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Abstract Intraoperative tracking of surgical instruments is an inevitable task of
computer-assisted surgery. An optical tracking system often fails to precisely re-
construct the dynamic location and pose of a surgical tool due to the acquisition
noise and measurement variance. Embedding a Kalman Filter (KF) or any of its
extensions such as extended and unscented Kalman filters (EKF and UKF) with
the optical tracker resolves this issue by reducing the estimation variance and reg-
ularizing the temporal behavior. However, the current KF implementations are
computationally burdensome and hence, takes long execution time which hinders
real-time surgical tracking. This paper introduces a fast and computationally ef-
ficient implementation of linear KF to improve the measurement accuracy of an
optical tracking system with high temporal resolution. Instead of the surgical tool
as a whole, our KF framework tracks each individual fiducial mounted on it using
a Newtonian model. In addition to simulated dataset, we validate our technique
against real data obtained from a high frame-rate commercial optical tracking sys-
tem. We also perform experiments wherein a diffusive material (such as a drop of
blood) blocks one of the fiducials, and show that KF can substantially reduce the
tracking error. The proposed KF framework substantially stabilizes the tracking
behavior in all of our experiments and reduces the mean-squared error (MSE)
by a factor of 26.84, from the order of 10−1 mm2 to 10−2 mm2. In addition, it
exhibits a similar performance to UKF, but with a much smaller computational
complexity.
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1 Introduction

Kalman Filter (KF) refers to a recursive algorithm which minimizes Mean Squared
Error (MSE) and refines the noisy measurements of a system through two stages:
prediction and correction [22]. Besides many other techniques [19], KF has ex-
tensively been used in data fusion, tracking and prediction in numerous fields.
However, one of the main limitations of KF is that it can be only applied in lin-
ear systems. As a consequence, two notable extensions of KF called the Extended
Kalman Filter (EKF) [9] and Unscented Kalman Filter (UKF) [11] have been pro-
posed. EKF linearizes the system under consideration around the operating point
and then feeds to the KF. Aissa et al. [1] exploited EKF in conjunction with neu-
ral networks as a feedback controller to track a desired trajectory. To compensate
disturbance, Li et al. [13] applied EKF as an observer to perfectly track wheeled
robots. In [14], a proportional derivative controller associated with EKF was used
for trajectory tracking. Prevost et al. [18] employed EKF to estimate the state and
predict the trajectory of a moving object. Moore et al. [16] exploited a robot local-
ization package equipped with EKF that can determine which sensors should be
available for estimating the current parameter. To increase the robustness of tra-
jectory tracking, Mkhoyan et al. [15] used kernelized correlation filter in addition
to EKF as the online parameters estimator. In [17], a modified EKF model was
utilized for oceanic data fusion. Despite its wide applicability, EKF is inherently
limited by the sensitivity of the linearization step. In case of a highly non-linear
process, EKF often introduces instability to the system by linearizing it away from
its operating point. To resolve this important drawback of EKF, researchers have
introduced UKF. Instead of linearization, UKF tackles the nonlinearity issue using
an unscented transform, where the nonlinear system transforms to a probability
distribution function. Thus far, UKF has been incorporated in a variety of appli-
cations. Kraft et al. [12] utilized UKF to track the orientation using a quaternion
model in a system with six state variables. To constrain the velocity of a mo-
bile robot and precisely track desired trajectories, Xu et al. [23] employed UKF
and KF, where dynamics and kinematics of the robot were taken into account.
Chowdhary et al. [3] applied three versions of KF namely EKF, simplified UKF,
and augmented UKF for aerodynamic parameter estimation. The results show
that the third version is faster than the ones. VanDyke et al. [21] compared the
performance of EKF and UKF in spacecraft attitude estimation. The experimental
results showed that UKF, besides being more accurate, is less dependent on the
initial estimates.

In recent years, computer aided applications including surgical tracking have
emerged rapidly. Optical tracking of the surgical tools often guides the clinicians
to perform high-precision surgical procedures [6]. Infra-red emitting diodes, com-
monly known as active fiducials, are embedded on the surgical tools to be used
as reference points to estimate the location and orientation of the tool. However,
the noisy observations often leads to an inaccurate estimation of the instrument’s
pose which can increase surgical errors. Numerous investigators have employed
EKF and UKF to reduce the tracking error by taking the expected noise statistics
and temporal constancy into account. Translational velocity and acceleration, and
angular velocity are used as the state variables in [5] to devise an EKF model. Tay-
lor series as well as Rodrigues formula [4] have been used to linearize the model
and prepare for Kalman filtering. However, the performance of EKF is highly de-
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pendent on proper linearization. In addition, [10] and [8] demonstrated that UKF
provides higher tracking accuracy compared to EKF. Vaccarella et al. [20] exploited
a quaternion-based UKF model using translation, linear velocity, quaternion, and
angular velocity as the state variables to avoid matrix singularity problem that
originates from using Euler angles in rotation tracking. The surgical navigation
tracking error due to electromagnetic perturbation and occlusion was substan-
tially decreased. In addition to the state variables that [20] employed, Enayati et
al. [7] considered linear acceleration as a state variable for surgical tracking which
increased the robustness against environmental disturbance and occlusion.

Although the aforementioned works have reported promising tracking results,
they require long execution times and are not suitable for high frame-rate optical
tracking applications. Multi-camera optical tracking system to assist total knee
arthroplasty (TKA) is such an application which operates at a temporal resolu-
tion of approximately 200 fps. A robust and accurate localization of surgical array
is of paramount importance in TKA. However, tracking data obtained by the cur-
rent system yields high sensitivity to noise. Inspired by previous works, our aim
is to combine KF with the existing scheme to increase tracking and localization
accuracy of the system. However, the rigid body implementations of extended and
unscented KF might not be suitable for the system under discussion. Therefore,
instead of the whole array as a rigid body, this paper proposes to track each
fiducial on the surgical array individually, taking a linear KF into account. This
simplification has been possible due to the availability of sufficient temporal infor-
mation obtained from the high frame-rate system. The advantage of the proposed
technique is twofold. First, being fast and computationally light, this framework is
compatible with the high frame-rate optical tracking system. Second, any unusual
phenomena such as occlusion of a particular fiducial can easily be detected by this
scheme since the temporal behavior of each fiducial is assessed individually. We
have validated the proposed technique with one simulated and three real datasets
obtained using an optical tracking system and compared the performance against
that of UKF.

2 Methods

Let zk =
[
px,k py,k pz,k

]T
, k ∈ {1, 2, 3, . . . , n} denote the position measurement of

the center of a fiducial at time k. We assume that zk is corrupted with anisotropic
Gaussian noise. Our purpose is to exploit the expected noise statistics of the
measured data to minimize the measurement noise and stabilize the temporal
tracking using KF.

2.1 State variables and update equations

We consider 3D components of translation ttt =
[
tx ty tz

]T
, velocity vvv =

[
vx vy vz

]T
and acceleration aaa =

[
ax ay az

]T
as our state variables. Since we assume a con-

stant acceleration motion model, the update equations for the state variables are:

tttk = tttk−1 + vvvk−1∆t+
1

2
aaak−1∆t

2 (1)
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vvvk = vvvk−1 + aaak−1∆t (2)

aaak = aaak−1 (3)

where ∆t denotes the time interval.

2.2 Kalman filter pipeline

The Kalman filter consists of two steps. The first step predicts the current state
and the state covariance matrix based on the estimates of the previous time step
and the state update model. The second step takes the actual measurement into
account to refine the predictions made in the first step. The state update model
described earlier obtains x−k , the prior estimate of the current state, using the
following linear equation:

x−k = Axk−1 (4)

where xk−1 =
[
tx vx ax ty vy ay tz vz az

]T
denotes the posterior state estimate

of the previous time step. A describes the motion model and is defined as follows:

A =



1 ∆t 1
2∆t

2 0 0 0 0 0 0
0 1 ∆t 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 ∆t 1

2∆t
2 0 0 0

0 0 0 0 1 ∆t 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 ∆t 1

2∆t
2

0 0 0 0 0 0 0 1 ∆t
0 0 0 0 0 0 0 0 1


(5)

The prior estimate of the state noise covariance matrix P−
k is obtained as

follows:

P−
k = APk−1A

T +Q (6)

where Pk−1 refers to the posterior estimate of the state covariance matrix obtained
from the previous time step. Q denotes the process covariance matrix. Taking P−

k

into account, the Kalman gain Kk is calculated as follows:

Kk = P−
k H

T (HP−
k H

T +R)−1 (7)

where R stands for the measurement covariance matrix. H obtains a prediction of
the measurement using the state prediction and is defined as:

H =

1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0

 (8)

Once the priori estimates and the Kalman gain are calculated, the actual mea-
surement is incorporated to fine-tune the state prediction. We use the difference
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Algorithm 1: Workflow of the proposed Kalman filtering algorithm

Input: The previous state xk−1 and the previous state covariance matrix
Pk−1, process covariance matrix Q and measurement covariance
matrix R

Output: Refined measurements of the fiducial positions and the pose of
the array.

1 for all fiducials do

2 Estimate x−k : Priori state estimate using the process model matrix A
and the previous state estimate xk−1;

3 Calculate P−
k : Priori estimate of the state covariance matrix using A,

Q and the previous state covariance estimate Pk−1;

4 Compute Kk: Kalman gain using P−
k and R;

5 Estimate xk: Posterior state estimate using Kk, x−k and the
measurement zk;

6 Calculate Pk: Posterior state covariance estimate using Kk and P−
k ;

7 Extract the refined position measurements from xk;

8 end
9 Utilize [2] to calculate the array’s pose in terms of rotation matrix and

translation vector;
10 Convert the rotation matrix to a rotation vector

between predicted and actual measurements to obtain the posterior state estimate
according to the following equation:

xk = x−k +Kk(zk −Hx−k ) (9)

The posterior estimate of the state covariance matrix is calculated as follows:

Pk = (I −KkH)P−
k (10)

The refined measurement zk,r is calculated using:

zk,r = Hxk (11)

Once the fiducial positions are filtered, we utilize a point-matching algorithm [2]
to calculate the marker pose in terms of a rotation matrix and a translation vector.
We then convert the rotation matrix to a rotation vector for the sake of conciseness.
The workflow of the proposed technique is outlined in Algorithm 1.

3 Experimental setup and data acquisition

In this section, we first describe the simulation experiment conducted to generate
synthetic dataset. Then we describe the experimental setup and data collection
protocol.
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3.1 Simulated dataset

We designed a surgical array with four coplanar fiducials. The marker geometry is
defined by the mutual distances among the centers of the fiducials. The distances
from fiducial 1 to 2, 2 to 3, 3 to 4 and 4 to 1 are 67.08 mm, 36.06 mm, 72.80
mm, and 41.23 mm, respectively. The motion model of the marker as well as the
fiducials is stated below.

Let X0 =
[
xf yf zf

]T
denotes the initial position of the center of a fiducial.

Xk, the position of the fiducial at time sample k, can be calculated by Xk =

TTT k

[
XT

0 1
]T

where TTT k ∈ R4×4 refers to a transformation matrix explaining the
pose of the marker at time k. TTT k is defined as follows:

TTT k =

[
RRRk tttk
O 1

]
(12)

where RRRk ∈ R3×3 denotes a 3D rotation matrix. O ∈ R1×3 refers to a zero vector.
We consider a constant acceleration translation model. Therefore, the translation
update model is governed by Eqs. 1-3. Considering the time interval ∆t to be tiny,
the rotation matrix RRRk at time sample k is calculated using the following forward
kinematics:

RRRk ≈ RRRk−1 +∆tR
′

R
′

R
′

k−1 (13)

whereR
′

R
′

R
′

k−1 refers to the temporal derivative of the rotation matrix at time sample
k − 1 which is defined as follows:

R
′

R
′

R
′

k−1 = ωωωRRRk−1 (14)

where ωωω ∈ R3×3 denotes a skew symmetric matrix which is obtained from the
angular velocity vector ω =

[
ωx ωy ωz

]
and defined as:

ωωω =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (15)

We assumed a constant angular velocity vector
[
−0.08 0.08 −0.08

]
for our sim-

ulation experiment. The initial translational velocity vector was considered to be[
0 0 0

]
, whereas the translational acceleration vector was set to

[
1 −1 1

]
. The

initial positions of fiducials 1 to 4 were set to
[
110 −120 123

]T
,
[
170 −150 123

]T
,[

140 −130 123
]T

and
[
70 −110 123

]T
, respectively. Considering 200 temporal sam-

ples per second, the fiducial positions for 30 seconds were obtained. Once the
ground truth fiducial positions are generated, anisotropic zero-mean random Gaus-
sian noise with a variance of 0.07 mm2 in x and y directions was added to obtain
noisy measurement data. To emulate the real scenario, the noise variance in z
direction was considered to be 40% higher than the other two directions.
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(a) multi-camera system (b) Surgical array

Fig. 1: Experimental set up of a multi-camera system.

3.2 Real datasets

The experimental setup includes a multi-camera optical tracking device which is
mounted horizontally on a stable arm above a sturdy table (see Fig. 1(a)). The
tracker is connected to a host computer that is used to operate the tracker and col-
lect the data. The experiment uses a single medical array with four calibrated fidu-
cials (see Fig. 1(b)). The fiducials emit high-intensity near-infrared light with 850
nm wavelength. The tracker is equipped with infrared filters and reconstructs the
3D position of each fiducial using a standard linear triangulation stereo method.
The position of the array is determined by matching the reconstructed 3D points
against the calibrated geometry of the array. The resulting pose and 3D points are
sent to the host at a rate of approximately 200 fps. The host stores the data in a
relational database for later analysis.

We ran 3 recording sessions under different conditions. For the first recording,
the array was left in a static position relative to the tracker and was positioned
slightly off-center of the tracker’s optical axis. The array was recorded for about
2 minutes, providing 23, 452 data points.

The second recording was performed on an array undergoing rotational and
translation motion, emulating the scenario of a real surgical environment. The
recording lasted for about 30 seconds and obtained 6000 temporal data points.

The third dataset was acquired from a static array where one of the fiducials
was partially occluded using a 220 GRIT diffuser (Edmund Optics, Barrington,
USA). This experiment aimed at imitating the scenario of an Operating Room
(OR) where fiducials are often blocked by translucent materials such as a drop
of blood. The experiment was repeated 4 times, each time occluding one of the 4
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fiducials. The array of interest was recorded for about 2 minutes and 22, 897 data
points were obtained.

4 Results

We examine qualitative and quantitative tracking performance of KF and UKF
by employing simulation and real datasets obtained from multi-camera system.
UKF has been implemented for comparison purpose using the FilterPy library of
Python. Temporal behavior of fiducial positions and the array’s pose in terms of
rotation and translation vectors have been utilized to investigate the qualitative
performance of the techniques under consideration. We use MSE and variance for
the quantitative analysis, with MSE defined as:

MSE =

∑n
k=1(∆r,k −∆g,k)2

n
(16)

where ∆r,k and ∆g,k denote measured and ground truth components of the ar-
ray’s pose, respectively. We obtain Q by calculating the covariance matrices corre-
sponding to zero-mean Gaussian random noise with variances of 0.002 mm2 and
0.01 mm2 for simulation and real datasets, respectively. For simulated and real
datasets, respectively, R is obtained by computing the covariance of anisotropic
zero-mean Gaussian random noise with variances of 0.07 mm2 and 0.15 mm2 in
x and y directions, and 0.1 mm2 and 0.21 mm2 in the z direction.

4.1 Simulated data

The position tracking results for one of the fiducials of the simulated array in all
three directions are reported in Fig. 2. To better demonstrate the variability in
measurement and the tracking performance of KF and UKF, we also show tracking
results for only 300 samples in all three directions. KF and UKF exhibit similar
filtering performance and substantially stabilize the temporal behavior. Since a
similar level of noise suppression is observed in all fiducials, we show the results
for only one fiducial. To investigate the overall tracking performance of KF and
UKF, we present the array’s pose in terms of rotation and translation vectors in
Fig. 3. To maintain conciseness, we show only the z component of the translation
vector. In addition, we magnify the measurement noise as well as the filtering
performance by also showing only 200 temporal samples. It is evident that KF
and UKF minimize the acquisition noise and notably improve the tracking quality.
The filtered outputs of the rotation components exhibit almost no difference with
the ground truth. The tracking errors of translation are slightly higher than those
of rotation. MSE values reported in Table 1 substantiate our visual assessment,
showing a substantial error reduction. Since KF as well as its extensions require
some time in the beginning to adapt with the motion trajectory, we consider
the first 5 seconds as the burnout period and therefore, disregard the first 1000
temporal samples during error calculation.
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(a) Fiducial 2, x direction
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(b) Fiducial 2, y direction
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(c) Fiducial 2, z direction
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(d) Fiducial 2, x, magnified
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(e) Fiducial 2, y, magnified
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(f) Fiducial 2, z, magnified

Fig. 2: Temporal tracking plots for fiducial 2 of the simulated array. Columns 1-3
refer to x, y and z directions, respectively. Rows 1 and 2, respectively, show the
overall and magnified views of the temporal behavior.
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(h) Translation, z,
magnified

Fig. 3: Temporal plots of pose for the simulated array. Columns 1-3 refer to x,
y and z components of the rotation vector, respectively, whereas column 4 shows
the z component of translation vector. Rows 1 and 2 correspond to the overall and
magnified views of the trend of the array’s pose.

4.2 Real dataset

Our first experiment analyzes the performance with the dataset acquired from the
static digitizer, where the ground truth velocity is zero. Since this dataset is col-
lected from a steady marker, a constant pose throughout the acquisition period is
expected. Fig. 4 shows that the current tracking system exhibits extensive varia-
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Table 1: MSE for the pose of simulated array.

Measurement UKF KF

Rotation, x 1.58× 10−2 2.63× 10−3 2.63× 10−3

Rotation, y 1.58× 10−2 2.63× 10−3 2.63× 10−3

Rotation, z 1.58× 10−2 2.63× 10−3 2.63× 10−3

Translation, x 0.29 4.9× 10−2 1.13× 10−2

Translation, y 1.72 6.07× 10−2 6.52× 10−2

Translation, z 0.73 2.07× 10−2 2.72× 10−2
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Fig. 4: Temporal plots for the pose of the static array. Columns 1-3 refer to x, y
and z components of rotation, respectively. Column 4 shows the z component of
translation.

tion around the expected pose components. It is evident from this figure that KF
and UKF yield nearly identical tracking performance, and therefore, the temporal
pose plots obtained by them overlap on each other. A substantial reduction in
measurement variability is observed which is corroborated by the variance values
reported in Table 2.

In the second experiment, we investigate the tracking results for the marker
that undergoes a realistic rotational and translational motion. The results of noisy
measurement of the marker pose along with the KF and UKF measurements are
presented in Fig. 5. The rapid fluctuations of the rotation and translation com-
ponents demonstrate that the array’s motion is representative of the one in an
OR. To magnify the measurement noise as well as the tracking performance of
KF and UKF, we show 200 temporal samples out of a total of 6000 samples. The
pose plots show that the filtered outputs manifest substantially lower variability
compared to the raw measurement which is supported by the variances shown in
Table 3. The data variability in this case originates from noise as well as the ar-
ray’s movement. Since we are interested only in the variance due to noise, the last
100 temporal samples are employed in variance calculation where the array’s pose
is comparatively stationary. Although KF and UKF exhibit similar noise cancel-
lation performance, a small bias is observed in the tracking results of UKF which
might happen due to the array’s fast movement.

The third experiment examines the tracking performance when the fiducial of
interest is blocked by a translucent material. Fig. 6 reports the temporal regions
where fiducials 1 and 3 are blocked. In all components of the array’s pose, extensive
discontinuities are observed at the instants of disposal and removal of the glass
diffuser. However, during the stable placement of diffuser, the pose components
experience an erroneous upward or downward shift in measurement. In all cases,



Fast and Robust Localization of Surgical Array using Kalman Filter 11

1001 1101
Temporal sample number

0.6230
0.6235
0.6240
0.6245
0.6250
0.6255
0.6260
0.6265

x 
co

m
po

ne
nt

 o
f r

ot
at

io
n Measurement

UKF
KF

(a) Rotation, x

1001 1101
Temporal sample number

2.9125
2.9130
2.9135
2.9140
2.9145
2.9150
2.9155
2.9160
2.9165

y 
co

m
po

ne
nt

 o
f r

ot
at

io
n Measurement

UKF
KF

(b) Rotation, y

1001 1101
Temporal sample number

0.135

0.140

0.145

0.150

0.155

0.160

z c
om

po
ne

nt
 o

f r
ot

at
io

n Measurement
UKF
KF

(c) Rotation, z

1001 1101
Temporal sample number

0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85

z c
om

po
ne

nt
 o

f t
ra

ns
la

tio
n

+1.275e3

Measurement
UKF
KF

(d) Translation, z

Fig. 5: Temporal pose plots for the array with realistic motion. Columns 1-3 cor-
respond to x, y and z components of the rotation vector, respectively. Column 4
presents the z component of translation.

Table 2: Variance for the pose of the static array.

Measurement UKF KF

Rotation, x 2.28× 10−8 1.65× 10−9 1.53× 10−9

Rotation, y 7× 10−8 2.49× 10−9 2.51× 10−9

Rotation, z 2.24× 10−10 5.83× 10−9 1.79× 10−11

Translation, x 7.3× 10−3 9.57× 10−4 7.26× 10−4

Translation, y 6.93× 10−2 2.72× 10−3 2.45× 10−3

Translation, z 8.02× 10−3 2.96× 10−4 3.08× 10−4

Table 3: Variance for the pose in a static temporal region of the dynamic array.

Measurement UKF KF

Rotation, x 3.85× 10−7 6.88× 10−9 7.74× 10−9

Rotation, y 4.66× 10−7 6.56× 10−9 7.40× 10−9

Rotation, z 1.94× 10−5 2.88× 10−7 3.30× 10−7

Translation, x 0.73 1.06× 10−2 1.2× 10−2

Translation, y 14.19 0.21 0.24
Translation, z 4.5× 10−3 8.62× 10−5 9.86× 10−5

the outputs of KF and UKF follow the trends of the actual measurements, but
with substantially lower variances. In terms of suppressing the spurious spikes in-
troduced by diffuser placement and withdrawal, KF marginally outperforms UKF.

4.3 Execution time

Both KF and UKF have been executed with Python 3.5.2 on a 6th generation
Intel Core i7-6600U CPU. The memory requirements of both UKF and KF are
minimal and less than 512MB of RAM. The execution times reported in Table 4
demonstrate that the proposed linear KF technique is computationally efficient,
taking only 0.47 milliseconds, and thus, is a promising algorithm for real-time
implementation on commercial optical trackers.
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Fig. 6: Temporal pose plots for the array with partially occluded fiducials. Rows 1
and 2 correspond to two different occlusion experiments. Columns 1-3, respectively,
correspond to x, y and z components of rotation, whereas column 4 shows the y
components of translation.

Table 4: Runtime for filtering one temporal sample.

Time (ms)

UKF 7.48

KF 0.47

5 Discussion

Accurate surgical tracking is of immense importance due to its direct impact on
healthcare. Since the tracker’s output prompts the physician’s action in an OR,
a small tracking error may lead to serious consequences. Alongside accuracy, ex-
ecution time is an important factor in a high frame-rate optical tracking system.
The proposed framework offers both the attributes of high accuracy and low im-
plementation time by employing a linear KF to track each fiducial individually.

The first experiment conducted in this study simulates a synthetic surgical ar-
ray undergoing a realistic motion which contains both rotation and translation in
the three-dimensional space. Both KF and UKF sufficiently suppress the acquisi-
tion noise. The position and pose plots reveal that the proposed technique as well
as UKF closely resemble the ground truth in both linear and non-linear regions.

A second benchmarking experiment has been carried out utilizing the real
dataset acquired from a static surgical array. The pose estimation constancy in
this stationary case demonstrates the proposed KF scheme’s potential in high-
accuracy surgical tracking. However, this experiment with a static marker does
not represent the scenario of an OR. Our third experiment takes this fact into
account by tracking an array experiencing a 3D motion containing rotational and
translational components. The proposed KF framework proves its strength by
showing high noise-cancellation performance in this realistic case. One interesting
observation about UKF is that it yields estimation bias in the dynamic array
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experiment which might stem from the rapid motion of the array. However, it
should be noted that UKF has been implemented using a built-in Python function
in this work. An advanced implementation of UKF might be able to tackle this
issue which is subject to further investigation.

Besides EKF and UKF, particle filter (PF) [19] also improves tracking accu-
racy given noisy measurements, and is a potential alternative to KF. While PF
and KF share the same high-level algorithmic steps such as prediction and up-
date, their basic principles are substantially different. Unlike KF, PF incorporates
weighted random samples to refine the prior estimate of the density function and
updates the weights exploiting the likelihood theory. The main strength of PF is
its ability to handle non-Gaussian noise and non-linear systems. However, PF is
computationally more expensive than KF. A quantitative study to compare the
advantages and disadvantages of KF and PF is an avenue of future work.

As reported in Fig. 6, the proposed implementation of KF follows the trend
of the incorrect position measurement when any of the fiducials moves out of the
field-of-view or gets blocked by a translucent material such as a drop of blood.
Although it reduces the estimation variance, it cannot amend the step-like over
or underestimation of fiducial position, likely caused by light diffraction. The ad-
vanced rigid-body implementations of EKF and UKF might be able to better
adapt with the situation of fiducial occlusion and reconstruct the surgical tool
with moderate tracking error. However, since this scheme tracks the instrument
as a whole, it cannot instantly notify the surgeon which of the fiducials is blocked
or out of field-of-view (FOV). This drawback can potentially be resolved with
the proposed KF framework. It is worth mentioning that the commercial optical
tracker incorporated in this study does not impose any rigidity constraint during
data acquisition. Instead, once the tracking data is acquired, the ground truth
geometry of the array is utilized to detect if any of the fiducials is occluded.

We have conducted several experiments in this work to represent realistic sce-
narios in the OR. Since simulation studies are expected to be realistic, we have
adopted a forward kinematics model to create a 3D dataset with non-linear dynam-
ics. In addition, anisotropic Gaussian noise has been added to emulate a real noise
statistics. Besides, the experiments with the multi-camera tracker include exten-
sive analyses of static, dynamic and occlusion scenarios. The proposed technique
yields consistent performance in the real as well as the simulation experiments to
prove its potential in high-quality surgical tracking.

The most attractive feature of the proposed KF framework is its low running
time. A straightforward implementation of the linear KF which takes a Newtonian
model into account provides the proposed technique with the powerful attribute
of negligible execution time. Although filtering is performed offline in this work, a
runtime as low as 0.47 milliseconds proves the proposed scheme’s potential for real-
time implementation on a high temporal resolution commercial optical tracking
system.

6 Conclusion

Herein, we proposed a fast implementation of linear KF on a high frame-rate track-
ing system where a Newtonian model was taken into account to track each fiducial
of a surgical tool individually. Besides facilitating real-time surgical tracking, this
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technique efficiently suppresses acquisition and estimation noise experienced by an
optical tracking system. In addition, high performance in dynamic localization of
intraoperative instruments proves that the proposed framework eliminates the re-
quirement of rigid-body constraint while tracking a surgical tool at high temporal
resolution.
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