deformable, higher SR
value corresponds to a better strain image. The target and
background windows for calculating these quantitative values
are demonstrated in Fig. 5(b).
To provide a more comprehensive view of CNR values,
histograms are shown in Fig. 5. We have moved the small
blue colored window in Fig. 5(c) within a big window to
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Fig. 5: Axial strain images and histograms of CNR values for the simulation phantom. Row 1 corresponds to the case of
no additive noise. Rows 2 and 3 correspond to PSNR values 18.75 dB and 10.78 dB respectively. Columns 1-3 show strain
images for Hybrid, GLUE and GUEST respectively. Column 4 depicts the histograms of CNR values. (m) shows the color bar
for strain images.
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TABLE II: SNR, CNR and SR of the strain images for simulation phantom. CNR is calculated from blue colored target
windows and red colored background windows depicted in Fig. 5(b). SR is calculated on blue colored target windows and
white colored background windows. SNR is calculated on red colored background windows. Elasticity moduli of inclusion and
background are 0 kPa and 4 kPa respectively.

No additive noise PSNR = 18.75 dB PSNR = 10.78 dB
SNR CNR SR SNR CNR SR SNR CNR SR

Hybrid 1.80 16.57 3.31 4.15 13.07 2.53 fails fails fails
GLUE 1.90 17.27 2.90 1.89 15.89 2.81 1.63 13.07 2.75

GUEST 5.72 23.64 3.06 5.09 23.67 3.00 2.28 20.02 3.05

take 6 target windows. At the same time, we sweep the small
red colored window within 2 large windows to consider 20
background windows. We have calculated the CNR value for
every combination of target and background windows, which
results in 120 total combinations. The histograms for this
120 CNR values show that, at lower CNR values, GUEST
has a lower frequency than the other two algorithms under
consideration. The histograms show that GUEST has much
higher frequencies than Hybrid and GLUE at higher CNR
values. We have performed statistical analysis using the paired
t-test with the aforementioned 120 CNR values. For the
case of no additive noise, GLUE is statistically better than
the hybrid method with a p-value of 0.2551. For this case,
GUEST is statistically better than GLUE with a p-value of
1.5458×10−13. For PSNR values of 18.75 dB and 10.78 dB,
GLUE is statistically better than the hybrid method with p-
values of 1.6112 × 10−7 and 5.7728 × 10−10 respectively.
In addition, GUEST statistically outperforms GLUE with p-
values of 4.6243× 10−10 and 1.6163× 10−13 respectively.

B. Experimental Results

The phantom experiment was carried out at PERFORM centre,
Concordia Univeristy. RF data was collected using an E-Cube
R12 research ultrasound machine with an L3-12H linear array
probe at the center frequency of 10MHz and sampling rate of
40MHz. Clinical data was collected at Johns Hopkins Hos-
pital from a research Antares Siemens system at 6.67MHz
center frequency with a VF 10-5 linear array at a sampling
rate of 40MHz.
1) Phantom Results: Compression was performed on a tissue-
mimicking breast phantom made from Zerdine R© (Model 059,
CIRS: Tissue Simulation & Phantom Technology, Norfolk,
VA) with Youngs elasticity modulus of 20±5 kPa correspond-
ing to the background, which mimics the ultrasound reflective
properties of average human breast. The elasticity modulus
of the spherical hard inclusion is at least twice as large as
the modulus of the background. Three consecutive frames are
selected to generate axial strain images. Axial strain images
for phantom data are provided in Fig. 6. Quantitative values of
image quality in terms of SNR, CNR and SR are represented
in Table III. CNR is calculated between white colored target
windows and red colored background windows, whereas SR is
calculated from white colored target windows and blue colored
background windows (shown in Fig. 6(b)). SNR is calculated
for background windows only. It is clear that GUEST produces
less noisy images with sharper edges. SNR and CNR values

TABLE III: SNR, CNR and SR of the strain images for
experimental phantom. CNR is calculated from white colored
target windows and red colored background windows depicted
in Fig. 6(b). SR is calculated between white colored target
windows and blue colored background windows. SNR is
calculated on red colored background windows.

SNR CNR SR
Hybrid 16.26 3.11 0.79
GLUE 15.51 5.44 0.72

GUEST 19.91 6.51 0.65

support our visual assessment by showing substantially higher
numbers for GUEST compared to both the hybrid method and
GLUE. In this experiment, the inclusion being stiffer than the
background, the better strain image provides a lower SR value.
Hence, according to Table III, SR values depict the fact that
GUEST outperforms Hybrid and GLUE.
Similar to the simulation experiment, we have calculated
CNR values for 120 combinations of target and background
windows (6 target and 20 background windows) shown in
Fig. 6(c). We show the histogram with the CNR values in
Fig. 6(d). GUEST has higher frequency in higher CNR values
and lower frequency in relatively lower CNR values. This
complete quantitative analysis of the overall image shows
that GUEST performs better than GLUE and Hybrid. To
compare different methods, we performed paired t-test. GLUE
statistically outperforms the hybrid method with p-value of
9.4008×10−26. In addition, GUEST is statistically better than
GLUE with p-value 2.6206× 10−20.
2) In-vivo Results: For the clinical study, in-vivo data were
collected from three patients undergoing open-surgical RF
thermal ablation for liver cancer at Johns Hopkins Hospital.
Full details of the experimental procedure are elaborated in [7].
The study was approved by the institutional review board and
informed consent was obtained from all patients. For the ad-
ministration of RF ablation, RITA Model 1500 XRF generator
(Rita Medical Systems, Fremont, CA) was used. The tissue
was compressed simply by pushing the probe against the liver
with the hand-held probe at a frequency of approximately 1
compression per 2 sec. The location of the tumor and the small
surgical opening resulted in compressions with substantial out-
of-plane motion of the probe. Furthermore, hepatic blood flow
and other biological sources introduced additional sources of
noise.
The B-mode and strain images for patient 1 are shown
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Fig. 6: Axial strain images and histogram of CNR values for the CIRS breast elastography phantom. Columns 1 to 3 show
strain images for Hybrid, GLUE and GUEST respectively. Column 4 represents the histogram of CNR values. (e) represents
the color bar.

in Fig. 7. GLUE and GUEST provide substantially better
visualizations of the tumor compared to the B-mode image.
From Table IV, one can see that GUEST outperforms both the
hybrid method and GLUE. Target and background windows
for quantitative comparison are shown in Fig. 7(c). Fig. 8
presents B-mode and strain images for patient 2. The strain
image from GUEST is less noisy than for the hybrid method
and GLUE. Although the Hybrid method provides the most
noisy strain image, it might show lesion boundary more
clearly. This clearer lesion boundary could be due to the post-
processing steps performed in the Hybrid method. The values
in Table IV show that GUEST substantially outperforms both
the hybrid method and GLUE in terms of SNR, CNR and SR.
Target and background windows for calculating SNR and CNR
are marked in Fig. 8(b) while target and background windows
for calculating SR are indicated in Fig. 8(c).
Similar to the simulation and phantom experiments, the his-
togram analysis for 120 CNR values (6 blue target and 20
red background windows shown in Fig. 7(d) and Fig. 8(d))
is performed for data both from patient 1 and patient 2
(Fig. 7(e) and Fig. 8(e)). In both cases, most high CNR values
are observed with GUEST. For CNR values obtained from
patient 1, GLUE performs statistically better than the hybrid
method with a p-value of 2.0983×10−23. GUEST statistically
outperforms GLUE with a p-value of 1.2734×10−12. For 120
CNR values from patient 2, GLUE is statistically better than
the hybrid method with a p-value of 5.2270× 10−5. GUEST
is better than GLUE with a p-value of 2.6840× 10−7.
B-mode and axial strain images for patient 3 from GLUE
and GUEST are depicted in Figure 9. This figure shows that
GUEST provides a better visualization of the stiffer region
of the tissue than GLUE. Quantitative values of SNR, CNR
and SR in Table V agree with the visual assessment. Target
and background windows for quantitative evaluation are shown
in Fig. 9(b). As the hybrid method fails to estimate the
displacement map, we report the results from GLUE and
GUEST only. Histogram (Fig. 9(d)) for 120 CNR values (6
blue target and 20 red background windows shown in Fig. 9(c))

from patient 3 shows that most of the higher CNR values
belong to GUEST. Statistically, GUEST is better than GLUE
with a p-value of 4.9665× 10−13.

C. Computation Time

We have implemented our algorithm on a 4th generation 3.6
GHz Intel core-i7 PC. The other two methods (hybrid and
GLUE) were also executed on the same computer. MATLAB
R2015a platform was used for the implementation. For three
conventional ultrasound frames of size 1000× 100, the com-
putation time of two displacement fields (frame 1 to 2 and
frame 2 to 3) are reported in Table VI.
It is evident that GLUE and GUEST show much better timing
performance than hybrid method. Although GUEST is slightly
more expensive than GLUE, execution time can be reduced by
implementing GUEST with the MATLAB MEX function. In
addition to that, using GPU instead of CPU can accelerate the
algorithm dramatically.

IV. DISCUSSION

It is shown in DPAM [7] and GLUE [19] that spatial regular-
ization improves time delay estimation by reducing the effect
of signal decorrelation. As ultrasound machines can collect
data at a very high rate, displacement of a speckle from frame
1 to frame 2 and frame 2 to frame 3 should not be very
different and hence temporal continuity is also an important
property which can be utilized in improving displacement
estimation.
The extent of temporal regularization is slightly tissue depen-
dent. A rule of thumb is that a large regularization weight
is needed for data collected at very high rate for imaging an
organ which is expected to have a smooth displacement field.
Otherwise if the tissue deforms quickly and in a complicated
manner, a moderate regularization weight is preferred. In
this work, the optimum value for the temporal regularization
parameter was achieved by manual tuning. These values
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Fig. 7: Results of in-vivo data from patient 1. (a) represents the B-mode image. (b)-(d) show strain images for Hybrid, GLUE
and GUEST respectively. The tumor is clearly visible as a dark region in (c) and (d). (e) shows the histogram of CNR values.
(f) represents the color bar for Hybrid whereas (g) shows the color bar for GLUE and GUEST.
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Fig. 8: Results of in-vivo data from patient 2. (a) represents the B-mode image. (b)-(d) show strain images for Hybrid, GLUE
and GUEST respectively. (e) depicts the histogram of CNR values. (f) represents the color bar for Hybrid whereas (g) shows
the color bar for GLUE and GUEST.
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Fig. 9: Results of in-vivo data from patient 3. (a) represents the B-mode image. (b) and (c) show strain images for GLUE and
GUEST respectively. (d) depicts the histogram of CNR values. (e) represents the color bar for strain images.
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TABLE IV: SNR, CNR and SR of the strain images of patients 1 and 2. CNR and SR are calculated from blue colored target
windows and red colored background windows depicted in Figs. 7(c), 8(b) and 8(c), and SNR is calculated on red colored
background windows.

Patient 1 Patient 2
SNR CNR SR SNR CNR SR

Hybrid 2.18 1.16 1.50 11.36 7.78 0.98
GLUE 13.21 5.81 0.67 21.59 4.97 0.61

GUEST 21.53 9.67 0.64 26.99 10.52 0.54

TABLE V: SNR, CNR and SR of the strain images of
patient 3. CNR and SR are calculated with blue colored target
windows and red colored background windows depicted in
Fig. 9. SNR is calculated on red colored background windows.

SNR CNR SR
GLUE 21.75 10.96 0.22

GUEST 25.09 14.36 0.14

TABLE VI: Computation time of two displacement fields
between three ultrasound frames of size 1000× 100.

Time (seconds)

Hybrid 96.91

GLUE 1.34

GUEST 1.77

can be stored for imaging different types of tissue as pre-
sets. A similar approach is commonly utilized in commercial
ultrasound machines which have some imaging parameters that
are embedded in the pre-settings for imaging different organs.
Free-hand palpation elastography is performed by pressing the
tissue with a hand-held probe, which results in probe motion
in all possible six degrees of freedom (three rotations and
three translations). In this paper, we select RF frames that
exhibit mostly axial deformations by visual inspection. Since
the probe velocity, which resembles a sinusoidal function, is
not constant, the average strain levels between consecutive
frames is different. This issue is addressed by making the
temporal continuity term adaptive. As the difference of two
consecutive initial displacement estimates is averaged over
many samples using a Gaussian kernel to obtain the temporal
adaptation terms, low variance estimates of the acceleration
are utilized in the temporal regularization term.
As reported in [7], spatial regularization may result in under-
estimation of displacement field due to tissue inhomogeneity.
However, this issue was not taken into account in GLUE.
Adaptive spatial regularization makes the proposed method
(GUEST) capable of preventing such underestimation of dis-
placement.
Memory usage is always an important concern while dealing
with ultrasound RF frames, and is even more important when
more than two frames are incorporated for TDE. In our work,
the coefficient matrix is of size 4mn×4mn for 3 consecutive
frames of size m × n, requiring a prohibitive amount of
memory for RF frames of conventional size. For example,
the size of the coefficient matrix will be 400000 × 400000

for 3 ultrasound frames of size 1000 × 100, which requires
a memory of few hundred gigabytes. But, the matrices used
in our method are band matrices whose non-zero entries are
confined to diagonal bands. Hence during implementation,
treating the aforementioned matrices as sparse allowed us to
limit the memory requirement to approximately 100MB.
As incorporating more than two frames in ultrasound elas-
tography is unconventional, it may advocate the impression
that employment of more frames keeps improving the result.
However, as more frames are included, the time-delay from
the reference frame also increases which may further intro-
duce signal decorrelation noise. Computational cost is another
factor which increases substantially along with the addition of
new frames. Taking these two points into consideration, the
optimal number of frames is an interesting avenue of further
investigation.
State-of-the-art ultrasound imaging techniques have been pro-
posed with plane-wave imaging in several applications such
as vascular and cardiac imaging. The quality of ultrasound
images is usually sacrificed to some extent to achieve higher
frame rates. As such, temporal regularization can be a very
powerful tool for these applications to produce more accurate
tracking results.
Any regularization may increase estimation bias, which may
lead to strain images with lower contrast. However, the
results of this paper show that GUEST maintains a bias-
variance trade-off by improving both SNR and CNR. In
each experiment, we calculated CNR in 120 windows and
showed that GUEST provides a substantially higher CNR. In
addition to this, we report results for both a soft inclusion
(simulation experiment) and hard inclusions (phantom and in-
vivo experiments). Our method obtains optimal results for both
cases.

V. CONCLUSION

In this work, we proposed GUEST: Global Ultrasound Elas-
tography in Spatial and Temporal domains. We utilized in-
formation on continuity of displacement field in the temporal
direction to reduce the variance of the estimated displacement
field. We used three frames of RF data to formulate a cost
function that is regularized both spatially and temporally. This
cost function had more than a million variables and was highly
nonlinear. We simplified this complex optimization problem
into a sparse linear system of equations and showed that it can
be efficiently solved, which makes it an attractive technique for
real-time implementation on commercial ultrasound machines.
We showed using simulation, phantom and in-vivo experiments
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that GUEST substantially outperforms two recent ultrasound
elastography techniques.
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