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Abstract—We have previously developed regularized 2D and
3D elastography methods using Dynamic Programing (DP) [1],
[2]. A cost function which incorporates similarity of echo ampli-
tudes and displacement continuity was minimized using DP to
obtain the displacement map. In this work, we present a novel
hybrid method for calculating the displacement map betweentwo
ultrasound images. The method uses DP in the first step to find
an initial estimate of the motion field. In the second step, we
assume a linear interpolation for the reference image and obtain
a closed-form solution for a subpixel accuracy motion field.The
closed-form solution enables fast displacement estimation. We
present three in-vivo patient studies of monitoring liver ablation
with the hybrid elastography method. The thermal lesion was
not discernable in the B-mode image but it was clearly visible
in the strain image as well as in validation CT. We also present
3D strain images from thermal lesions inex-vivo ablation. We
introduce a novel volumetric rendering model for visualization
of the volumetric B-mode images. We exploit strain values in
the opacity of the volumetric B-mode data to better classifysoft
tissue. It is possible to observe the surface of the hard lesions,
its size and its appearance from a single 3D rendering picture.

I. I NTRODUCTION

Ultrasound elastography has emerged as a useful augmenta-
tion to conventional ultrasound imaging [3]. Elastographyhas
been used for monitoring RF ablation [4], [5] by observing
that ablated region is harder than surrounding tissue. In the
most common variation of elastography, ultrasound images are
captured while the tissue is being compressed, and images are
processed to provide a grid of local displacement measure-
ments. These displacement fields are then used to determine
the elastic properties of the tissue at each grid location. The
grid of the elastic properties can be displayed as an image.

Elastography is computationally expensive, making it chal-
lenging to display strain images in real-time. Real-time feed-
back, however, is required for image guided ablation opera-
tions. Another aspect is that signal decorrelation betweenthe
pre- and post-compression images induces significant noisein
the obtained displacement map and is one of the major limiting
factors in elastography [6]. Methods based on cross-correlation
and phase zero estimation are currently the most popular real-
time elastography techniques which provide fast and accurate
motion tracking. In RF ablation, however, high decorrelation
between pre- and post-compression images results in high
noise in the strain images obtained using cross-correlation
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[5]. Phase zero estimation methods require an estimate of the
center frequency of the ultrasound RF signal, which varies
with depth due to frequency-dependent attenuation in tissue
[7]. This variation can be significant in RF ablation, leading
to poor displacement estimation [7].

dynamic programming (DP) has been used recently for
robust displacement estimation [8], [1], [2]. DP is more robust
to signal decorrelation than standard cross-correlation methods
and is therefore a good candidate for ablation monitoring
where being real-time and robustness to noise are critically
important. Here, we introduce a hybrid method that uses DP
for an initial displacement estimation and refines the estimate
by optimizing a regularized cost function. We use the method
for processing 2D and 3D data for calculating 1D strain. We
report in-vivo patient results on monitoring RF ablation with
elastography and corroborate the results with CT scans. Finilly,
we use a 3D probe to acquire 3D data and show that 3D
elastography can be successfully used to monitor ablation in
3D using our novel visualization technique.

II. H YBRID DISPLACEMENT ESTIMATION

We provide an overview of the DP method first, followed
by the description of the closed form solution for motion
estimation. Compared to other optimization techniques, DP
is an efficient non-iterative method of global optimization[9],
[10]. In DP elastography, a cost function which incorporates
similarity of echo amplitudes and displacement continuity
is minimized. Since data alone can be insufficient to solve
ambiguities of motion tracking due to signal decorrelation,
the physical priors of tissue motion continuity increases the
robustness of the technique [1]. We have showed that DP
generates high quality strain images of freehand palpation
elastography with up to 10% compression, indicating that
the method is more robust to signal decorrelation (caused
by scatterer motion in high axial compression and non-axial
motions of the probe) in comparison to the standard correlation
techniques. The 2D method operates in less than 1sec and is
thus also suitable for real time elastography.

We now overview the formulation of 3D DP. Letgk
j (i) be

the intensity of theith sample (axial direction),jth A-line
(lateral direction) andkth frame (out-of-plane direction) of
the pre-compression ultrasound volume. Letgk+de

j+dl

′

(i + da)
correspond to the post-compression volume whereda, dl

andde represents axial, lateral and elevational displacements
respectively, and the size of the volume bem × n × p. The
difference between the two signals,∆, can be quantified using



sum of absolute differences (SAD), which is computationally
inexpensive and is robust against outliers [11]:

∆(i, j, k, da, dl, de) =
∣

∣

∣
gk

j (i) − gk+de

j+dl

′

(i + da)
∣

∣

∣
(1)

where the axial, lateral and elevational search ranges are
limited by da,min ≤ da ≤ da,max, dl,min ≤ dl ≤ dl,max

andde,min ≤ de ≤ de,max.

R(dai
, dli , dei

, dai−1
, dli−1

, dei−1
) =

(dai
− dai−1

)2 + (dli − dli−1
)2 + (dei

− dei−1
)2 (2)

is the smoothness regularization. The cost function at each
point i, j andk is

Ck
j (da, dl, de, i) = ∆(i, j, k, da, dl, de) + min

δa,δl,δe

{

C̄
}

, (3)

C̄ =
Ck

j (δa, δl, δe, i − 1) +
[

Ck
j−1 + Ck−1

j

]

(δa, δl, δe, i)

3
+ wR(da, dl, de, δa, δl, δe) (4)

where w is a weight for enforcing smoothness. The inclu-
sion of the costs of the previous point (Ck

j (δa, δl, δe, i −
1)), previous line (Ck

j−1(δa, δl, δe, i)) and previous plane
(Ck−1

j (δa, δl, δe, i)) guarantees smoothness in the axial, lateral
and elevational directions respectively. This form ofC̄ how-
ever requires the cost function of the all A-lines of the previous
plane to be stored in the memory. We use an alternative form
which requires storing only the cost function of the previous
A-line on the processing plane:

Ck
j (da, dl, de, i) = ∆(i, j, k, da, dl, de)

+ w1R(da, dl, de, d
k−1
a , dk−1

l , dk−1
e ) + min

δa,δl,δe

{

C̄
}

,(5)

C̄ =
Ck

j (δa, δl, δe, i − 1) + Ck
j−1(δa, δl, δe, i)

2
+ w2R(da, dl, de, δa, δl, δe) (6)

wherew1 is a weight for governing smoothness in the eleva-
tional direction andw2 is a weight for governing axial and
lateral smoothness. Equation 3 is preferred over Equation 5
since a wrong displacement estimation does not affect the
neighboring A-line’s displacement estimation. However we
use the latter because of the memory limitations. Generally,
the optimum values ofδa, δl, δe should be sought in the
entire [da,min da,max] × [dl,min dl,max] × [de,min de,max]
space. However, since the strain value is low in elastography,
it is expected and desired that at each sample of RF data,
the change between the displacement of a sample and its
previous sample is not more than 1. Therefore, the search
range is limited to the nine values of{da − 1, da, da + 1}×
{dl − 1, dl, dl + 1}×{de − 1, de, de + 1}, which results in
a significant gain in speed. This limit on the search range does
not affect the results even in a high strain of 10%:∆d is zero
for nine samples and one for the tenth sample on average.
We also limit the search range of each A-line to±1 of the

previous A-line on the same plane. For memoization [9],δa,
δl andδe values that minimize the cost function are stored:

Mk
j (i, di, dl, de) = arg min

δa,δl,δe

{

C̄
}

(7)

The cost function Ck
j is calculated for i = 1 · · ·m,

da = da,min · · ·da,max, dl = dl,min · · · dl,max and de =
de,min · · ·de,max. The minimum cost ati = m gives the
displacement of this point, which is traced back toi = 1
using theM function to calculate the three axial, lateral and
elevational displacements (D = (da, dl, de)):

Dk
j (i) = arg min

da,dl,de

{

Ck
j (da, dl, de, i)

}

, i = m

Dk
j (i) = M(i + 1, Dk

j (i + 1)), i = 1 · · ·m − 1 (8)

This gives all three displacements simultaneously, in contrast
with other 3D elastography methods which give displacement
in each direction in separate steps.

Further speed-up is achieved by downsampling the signal
g(i) in the axial direction by a factor ofβ to g∗(i), and com-
paring it with the unaltered signalg′(i). This is done by simply
skippingβ − 1 samples fromg(i) and performing DP on the
βth sample. This generatesinteger displacement estimations
at m/β samples. The displacement of the skipped samples is
then simply approximated by the linear interpolation of two
neighboring points whose displacements are calculated, asan
initial guess for the next step.

The displacement estimations from Equation 8 are used to
estimate a subpixel displacement estimation by minimizingthe
following cost function:

C(f1, · · · , fm) = Σm
i=1

[

gk
j (i) − gk+de

j+dl

′

(i + da(i) + fi)
]2

+ w [da(i) + fi − da(i − 1) − fi−1]
2 (9)

wherefi is the fractional displacement in the axial direction
that is added toda(i) at each samplei to obtain the final
displacement field.w is again the regularization wieght. The
cost function corresponds to thejth A-line in the kth plane.
Assuming linear interpolation forgk+de

j+dl

′

, the above cost
function becomes a parabolic function offi, i = 1 · · ·m,
which has a closed form solution. Because of space limitations,
more details of the algorithm cannot be presented here and will
be published in a subsequent article.

III. 3D V ISUALIZATION

Rendering 3D models from 3D ultrasonic data is a compli-
cated task due to the noisy and fuzzy nature of ultrasound
images. Ultrasound images contain considerable amount of
noise, artifacts, and speckle. As reported in [12], ultrasound
imaging posses features that cause well-known visualization
techniques to fail. Among these features are significant amount
of noise and speckle, lower dynamic range, and high variation
in the intensity of neighboring voxels.

Our visualization algorithm is based on the standard volume
rendering pipeline. We introduced a new element to this
algorithm by using strain values in the opacity function to
better classify soft tissues: The new opacity function is inferred
from both B-mode and strain values. The current volume
rendering algorithm is implemented using GPU.
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Fig. 1. In-vivo images of the thermal lesion produced by RF ablation therapyof liver cancer. First, second and third column correspond to the first, second
and third patients. (a) - (c) B-scan after RF ablation. The shadow in (a) and (c) indicates the presence of thermal lesion.It is almost impossible to ascertain
the size and position of the thermal lesion from the B-scans.(d) - (f) Strain images after RFA ablation, generated using 2D DP elastography and freehand
palpation of the liver tissue. The thermal lesion is visiblein dark surrounded by normal tissue in white. (g) - (i) Post-ablation CT scans, with the delineated
thermal lesions (The non-unity aspect ratio in the axes of the B-mode and strain images should be considered when comparing them with the CT scans).

IV. RESULTS

We first presentin-vivo elastographic monitoring of RF
ablation therapy of liver cancer in human during surgery using
the novel elastography method. RF ablation was administered
using the RITA Model 1500X RF generator (Rita Medical
Systems, Fremont, CA). Ultrasound RF data is acquired from
an Antares Siemens system (Issaquah, WA) with a 7.27MHz
linear array at a sampling rate of 40MHz. The strain images are
generated offline. We have an active IRB protocol for patient
studies and we have monitored ablation in 5 patients to date.
However, we show the results from only 3 patients due to
space limitations. Figure 1 shows the B-mode scan, the strain
image obtained using our elastography method and CT scans
performed after RF ablation (first, second and third columns
corresponding to first, second and third patients respectively).
Tissue is simply compressed freehand with the ultrasound
probe without any attachment. The shadow in Figure 1(a) at
20mm depth is produced by the thermal lesion. Note that it is

not possible to ascertain the size and position of the thermal
lesions from B-mode images. In addition, the thermal lesion
has different appearances in the three B-scans. However, the
thermal lesions show very well as hard lesions in the strain
images. The size of the thermal lesion in the strain images and
in CT scans are also in accordance. It seems that the strain
images provide with higher contrast of the thermal lesion and
lower noise in the image, compared to the strain images of RF
ablation obtained with cross-correlation methods. However, a
more rigorous validation of the size and shape of the ablated
lesion in the regularized elastography method is necessary. To
the best of our knowledge, this is also the first demonstration
of the success of elastography in imaging the thermal lesion
in an in-vivo human experiment.

For 3D elastography, we use a 3D probe that consists of a
curvilinear array that is mechanically rotated to scan a volume.
Ultrasound RF data is acquired from an Ultrasonix system
(Vancouver, BC) at 4.5MHz frequency, 20MHz sampling rate
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Fig. 2. Ex-vivo liver RF ablation experiment. (a) The experimental setup. The passive arm is holding the 3D probe and the liver is contained in the phantom.
(b) The liver sample after ablation, cut into four pieces. (c) & (d) 3D B-mode and strain images after ablation. (e) - (g) 2Dprojections of the 3D strain image.

and 30% bandwidth. A Radionics device (Valleylab, Boulder,
CO) is used forex-vivo RF ablation. The ablation power is
set to 8W for 10min and the cooler is turned off throughout
the experiment. Target temperature reached90◦C in 3min and
was kept constant in the next 7min of ablation. Figure 2 shows
the experimental setup and results. There is a good agreement
between the size of the lesion in the axial and lateral directions
in the strain images and gross pathology. The ablation goes
beyond the probe’s field of view in the elevational direction.
Figure 3 shows the volume rendering of the ultrasound image
after ablation, clearly showing the ablated lesion.

V. D ISCUSSION ANDCONCLUSION

Strain images in Figure 1 demonstrate that the proposed
regularized elastography method can be used to visualize the
ablated region immediately after RF ablation. Elastography is

Fig. 3. Ex-vivo liver RF ablation experiment. Volume renderings of the 3D
B-mode image using 3D strain in the opacity function.

challenging during ablation because of the dynamic changes
in the image during thermal power deposition. We are cur-



rently working on implementing our method on the ultrasound
machine to enable real-time monitoring of the ablation. To
examine the feasibility of such monitoring, we have collected
real-time strain images using Siemens Antares EI (Elastisity
Imaging) module in one of the patient studies. Figure 4 (a)
shows three small ablated lesions around ablator tines, which
are grown over time to a large hard lesion in Figure 4 (c).

(a)

(b)

(c)

Fig. 4. RF ablation monitoring in ain-vivo patient study. B-mode and strain
images are shown in the left and right respectively. The three images in (a) to
(c) are acquired at three stages of the ablation (times shownon each image).

In this paper, we present high qualityin-vivo 2D strain
images of thermal lesions and compared them to post-ablation
CT data. Comparison is more qualitative, however, since strain
images are 2D and CT data is 3D and ultrasound is not tracked.

We also present formulation and experimental results of
novel regularized elastography technique. An extensive study
of the robustness and accuracy of the new regularized elas-
tography technique is the subject of future research. We have
shown before that regularization in DP increase robustness[1].

We demonstrate the feasibility of 3D elastography monitor-
ing of RF ablation for the first time using a 3D probe; however,

we are planning for a comprehensive comparison of the 3D
elastography method with other 3D strain imaging techniques
[13], [14] and with 3D temperature imaging implementations
[15]. The lateral and elevational search is performed only to
increase the quality of the axial strain: the lateral and eleva-
tional displacements are integer values and are not suitable for
calculating strain.

Good volumetric CNR between the thermal lesion and
background suggests that the regularization is not adversely
affecting CNR. However, a study similar to [1] on the effect
of the 3D regularization on the CNR and resolution should
be done. Having an elastography system for 3D ablation
monitoring with promisingex-vivo results, in-vivo patient
studies under our active Institutional Review Board (IRB)
approval are to commence.
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