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Assessment of Mechanical Properties of Tissue
in Breast Cancer-Related Lymphedema
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Abstract—Breast cancer-related lymphedema (BCRL) is a
consequence of a malfunctioning lymphatic drainage system
resulting from surgery or some other form of treatment. In the
initial stages, minor and reversible increases in fluid volume
of the arm are evident. As the stages progress over time,
the underlying pathophysiology dramatically changes with an
irreversible increase in arm volume most likely due to a chronic
local inflammation leading to adipose tissue hypertrophy and
fibrosis. Clinicians have subjective ways to stage the degree
and severity such as the pitting test which entails manually
comparing the elasticity of the affected and unaffected arms.
Several imaging modalities can be used but ultrasound appears
to be the most preferred because it is affordable, safe and
portable. Unfortunately, ultrasonography is not typically used
for staging lymphedema because the appearance of the affected
and unaffected arms is similar in B-mode ultrasound images.
However, novel ultrasound techniques have emerged, such as
elastography that may be able to identify changes in mechanical
properties of the tissue related to detection and staging of
lymphedema. This paper presents a novel technique to compare
the mechanical properties of the affected and unaffected arms
using quasi-static ultrasound elastography to provide an objective
alternative to the current subjective assessment. Elastography is
based on Time Delay Estimation (TDE) from ultrasound images
to infer displacement and mechanical properties of the tissue.
We further introduce a novel method for TDE by incorporating
higher-order derivatives of the ultrasound data into a cost
function, and propose a novel optimization approach to efficiently
minimize the cost function. This method works reliably with
our challenging patient data. We collected Radio-Frequency (RF)
ultrasound data from both arms of seven patients with Stage 2
lymphedema, at six different locations in each arm. The ratio of
strain in skin, subcutaneous fat and skeletal muscle divided by
strain in the standoff gel pad was calculated in the unaffected
and affected arms. The p-values using a Wilcoxon sign-rank
test for the skin, subcutaneous fat, and skeletal muscle were
1.24 ⇥ 10�5, 1.77 ⇥ 10�8, 8.11 ⇥ 10�7 respectively, showing
differences between the unaffected and affected arms with a very
high level of significance.

H. S. Hashemi is with the Department of Electrical and Computer Engi-
neering, University of British Columbia, V6T 1Z4, BC, Canada

S. Fallone and R. D. Kilgour are with the Department of Exercise Science,
Concordia University, Montreal, QC, H3G 1M8, Canada

M. Boily is with the Department of Radiology, McGill University Health
Centre (MUHC), Montreal, QC, H4A 3J1, Canada

A. Towers is the the Director of the Lymphedema program at the Depart-
ment of Oncology, McGill University, Montreal, QC, H4A 3J1, Canada

A. Towers and R. D. Kilgour are with the McGill Nutrition and Performance
Laboratory, Montreal, QC, H4A 3J1, Canada

H. Rivaz and R.D. Kilgour are PERFORM Centre researchers, Concordia
University, Montreal, QC, H3G 1M8, Canada

H. Rivaz is with the Department of Electrical and Computer Engineering,
Concordia University, Montreal, QC, H3G 1M8, Canada

Email: H. S. Hashemi: hoda@ece.ubc.ca
Email: H. Rivaz: hrivaz@ece.concordia.ca

Index Terms—Breast Cancer, Lymphedema, Quasi-Static Ul-
trasound Elastography, Time Delay Estimation, TDE, Efficient
Second-Order Minimization.

I. INTRODUCTION

Breast cancer related lymphedema (BCRL) is manifested by
a noticeable increase in excess arm volume due to treatment
(e.g., surgery, radiation therapy) effects on the functioning
of the lymphatic fluid drainage system [1]. This swelling
can occur soon after treatment or may take several years
to develop [2]. Regardless of its time to appearance, BCRL
typically progresses through several clinical stages (Stages 0-
3) with the initial stages (Stages 0-1) characterized by mild
fluid accumulation that can be reversed by simply elevating
the arm [3]. However, the successive stages (Stages 2-3) are
defined by irreversible swelling that is not totally related
to fluid accumulation but to suspected changes in tissue
morphology of the arm such as in the skin, subcutaneous fat,
and skeletal muscle. These tissue adaptations may be directly
related to an abnormal pathophysiology resulting in localized
inflammation of the arm leading to adipose tissue hypertrophy
and pathological fibrotic changes [1]. Clearly, a shift in staging
from Stage 0-1 to Stage 2-3 represents a significant change
in the clinical course of this condition and warrants future
investigation into the ways in which BCRL is detected and
staged.

Currently, BCRL staging consists of a simple subjective
assessment procedure involving an assessment of tissue pitting.
Using this method, if the skin becomes “pitted” after applying
finger pressure to the area, then the patient is categorized
into a certain stage. This technique lacks precision and a
vision of what is happening beneath the level of the skin.
Thus, more sophisticated methods must be explored. There
are imaging modalities that have been used in the past to
detect lymphedema including magnetic resonance imaging
(MRI), computed tomography (CT), and ultrasonography [3]–
[7]. While MRI and CT show structural changes to tissues,
their clinical utility is limited due to their considerable cost
and limited availability. On the other hand, ultrasound can
provide real-time measures, is portable and does not emit ra-
diation. Furthermore, recent advances in ultrasonography such
as elastography may help better assess mechanical properties
of the skin, subcutaneous fat and skeletal muscle of the arm
and to aid the clinician in staging lymphedema based upon
changes in tissue morphology.

Ultrasound imaging can be used to investigate changes in
the subcutaneous tissue that are associated with lymphedema,
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which include increased thickness of the dermis, a shift from
hypo- to hyperechogenicity of the subcutis, and fluid retention
located in the dermis, interlobular space, and superficial fas-
cia [8]–[10]. However, ultrasonic appearance of these changes
can be negligible and hard to detect.

Certain ultrasound-based techniques have been used to
tackle these problems. Poroelastographic techniques are em-
ployed to explore changes in mechanical properties of the tis-
sue [11]–[13]. Recent work has also applied compression with
the ultrasound probe, and measured the thickness of the skin
and subcutis in the upper extremity [14]–[17]. These studies
show that skin thickness and subcutis layers are different in
the unaffected versus affected arms. However, these methods
use B-mode ultrasound to manually measure tissue thickness.
This measurement can be performed with greater accuracy by
using Radio-Frequency (RF) data instead of B-mode images,
and by using Time Delay Estimation (TDE) methods that
are widely used in ultrasound elastography [18]–[25]. Such
automatic TDE estimation will also be less time consuming
and less subjective than manually measuring tissue thickness.
Another difficulty in manually measuring skin thickness lies
in normalization of the applied pressure. When comparing the
thickness of the two arms, the applied pressure should be
equal. Therefore, new research has proposed to use pressure
sensors to generate equal pressure in both arms [26]. In this
work, we propose an alternative approach wherein we use
an acoustic gel pad to normalize the applied pressure on the
tissue. In addition to normalizing the applied pressure, the gel
pad will increase the quality of the ultrasound data at the skin.

TDE from RF data is a challenging task that is the heart
of almost all ultrasound elastography methods, and as such,
is an active field of research. The most common approach
divides the RF data in one of the images into (usually
overlapping) windows, and performs TDE by finding the
best corresponding window in the other image using either
intensity or phase of the RF data [27]–[29]. The second
class uses optimization techniques to calculate a displacement
field [30]–[34]. In addition to its wide application in almost
all elastography methods, TDE has many applications such as
segmentation [35] and motion compensation [36]. Our group
has developed several techniques in the second class, which
are usually less susceptible to decorrelation noise compared to
the window-based methods [37].

Herein, we calculate TDE from the RF signal using a
novel method, and estimate strain values for the gel pad, skin,
subcutaneous fat, and skeletal muscle layers in the affected and
unaffected arms. We use the strain values to study differences
between the two arms. To the best of our knowledge, this is the
first time that this approach is used in studying the differences
in different layers of subcutaneous tissues between the affected
and unaffected arms. More specifically, the contributions of
this work are:

1) Introducing a novel method based on ultrasound elas-
tography for comparing affected and unaffected arms in
patients with lymphedema.

2) Proposing a novel method for TDE of quasi-static elas-
tography that works reliably with the challenging patient
data.

The new technique for estimation of the displacement map
between two frames of RF data is based on minimization of a
regularized cost function that has two terms of data similarity
and continuity of TDE. It is based on our recent work entitled
GLobal Ultrasound Elastography (GLUE) [38]. We introduce
two novel techniques to improve GLUE. First, second-order
Taylor expansion is used in the cost function, compared to
first-order Taylor expansion used in GLUE. We show that
inclusion of second-order Taylor terms makes the optimization
problem intractable, and therefore propose a novel method
for linearizing the cost function. Second, we utilize Efficient
Second-order Minimization (ESM), an optimization technique
that is widely shown to have superior convergence properties
in computer vision and image registration [39]–[41]. We call
our new method GLUE2, and show using simulation and
phantom experiments that it outperforms GLUE. To focus
the clinical results on differences between the mechanical
properties of the unaffected and affected arms, we only present
the results of GLUE2. More detailed comparisons of GLUE
and GLUE2 is provided in the Supplementary Material.

To improve the quality of the superficial tissue and to nor-
malize the compression applied to the arm during elastography,
we use a gel pad, which does not contain any scatterers
and appears dark in ultrasound images. It is important to
measure the strain in the gel pad to normalize the manual
compression, which unfortunately is not straightforward us-
ing window-based methods. To solve this problem, previous
work has proposed post-processing steps to fill-in these dark
regions [42]. However, both GLUE and GLUE2 are able to
reliably calculate the displacement field in the gel pad since
they automatically rely on the regularization term if no data
term is available. Therefore, in addition to providing high-
quality strain images, our proposed method is ideally suited
for staging lymphedema.

A much shorter version of this work is recently published
in a conference [43]. The differences are as follows. First,
the introduction and literature review of this paper are more
comprehensive. Second, this paper includes results of finite
element and Field II simulations as well as data from seven
patients, whereas the conference paper did not include simula-
tion results and was further limited to two patients only. And
last, the results are discussed in substantial more detail in this
extended paper.

II. METHODS

In this section, we first briefly describe the closely related
previous work of GLUE [38]. We then present GLUE2.

A. GLobal Ultrasound Elastography (GLUE)
Let I1 and I2 be images of size m ⇥ n that correspond to

images obtained before and after some deformation. Also, let
ai,j and li,j denote be axial and lateral displacements of sam-
ple (i, j), where i = 1 · · ·m and j = 1 · · ·n. First, an estimate
of the displacement field in the axial (ai,j) and lateral (li,j)
directions are calculated using the Dynamic Programming An-
alytic Minimization (DPAM) method [44]. DPAM calculates
TDE by optimization of a cost function that incorporates both



IEEE TUFFC 3

(a) FEM ax. strain (b) GLUE ax. strain (c) GLUE2 ax. strain

(d) FEM lat. strain (e) GLUE lat. strain (f) GLUE2 lat. strain

Fig. 1. Results of the Field II and Finite Element Method (FEM) simulation
experiment. (a)-(c) show axial strains corresponding to respectively ground
truth, GLUE and GLUE2. (d)-(f) show lateral strains corresponding to
respectively ground truth, GLUE and GLUE2. The red windows in (a) and
(d) are used for SNR and CNR calculations.

amplitude similarity and displacement continuity. The simulta-
neous estimation is performed for individual RF-lines, limiting
the algorithm to utilize only a small fraction of the information
available from the entire image in every optimization. The goal
of GLUE is to find subsample �ai,j and �li,j displacements
such that the duple (ai,j + �ai,j , li,j + �li,j) which refines
DPAM estimates (ai,j , li,j) and provides more accurate axial
and lateral displacement estimates for all the samples of the
RF frame simultaneously. The GLUE cost function is defined
as:

C(�a1,1, · · · ,�am,n,�l1,1, · · · ,�lm,n) =Pn
j=1

Pm
i=1{D(i, j) +R(i, j)} (1)

where the data term D is:

D(i, j) = [I1(i, j)�I2(i+ai,j+�ai,j , j+li,j+�li,j)]
2, (2)

and the regularization term R is:

R =
↵1(ai,j +�ai,j � ai�1,j ��ai�1,j)2

+�1(li,j +�li,j � li�1,j ��li�1,j)2

+↵2(ai,j +�ai,j � ai,j�1 ��ai,j�1)2

+�2(li,j +�li,j � li,j�1 ��li,j�1)2,

(3)

and ↵ and � are regularization weights in axial and lateral
directions respectively. The first-order 2D Taylor expansion
around (i+ ai,j , j + li,j) gives:

I1(i, j)� I2(i+ ai,j +�ai,j , j + li,j +�li,j) ⇡ I1(i, j)�
I2(i+ ai,j , j + li,j)� I 02,a�ai,j � I 02,l�li,j .

(4)
where I 02,a and I 02,l are the derivatives of the I2 at the point (i+
ai,j , j+ li,j) in the axial and lateral directions. Inserting Eq. 4
in Eq. 1 will make the cost function quadratic with respect
to variables �ai,j and �li,j , and therefore can be efficiently
optimized by setting its derivative to zero.

Fig. 2. CIRS phantom and the acoustic gel pad.

B. Incorporation of the Second-Order Taylor Expansion into
the Cost Function

Minimizing the cost function provides us the displacement
map. GLUE uses the first order Taylor expansion (Eq. 4) to
approximate the nonlinear data term of cost function with
a linear term. Including higher order derivatives of Taylor
expansion reduces the error in the estimated data term. As a
result, having more accurate cost function by including higher
order derivatives for the data term can improve the accuracy
of displacement estimation. However, doing so will make the
derivative of Eq. 1 nonlinear, and therefore the optimization
problem becomes intractable given that this equation typically
has millions of variables. For example, an RF frame of size
1000 x 500 has a total of 500,000 samples. Each sample
Eq. 1 results in two variables (i.e. the axial and lateral
displacements). Therefore, the cost function in this case has 1
million variables.

We therefore propose a novel technique to incorporate the
second-order Taylor expansion into the cost function while
keeping the problem computationally efficient. Our proposed
cost function is:

C =
nX

j=1

mX

i=1

{w(i, j)D(i, j) +R(i, j)} (5)

where w is the weight of each data term:

w(i, j) =
1

✏+ |I 00(i, j)2,a|+ |I 00(i, j)2,l|
(6)

where ✏ is a small positive constant to prevent the denominator
from becoming zero, and |I”2,a| and |I”2,l| are the absolute
values of second-order derivatives in the axial and lateral
directions respectively. The weight w reduces the contribution
of regions of the RF-data with high second-order derivatives
where Eq. 4 does not hold. Therefore, this method uti-
lizes second-order derivatives while keeping the cost function
quadratic and tractable. This idea has some similarities to a
previous work that utilized areas of the images wherein cost
functions approximations are more accurate [45].

C. Efficient Second-order Minimization (ESM)

We also utilize the Efficient Second-order Minimization
(ESM) optimization method [39] for the first time for TDE.
ESM is shown to have superior convergence properties [40],
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[41], [46] compared to the asymmetric Gauss-Newton opti-
mization method used in GLUE.

Let p = (i + ai,j , j + li,j) denote a vector containing
the coordinate of a pixel after an approximate displacement
(ai,j , li,j), and consider p+�p = (i+ ai,j +�ai,j , j+ li,j +
�li,j) as its refined location after a small displacement esti-
mate (�ai,j ,�li,j). ESM uses the following Taylor expansion
to linearize the data term [39]:

I2(p+�p) = I2(p) +
1
2{I

0
2,a(p) + I 01,a(p)}�ai,j+

1
2{I

0
2,l(p) + I 01,l(p)}�li,j

(7)

Utilizing Eq. 7 in our cost function of Eq. 5, we have:

C(�a1,1, · · · ,�am,n,�l1,1, · · · ,�lm,n) =Pn
j=1

Pm
i=1{w(i, j)[I1(i, j)� I2(i+ ai,j , j + li,j)�

1
2 (I

0
2,a(p) + I 01,a(p))�ai,j � 1

2 (I
0
2,l(p) + I 01,l(p))�li,j ]2

+R(i, j)}
(8)

where I 01,a, I 02,a, I 01,l and I 02,l are calculated at the point
(i+ ai,j , j + li,j). This equation is a quadratic equation with
respect to the unknowns �ai,j and �li,j , and therefore can
be efficiently optimized by setting its derivative with respect
to the unknowns to zero. ESM (Eq. 7) uses the derivatives
of both images i.e. I 02(p) =

1
2 (I

0
2(p) + I 01(p)). This equation

can be utilized in both axial and lateral directions. By taking
derivatives from this equation and obtaining I”2(p) in both
axial and lateral directions, we modify the weight of the data
(Eq. 6) term as follows:

w(i, j) = 1
✏+ 1

2 |I”(i,j)2,a+I”(i,j)1,a|+ 1
2 |I”(i,j)2,l+I”(i,j)1,l|

(9)
Once the displacement field is estimated, it is common to

estimate its spatial gradient to generate strain images. We
consider several displacement measurements and perform a
least square regression to calculate the strain image [47].
Generally, large kernels are used to reduce noise amplification
of the derivative operator. They generate smooth strain fields,
but make the boundary of two different types of tissue blurred.
In this work, the window length of 93 is used for differentiable
kernel to strike a balance between smoothness and contrast
of the strain image. Note that GLUE and GLUE2 estimate
displacements for all samples of RF data, and therefore, 93
is the number of samples in the RF data and not number
of windows typically used in popular window-based TDE
methods.

The results are not sensitive to the values of the parameters.
A good combination of the tuneable parameters of the GLUE2
technique are set to ↵1 = 0.2, ↵2 = 0.1, �1 = 0.2, and
�2 = 0.1. The parameter ✏ is set to 0.07 in simulations,
0.8 for phantom experiment and 0.012 for the in-vivo patient
data. Higher values of this parameter are more suitable for
homogenous tissues, whereas lower values are more suitable
in layered inhomogenous tissues discussed in Section IV.
Changing the value of ✏ by 100% for the patient data will
change the CNR and SNR values in the strain map by less than
only 2%. Therefore, the results are not sensitive to the value
of this parameter. For the parameters of the DPAM method we

(a) CIRS phantom (b) B-mode image (c) GLUE2 Axial strain

Fig. 3. B-mode image and axial strain obtained from the ultrasound probe
placement on the gel pad. CIRS elastography phantom and the ultrasound B-
mode image are shown in (a) and (b). The axial strain obtained from GLUE2
is depicted in (c). The red windows in (b) are used for calculation of SNR
and CNR.

Fig. 4. Data collection from patients. (a) shows the six skin landmarks where
ultrasound data collection was performed, and (b) shows RF data collection
from an arm affected with lymphedema.

set ↵DP = 0.15, ↵ = 5, � = 1, and � = 0.005. Ultrasound
machines usually have presets for different organs (breast,
thyroid, prostate, transcranial, etc.) for optimized imaging.
The aforementioned parameters can be stored alongside these
imaging presets in a commercial implementation of GLUE2.

GLUE2 is implemented in MATLAB, and our current
implementation takes approximately 0.8 sec to run on a 4th

generation 3.6 GHz Intel Core i7 for two RF frames of size
1000⇥100 to generate a 2D displacement map of the same
size. The code can be optimized by implementing it in C++,
and also by parallelism and use of GPU to run in real-time.

D. Simulation and Experimental Data
Simulation, phantom and in-vivo data from seven patients

with stage 2 lymphedema are used to validate the performance
of our proposed method. The simulated ultrasound images are
generated using Field II [48], and ABAQUS (Providence, RI)
Finite Element Method (FEM) software packages. We dis-
tribute more than 10 scatterers per cubic mm in the simulated
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(a) B-mode, landmark 1 (b) Strain, landmark 1 (c) B-mode, landmark 1 (d) Strain, landmark 1

(e) B-mode, landmark 2 (f) Strain, landmark 2 (g) B-mode, landmark 2 (h) Strain, landmark 2

(i) B-mode, landmark 3 (j) Strain, landmark 3 (k) B-mode, landmark 3 (l) Strain, landmark 3

(m) B-mode, landmark 4 (n) Strain, landmark 4 (o) B-mode, landmark 4 (p) Strain, landmark 4

(q) B-mode, landmark 5 (r) Strain, landmark 5 (s) B-mode, landmark 5 (t) Strain, landmark 5

(u) B-mode, landmark 6 (v) Strain, landmark 6 (w) B-mode, landmark 6 (x) Strain, landmark 6

Fig. 5. Ultrasound and strain images of the 6 landmarks shown in Figure 4 in the unaffected arm (first and second columns) and affected arm (third and
fourth columns).
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phantom [49], and mesh the phantom for FEM analysis. We
then displace the mesh nodes using the FEM package and cal-
culate the displacement of each scatterer through interpolation
of the neighboring nodes.

In phantom and in-vivo data collections, RF data was
collected with an Alpinion E-Cube system (Bothell, WA) using
the L3-12H transducer at the centre frequency of 10 MHz and
the sampling rate of 40 MHz. The patient data were collected
at the McGill University Health Centre (MUHC) Lymphedema
clinic. Ethics approval was obtained from MUHC, and all
subjects provided written consent to participate in this study.
In all phantom and in-vivo experiments, the ultrasound probe
was hand-held and was used to compress the tissue.

E. Normalization of the Compression Level Using Strain Ratio
According to the Hooke’s law for linear elastic materials,

S = F
A.E , where S is the strain, F is the perpendicular force, A

is the area, and E is the Young’s modulus. Note that according
to this equation, increasing the force increases the strain, and
therefore strain values from different experiments cannot be
compared since the force can vary. However, assuming that
the gel pad is linear elastic and that the applied force varies
slowly so that viscous damping can be ignored, the force
in the gel pad is equal to the force applied to the tissue,
and therefore, dividing the strains by the strain in the gel
pad allows comparison of strain values under different forces.
We validate this theoretical prediction through real phantom
experiments. To this end, we use the unit-less metric strain
ratio (SR) to quantitatively compare the results of the affected
and unaffected limb in patient data. SR is calculated for the
skin, subcutaneous fat and skeletal muscle tissue using the
following equations:

SRs =
S̄s

S̄g
, SRf =

S̄f

S̄g
, SRm =

S̄m

S̄g
(10)

where S̄g , S̄s, S̄f and S̄m are the spatial average of the strain
in the gel pad, skin, subcutaneous fat and skeletal muscle. All
the spatial average values are calculated within a window of
size 8mm⇥3mm in the corresponding regions of the strain
image except for the skin which has less thickness and the
window of size 8mm⇥1mm is used in calculations.

III. RESULTS

This section includes results on simulation and phantom
data, as well as results on women who are suffering from
BCRL. The unitless metrics signal to noise ratio (SNR) and
contrast to noise ratio (CNR) [50] are used to quantitatively
assess the quality of strain images:

CNR =
C

N
=

s
2(s̄t � s̄b)2

�2
t + �2

b

, SNR =
s̄t
�t

(11)

where s̄b and s̄t are the spatial strain average of the back-
ground and target windows, and �2

b and �2
t are the spatial

strain variance of the background and target windows.

A. Simulation Results
The strain images are calculated from the displacement

fields obtained from GLUE and GLUE2 and are shown in

Figure 1. These images, especially at the lesion boundaries,
show that GLUE2 provides strain images that are sharper
and have more contrast which makes it easier to distinguish
the lesion from background. SNR and CNR values calculated
using the background windows in Figure 1 (a) and (d) are
reported in the Supplementary Material. These results show
that GLUE2 improves the CNR in the axial strain from 18.15
to 52.74, i.e. a 190% improvement.

B. Phantom Results

For experimental validation, RF data is acquired from a
CIRS elastography phantom (Norfolk, VA) with a Young’s
Elasticity Modulus of 7KPa as shown in Figure 2. The results
are shown in Figure 3. (a) and (b) show the phantom and
B-mode image respectively. The phantom is a uniform tissue
which leads to an approximately uniform strain depicted in (c)
for GLUE2. Unlike the simulation experiment, this phantom
is uniform, and hence, it is hard to visually compare the
results of GLUE and GLUE2. For this reason, and to keep
the paper concise, we do not visually compare GLUE and
GLUE2 and only compare them quantitatively. The SNR and
CNR are calculated for 3 regions using the windows shown in
(b). Please refer to Supplementary Material for the CNR and
SNR measurments. The proposed method has 28% and 24%
improvements in terms of CNR and SNR over the previous
technique, GLUE.

To illustrate the advantage of SR over strain values, we com-
pare their values in the phantom study at four different strain
levels using GLUE2 (Table I). Basically, the strain values will
increase if the applied pressure on the tissue is intensified. It
causes problems for comparison of the strain values between
two different ultrasound images for affected and unaffected
arms because when sonographers take ultrasound images from
patients, the applied force on the tissue is different for every
ultrasound image. We therefore normalize the strain values
of the tissue within an image against the strain values of
the gel pad. This normalization makes the strain values less
dependent to the applied pressure. In Table I, S̄p are the
average values of the strain in the phantom, which change
substantially from 0.07% to 0.38% at different compression
levels (an increase of 443%) as expected. However, SR values
depict a much slower increase from 0.27 to 0.33 (an increase
of only 22%). Note that theoretically, SR should not change at
all and the small changes are likely caused by nonlinearities in
mechanical properties of the gel pad or phantom. Therefore,
SR can be used to reduce the impact of different levels of
compression.

C. Patient Data

The study population was composed of women with Stage
2 breast cancer-related lymphedema. All participants in this
study had a Body Mass Index (BMI) greater than 24 kg/m2

and ranged in age from 54 to 81 years old. All the patients
underwent breast cancer surgery and treatment more than 6
years ago. We placed the 6 following landmarks on both arms
to mark the location of the data collection (Figure 4):
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TABLE I
COMPARISON OF STRAIN AND SR AT 4 DIFFERENT COMPRESSION

LEVELS. THE 443% INCREASE IN PHANTOM STRAIN S̄p (FROM 0.07% TO
0.38%) IS SUBSTANTIALLY REDUCED TO 22% INCREASE IN SR (FROM

0.27 TO 0.33).

Compression level S̄p,% SR
1 0.07 0.27
2 0.18 0.30
3 0.29 0.31
4 0.38 0.33

(a) 20% of the distance between the styloid process of the
5th digit and tip of it

(b) 20% of the distance between the styloid process of the
5th digit and olecranon

(c) 20% of the distance between olecranon and styloid pro-
cess of 5th digit

(d) 20% of the distance of olecranon and acromioclavicular
joint (AC) joint

(e) 40% of the distance of AC joint and olecranon
(f) 20% of the distance of AC joint to olecranon

Figure 5 shows the strain results of patient 1 for the
unaffected arm in the first and second columns and for the
affected arms in third and fourth columns, respectively. It is
difficult to visually show the difference between GLUE and
GLUE2 strain images. Therefore, to keep the paper concise,
we only show the strain images of GLUE2. The windows
show the location of the boxes used for calculating average
strain and are placed on skin, fat and muscular regions. The
location of these windows is verified by a fellowship-trained
musculoskeletal radiologist (M. B.). We calculate SR for all
seven patients in all 6 landmark locations, and show the results
in Table II. Figure 6 visualizes the difference between strain
values of unaffected and affected arms as box plots, where
the strain values in Table II are used to calculate U-A for
every landmark in skin, subcutaneous fat, and muscle regions.
The six landmarks (from L1 to L6) are demonstrated in the
horizontal axes.

Since the data cannot be assumed to have a normal Gaussian
distribution, we performed the nonparametric paired Wilcoxon
sign-rank test to compare the SR values of the unaffected
and affected arms. The results show that SR has significantly
higher values for the unaffected compared to the affected arm.
Figure 6 shows that there is statistically significant difference
between SR values in the affected and unaffected arms in
all 6 locations in the subcutaneous fat tissue. The reason
that differences in the skin (part (a)) is not as significant as
fat and muscle (parts (b) & (c)) is likely because the skin
layer is very thin, which can cause more variance in the SR
estimates. Another reason is that this figure is only considering
7 patients, which is too small to test statistical hypothesis. To
solve this problem, we consider differences at all 6 locations
to increase the number of samples from 7 to 6 ⇥ 7 = 42,
and show the results in Table III. Significant differences
between the affected and unaffected arms were found for skin,
subcutaneous fat and skeletal muscle SR values. The p-values
for the skin, subcutaneous fat, and skeletal muscle are as
follows: 1.24⇥ 10�5, 1.77⇥ 10�8, 8.11⇥ 10�7, well below

the 0.05 threshold for statistical significance. This strongly
confirms the substantial difference between SR values of the
unaffected and affected arms.

To compare the ratio of SR measurements at different
locations, we divide the average SR values of the unaffected
arm by the affected arm from Table II, and show them in
Table IV. One can see that all values are more than one,
meaning that SR is more in the unaffected arm. A visualization
of this Table is demonstrated in Figure 7. The ratio is shown
for the skin, fat, and muscle tissue types. In these seven
women, the optimal location for acquiring data to distinguish
the affected from the unaffected arm is the landmark 3 for
the skin tissue type, landmark 2 for both subcutaneous fat and
skeletal muscle area (Table IV). To obtain the overall best
location, we add these three ratios at the skin, fat and muscle
regions, and show the results in the last column of Table IV.
The values demonstrate that locations 2, 3 and 5 have the
highest difference between the two arms.

Another interesting observation from this table is that sub-
cutis fat provides the highest difference between the SR values
of the affected and unaffected arms with a very high ratio of
2.50. This is in agreement with the results of Figure 6, which
showed a statistically significant difference between unaffected
and affected arms for a small population of only 7 samples.

IV. DISCUSSION

The cost function of GLUE2 has two competing terms of
data fidelity and continuity prior which guide the TDE towards
a smooth field that also satisfies similarity of RF data. The
gel pad does not have scatterers and appears dark in the B-
mode image. In this region, the data term cannot guide the
displacement and therefore the TDE is solely guided by the
continuity prior. Window-based cross correlation methods may
therefore create noisy TDEs in such regions [42]. Therefore,
GLUE2 is ideally suited for the proposed study. This scenario
happens also in other real-life applications such as in imaging
cysts or other highly hypoechoic regions. If the gel pad
contains scatterers, both data and regularization terms will
guide displacement estimation and hence force normalization
will likely be improved. This will be investigated in a future
study.

The number of variables in the cost function is 2⇥105 for a
typical RF frame of size 1000⇥ 100. Therefore, optimization
of Eq. 8 entails solving a linear system with a large coefficient
matrix of size 2mn ⇥ 2mn given an RF frame of size
m⇥ n. One of the advantage of our method is that this large
coefficient matrix is a sparse matrix with nonzero elements on
a diagonal band of the size 4n+1. Therefore, the optimization
step is computationally efficient.

Eq. 9 allows us to incorporate second-order derivatives of
the data term into our cost function with negligible addi-
tional computational cost. If we set ✏ to a large number,
we reduce the impact of the second-order derivatives. There-
fore, ✏ should be set to larger values when imaging organs
that generate a mostly linear data term. Our experiments
corroborated this analysis and showed that higher values of
✏ are more suitable for homogenous tissues, whereas lower
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(a) Skin (b) Subcutaneous fat (c) Muscle

Fig. 6. Visual representation of Table II. The difference of strain values for unaffected and affected arms (U-A) are demonstrated as the box plots for every
landmark (U: unaffected, A: affected). (a), (b), and (c) show these values for skin, fat, and skeletal muscle respectively. At each landmark L1 to L6, an asterisk
* indicates significant difference (p < 0.05) between the affected and unaffected arms.

(a) Skin (b) Subcutaneous fat (c) Muscle

Fig. 7. Visual representation of Table IV. The ratio of SR values for the unaffected and affected arms (U/A) are demonstrated as the box plots for every
landmark (U: unaffected, A: affected). (a), (b), and (c) show these values for skin, fat, and skeletal muscle.

values are more suitable in layered inhomogenous tissues.
When a high/low value is considered regarding the tissue
type (homogenous/inhomogenous) as the value of ✏, it can
be changed by 100% without noticeable difference in the
results, which shows that the results are not sensitive to this
parameter. Ultrasound machines often require specifying the
imaging organ to load the optimized imaging parameters. The
optimal value of all parameters of GLUE2, including ✏, can
be loaded in a similar fashion when imaging different organs.

The landmarks in Figure 4 are identified using a measur-
ing tape. Therefore, the location of these landmarks in the
two arms might be slightly different. Our hypothesis is that
since tissue properties vary continuously, small differences
in these locations do not generate large differences in strain
measurements. Another limitation is that the direction of the
ultrasound probe can lead to different SR measurements since
tissue is anisotropic. To mitigate this, the sonographer should
hold the probe perpendicular to the skin. In the future, we will
estimate 3D ultrasound strain images [51], [52] to tackle these
limitations of 2D imaging.

Although this study is limited to seven women with docu-
mented Stage 2 breast cancer-related lymphedema, the findings
have uncovered several important and novel results that have
allowed us to gain insight into the differences in tissue
properties between the unaffected limb (non-lymphedematous)

compared to the affected limb (lymphedematous limb). It
would appear that the SR values in the affected limb are con-
sistently and significantly lower in the skin, subcutaneous fat
and skeletal muscle layers. The reduction in SR suggests a less
compliant tissue when compared to a more normal or healthier
tissue. This reduction was noted at every landmark location
suggesting that the tissue abnormalities that are contributing to
the firmer tissue properties are not specific to just a single area
of the arm but can be found from the most distal (wrist) to the
more proximal regions of the upper arm. Of particular interest
are the lower skin SR findings in the affected compared to the
unaffected limb (Table II). The pitting test has been shown
to differentiate between the affected and unaffected arms in
stage 3, but not always in stage 2 [53]. Our findings therefore
may indicate that the proposed elastography technique is more
sensitive than the pitting test. Of course, these findings are
representative of only 5 women; thus more data is needed to
make a more definitive conclusion.

There are several factors that can explain the overall lower
SR values in the lymphedemic arm. Because of the probable
inflammatory processes that are present in the affected limb,
it would not be surprising that inflammatory-induced fibrotic
tissue has accumulated among the tissue layers thereby causing
the displacement to be less pronounced. Also, additional lay-
ering of subcutaneous fat once again brought on by localized



IEEE TUFFC 9

TABLE II
SR VALUES FOR THE LANDMARKS 1 TO 6 IN SKIN, FAT, AND MUSCULAR

TISSUES (A = AFFECTED AND U = UNAFFECTED).

Skin Fat Muscle
Location 1 U A U A U A
Patient 1 0.4469 0.2653 0.4203 0.3789 0.5848 0.3957
Patient 2 0.7946 0.6047 0.7469 0.5789 0.5479 0.5327
Patient 3 0.3565 0.3086 0.4547 0.2096 0.4619 0.1618
Patient 4 0.4323 0.2367 0.5503 0.4399 0.5732 0.4034
Patient 5 0.7747 0.6791 0.6048 0.6094 0.5717 0.5452
Patient 6 0.6918 0.4978 0.5617 0.3276 0.6157 0.4876
Patient 7 0.5467 0.2451 0.3387 0.2331 0.4273 0.2941
Average 0.58 0.41 0.53 0.39 0.54 0.40

Location 2
Patient 1 0.2569 0.0939 0.2298 0.1984 0.3632 0.3393
Patient 2 0.4481 0.5086 0.7551 0.4741 1.104 0.6675
Patient 3 0.2949 0.1315 0.21 0.1783 0.5356 0.2834
Patient 4 0.4234 0.2832 0.4141 0.0591 0.7797 0.2714
Patient 5 0.5634 0.4866 1.654 0.2715 0.755 0.1375
Patient 6 0.8404 0.3308 0.5432 0.1707 0.4831 0.3489
Patient 7 0.4327 0.2826 0.4343 0.3141 0.4218 0.1684
Average 0.47 0.30 0.60 0.24 0.64 0.32

Location 3
Patient 1 0.8289 0.103 0.6437 0.1616 1.2174 0.2207
Patient 2 0.6282 0.3282 0.4779 0.2299 0.5544 0.2848
Patient 3 0.5488 0.3169 0.4796 0.2509 1.0987 0.748
Patient 4 0.268 0.2427 0.1786 0.1724 0.5451 0.4156
Patient 5 0.5209 0.5038 0.6688 0.3108 1.1335 0.5181
Patient 6 1.4490 0.4443 0.7150 0.2698 1.0047 1.7480
Patient 7 0.4196 0.2802 0.2545 0.2033 0.7022 0.1544
Average 0.67 0.32 0.49 0.23 0.89 0.59

Location 4
Patient 1 0.3601 0.3148 0.6104 0.2362 1.47 0.4441
Patient 2 0.735 0.5103 0.9173 0.5475 0.9107 0.8769
Patient 3 0.357 0.3108 0.2815 0.232 0.6512 0.6103
Patient 4 0.2983 0.1905 0.3321 0.1544 0.8401 0.4215
Patient 5 0.3757 0.4082 0.454 0.4127 1.1081 0.4258
Patient 6 0.5738 0.8255 0.8513 0.7699 2.4662 1.4151
Patient 7 0.5699 0.2125 0.6093 0.2262 0.7115 0.3941
Average 0.47 0.39 0.58 0.37 1.16 0.66

Location 5
Patient 1 0.6451 0.5063 0.6169 0.3623 1.8268 0.5882
Patient 2 0.5168 0.3337 1.1071 0.5452 1.475 0.4045
Patient 3 0.6173 0.1945 1.0203 0.4715 2.1202 1.4337
Patient 4 0.2467 0.2333 0.4975 0.1166 0.9293 0.2691
Patient 5 0.5547 0.1935 1.1065 0.1873 0.9591 0.4493
Patient 6 0.9160 0.6077 1.3439 0.8208 0.9089 0.8714
Patient 7 0.4058 0.7646 1.0107 0.9715 1.0877 0.8498
Average 0.56 0.40 0.95 0.50 1.32 0.69

Location 6
Patient 1 0.4075 0.1804 0.2622 0.1119 0.9612 0.805
Patient 2 0.4459 0.635 1.0297 0.9843 1.3224 0.9867
Patient 3 0.9892 0.7533 1.7792 1.2837 2.9419 1.019
Patient 4 0.3840 0.3656 0.7674 0.4212 0.9671 0.8361
Patient 5 1.0570 0.9826 1.8921 1.615 1.7234 0.9296
Patient 6 1.0357 0.6968 1.8652 0.5327 0.7279 1.1360
Patient 7 0.8505 0.2094 2.4187 0.1217 2.4554 0.4307
Average 0.74 0.54 1.43 0.72 1.58 0.88

TABLE III
RESULTS OF TABLE II SUMMARIZED FOR SKIN, FAT AND MUSCLE. SR

VALUES ARE MEANS ± STANDARD DEVIATION (N=42, 7 SUBJECTS ⇥ 6
LOCATIONS FOR EACH TISSUE TYPE). P-VALUES DETERMINED USING A

PAIRED WILCOXON SIGN-RANK TEST BETWEEN SUBJECTS.

Tissue Affected Arm Unaffected Arm p-value
Skin 0.39±0.21 0.58±0.26 1.24⇥ 10�5

Subcutaneous Fat 0.41±0.33 0.76±0.52 1.77⇥ 10�8

Skeletal Muscle 0.59±0.37 1.02±0.60 8.11⇥ 10�7

inflammation may also contribute to the lower SR. The change
in tissue composition definitely implies an alteration in the
anatomical structure that could lead to changes in functional
capabilities especially with skeletal muscle function. From
a clinical perspective, these findings can guide health care
professionals to focus on specific target areas of the limb.
These initial findings are encouraging and would direct us to

TABLE IV
SR RATIO OF THE UNAFFECTED ARM DIVIDED BY THE AFFECTED ARM

(U/A) FOR EACH LANDMARK LOCATION. AVERAGE VALUES FROM TABLE
II ARE USED TO COMPUTE THESE NUMBERS. HIGHEST NUMBERS ARE

HIGHLIGHTED IN BOLD FONT.

Skin (Ave.) Fat (Ave.) Muscle (Ave.)
Location U/A U/A U/A Sum

1 1.41 1.35 1.35 4.11
2 1.56 2.50 2.00 6.06
3 2.09 2.13 1.51 5.73
4 1.21 1.57 1.76 4.54
5 1.40 1.90 1.91 5.21
6 1.37 1.99 1.79 5.15

evaluate how these SR values would differ among the different
stages of lymphedema and from a more basic perspective, how
these values differ from the limbs of healthy women.

V. CONCLUSIONS

In this paper, we introduced the application of quasi-static
ultrasound elastography for assessment of differences between
affected and unaffected arms in patients with breast cancer-
related lymphedema. We proposed the biomarker of SR (Strain
Ratio), and showed that it is significantly different in the
affected and unaffected arms. In addition, we proposed a novel
method that utilizes the second-order derivative of the data
term to improve the quality of the displacement estimation.
We further introduced a new time-delay estimation method
that reliably estimates strain images in patient data in less than
a second. Future work will focus on using the SR biomarker
for staging and early diagnosis of lymphedema.
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