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ABSTRACT

Ultrasound (US) is a low-cost, portable, and safe tool for breast cancer screening. However, automatic classifi-
cation of invasive ductal carcinoma (IDC) in US is a difficult classification task due to their similar appearance
to fibroadenoma (FA) (a type of benign tumor). Another challenge is the limited availability of US data with
ground truth labels, further complicating the adoption of deep learning techniques for IDC detection. It has
been shown that deep classification networks perform better when they simultaneously learn multiple correlated
tasks. However, most previous studies on breast US classifications focused on the binary classification of benign
versus malignant tumors. To this end, we propose a multi-class classification deep learning-based strategy mainly
focusing on the classification of IDC. Inspired by multi-task learning (MTL), we adopt a novel scheme in adding
the background tissue as an additional class and show substantial improvements in IDC detection.
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1. INTRODUCTION

Breast cancer is one of the most common leading causes of the death among women worldwide. For screening the
breast cancers, mammography is usually used as the primary imaging modality. However, due to low specificity
of mammography in distinguishing dense and cancerous tissues, and the use of harmful radiation, ultrasound
(US) has been used as an important alternative for breast cancer screening.1 US as a portable, cost-effective, and
non-invasive diagnosis modality utilizes low energy US waves and provides real-time examinations. In previous
methods of breast US classification, US images were either used in full size or divided into subregions, and then
texture related features were manually extracted and input into a classifier (i.e. support vector machine (SVM),
random forest (RF), etc).2–5 The main focus of previous works was the extraction of hand-engineered features,
more precisely, texture-related features from a US image.

Recent state-of-the-art deep learning methods have paved the way for automatically extracting the most
meaningful features by adopting convolution layers. The promising results of deep learning methods in the
domain of medical images for classification tasks have raised researchers’ attentions.6–10 Ting et al. adopted a
prior detection step before classifying breast lesions in mammography images.8 In US breast classification, Han
et al.,6 employed a pre-trained GoogleNet with some modifications for classifying benign and malignant lesions
of histogram equalized of 7408 US images. In most of the studies related to classification of US breast lesions,
the main focus is the binary classification of benign versus malignant lesions.11–13 Consequently, the adopted
deep learning network learns only one task. In the domain of multi-task learning (MTL) studies, it has been
shown that networks perform better when they are assigned with multiple tasks compared to only one task.14

Due to appearance of invasive ductal carcinomas, the task of distinguishing them from fibroadenoma is the
most challenging task compared to binary classification of benign versus malignant. Therefore, we propose a
deep learning-based scheme that performs better when it is assigned to multi-class classification task. To be
more specific, we propose multi-class classification of fibroadenoma, cyst, and invasive ductal carcinomas in US
images with limited data. We further propose a novel technique in taking the background of US image into
account as an additional class leading to a 4-class classification task for breast US images. We also show that
the proposed scheme of multi-class classification including background as the additional class, holds for different
deep learning networks. To cope with uncertainty in network’s estimations, we adopt test-time augmentation
for classification evaluation.15 Our contributions can be summarized as below:
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• Multi-class classification of breast US with limited available images

• A novel technique in adding background as an additional class

• Our proposed scheme holds for different networks

• Test-time augmentation for evaluation

2. METHOD

2.1 Dataset

In this study we used a publicly available US dataset.16 It was collected in 2012 from the UDIAT Diagnostic
Centre of the Parc Taul Corporation, Sabadell (Spain) with a 17L5 HD linear array transducer (8.5 MHz). The
dataset consisted of a total of 163 images with a mean image size of 760 × 570 pixels including one or more
lesions. Out of 163 lesions, 53 images had cancerous masses, which included the subcategories of 40 invasive
ductal carcinomas, 4 were ductal carcinomas in situ, 2 invasive lobular carcinomas, and 7 unspecified malignant
lesions. The remaining 110 were benign lesions (65 cysts, 39 fibroadenomas, and 6 another type of benign
lesions). In this study, only 40 invasive ductal carcinomas (IDC), 65 cysts (CYST), and 39 fibroadenomas (FA)
were used as the other classes contained very few samples. Figure 1 presents an example of US images used from
the dataset.

Figure 1: An example of breast US images from the dataset (a) FA, (b) IDC, and (c) CYST.

2.2 Preprocessing

As mentioned earlier, we propose a novel technique in adding background as an additional class. To this end,
before feeding the images to the deep learning network, they were cropped in order to help the network learn the
characteristics of each lesion type more precisely. Based on available segmentation masks of images, a marginal
cropping window surrounding the lesion (blue window in Fig. 1) was used which was 40% larger than the window
surrounding the lesion borders (red window in Fig. 1). All the cropped images were then resized to the size of 400
× 400, and their intensities were normalized to the range of 0 to 1. In order to keep balance between the number
of lesion types in training and test sets, 80% of each lesion type was randomly selected for the training set and
the rest was used in the test set. As for background class, a window was used to randomly crop the background
(BG) of US image excluding any part of lesion. In US imaging, the more the US waves travel deeper, the more
they are attenuated. Therefore, in order to have similar range of attenuation in BG class, the BG images were
cropped from the same depth of lesion’s location. In Fig. 1 the yellow square represents the area where BG
images were cropped from. All the randomly selected BG images from the yellow area of Fig. 1 had the same
size of the marginal cropping window (i.e. the blue window). In order to have balanced number of BG class, we
randomly selected the BG images derived from all US images. As a result, in our training and validation sets
the total number of FA, CYCT, IDC, and BG respectively were 31, 52, 32, and 38. Consequently, in our test set
the number of each classes were 8, 13, 8, and 10, respectively.



Figure 2: Cropping schematic used in this study. The red window is based on the lesion border in the mask.
The blue window is 40% larger than red window. The yellow rectangles show the desire area for selecting BG
images.

2.3 Experiments

Due to the small number of training data and large inter-class variations in the database, training the network
from scratch was impossible. Therefore, we used two pre-trained networks, ResNet-34 and MobileNet-v2, sep-
arately as backbone feature extractors with some modifications for our dataset. A schematic of our network is
shown in Fig. 3. In order to show the impact of multi-task learning on the performance of our network, we
present our results based on two avenues: 2-class Avenue and 4-class Avenue. Our 2-class Avenue was a 2-class
classification problem (IDC versus all other classes), versus 4-class Avenue was a 4-class classification (FA versus
Cyst versus IDC versus BG). In both avenues, a random on-the-fly data augmentation of horizontal flip, width
and height shifts, and zooming, was applied to the batches during training. The number of batches were set to 25
and training lasted for 100 epochs while saving the best model based on the validation accuracy. Adam optimizer
was used17 and its learning rate was tuned using cyclical learning rate.18 It worth noting that to mitigate the
effect of imbalanced data during training, we used weighted cross-entropy loss function in both avenues wherein
the weights were initialized based on the distribution of images in each class. For improving the predictions, we
employed test-time augmentation where the same augmentation strategy in the training set, was applied to test
set. Therefore, we enlarged the number of images in test set by augmenting each image 4 times leading to 195
(i.e. 39×5) images in the test set.

Figure 3: A schematic of our proposed network

3. RESULTS

The predicted labels were evaluated using receiver operating characteristic curve (ROC) and the area under
curve (AUC) for both ResNet-34 and MobileNet-v2 in two proposed avenues. For ResNet-34, in 2-class Avenue
we achieved AUC of 0.66 for IDC. The AUC of IDC was improved by 31% in our 4-class Avenue for the same
network. Furthermore, the AUC scores for FA, Cyst, IDC, and BG in 4-class Avenue were 0.87, 1.0, 0.87, and
1.0, respectively, for ResNet-34. Similarly, for MobileNet-v2, the AUC of IDC was improved from 0.82 in 2-class
Avenue to 0.90 in 4-class Avenue. The AUC scores of FA, CYST, and BG for MobileNet-v2 were 0.87, 1.0, and
1.0, respectively.



Figure 4: ROC curves and AUC results. The first and second rows show the ROC curves for ResNet-34 and
MobileNet-v2, respectively. First column ((a) and (c)) presents the results for 2-class Avenue whereas second
column ((b) and (d)) present for 4-class Avenue.

Table 1 summarizes the classification reports for IDC in two proposed avenues. For ResNet-34, the accuracy
was improved by 18% in 4-class Avenue showing that increasing the number of classes helped the network for
better predictions. Precision and f1-score were improved from 0.38 to to 0.67 and 0.48 to 0.57, respectively.
However, recall was decreased from 0.62 to 0.5 when using more classes (i.e. 4-class Avenue). Similarly, for
MobileNet-v2, the accuracy was enhanced from 0.84 in 2-class Avenue to 0.90 in 4-class Avenue. We observed
improvements in recall and f1-score for MobileNet-v2, however, precision dropped from 1.0 in 2-class Avenue to
0.80 in 4-class Avenue.



Table 1: Classification report for IDC.

Avenue Accuracy Precision Recall f1-score

ResNet-34

2-class 0.71 0.38 0.62 0.48

4-class 0.84 0.67 0.50 0.57

MobileNet-v2

2-class 0.84 1.0 0.25 0.4

4-class 0.90 0.8 0.50 0.62

4. CONCLUSION

Most of previous studies on US images classifications focused on binary classification of benign versus malignant
lesions. However, the main challenge is in detection of FA versus IDC due to their similar appearance. In this
study, we showed the importance of multi-task learning in better detection of IDC in breast US images. We
investigated that increasing the number of classes led to better performance of the deep learning networks. We
further proposed a novel strategy in adding background of US images as an additional class. We showed that
our proposed scheme holds for different deap learning networks by adopting 2 pre-trained networks, ResNet-34
and MobileNet-v2. By adding more classes, we illustrated that the AUC score was improved by the factor of
31% and 9% for ResNet-34 and MobileNet-vs, respectively. Also, to control the network’s uncertainty in its
predictions, we adopted test-time augmentation.19
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