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Abstract

Purpose Sites that use ultrasound (US) in image-guided neu-
rosurgery (IGNS) of brain tumors generally have three sets
of imaging data: pre-operative magnetic resonance (MR) im-
age, pre-resection US, and post-resection US. The MR im-
age is usually acquired days before the surgery, the pre-
resection US is obtained after the craniotomy but before
the resection, and finally the post-resection US scan is per-
formed after the resection of the tumor. The craniotomy and
tumor resection both cause brain deformation, which signif-
icantly reduces the accuracy of the MR-US alignment.

Method Three unknown transformations exist between the
three sets of imaging data: MR to pre-resection US, pre- to
post-resection US, and MR to post-resection US. We use two
algorithms that we have recently developed to perform the
first two registrations (i.e. MR to pre-resection US, and pre-
to post-resection US). Regarding the third registration (MR
to post-resection US), we evaluate three strategies. The first
method performs a registration between the MR and pre-
resection US, and another registration between the pre- and
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post-resection US. It then composes the two transformations
to register MR and post-resection US; we call this method
compositional registration. The second method ignores the
pre-resection US and directly registers the MR and post-
resection US; we refer to this method as direct registration.
The third method is a combination of the first and second: it
uses the solution of the compositional registration as an ini-
tial solution for the direct registration method. We call this
method group-wise registration.

Results We use data from 13 patients provided in the MNI
BITE database for all of our analysis. Registration of MR
and pre-resection US reduces the average of the mean target
registration error (MTRE) from 4.1 mm to 2.4 mm. Regis-
tration of pre- and post-resection US reduces the average
mTRE from 3.7 mm to 1.5 mm. Regarding the registration
of MR and post-resection US, all three strategies reduce the
mTRE. The initial average mTRE is 5.9 mm, which reduces
to: 3.3 mm with the compositional method, 2.9 mm with the
direct technique, and 2.8 mm with the group-wise method.
Conclusion Deformable registration of MR and pre- and post-
resection US images significantly improves their alignment.
Among the three methods proposed for registering the MR
to post-resection US, the group-wise method gives the low-
est TRE values. Since the running time of all registration
algorithms is less than 2 min on one core of a CPU, they can
be integrated into IGNS systems for interactive use during
surgery.

Keywords Non-rigid registration - intra-operative ultra-
sound - Brain surgery - Image guided neuro-surgery -
IGNS

1 Introduction

Each year, thousands of Canadians undergo neurosurgery
for resection of lesions such as tumors in close proximity
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Fig. 1: MR and US images of neurosurgery. (a) is the pre-operative MR, and (b) and (c) are respectively pre- and post-
resection US images. (d) shows a relatively good alignment between the MR and the pre-resection US. The arrows point to
the ventricle boundary and septum. (e) shows that the alignment of MR and post-resection US is significantly degraded due
to a large amount of brain deformation. (f) confirms that the deformation occurred during the resection is large, since there
is a large misalignment between the pre- and post-resection US images.

to critical areas of the brain. While image-guided neuro-
surgery (IGNS) systems can be used to track surgical tools
with respect to the pre-operative magnetic resonance (MR)
images, movement of brain tissue during surgery invalidates
the image-to-patient mapping and thus reduces the effective-
ness of using pre-operative images for intra-operative sur-
gical guidance. The movement of brain is caused by bio-
chemical and physical factors, and is referred to as brain
shift in the literature [1-4]. Some centers have used intra-
operative MRI [5-9] and functional MRI [10] to address this
issue. While the data acquired can yield exquisite anatomi-
cal and functional data [11], the system is expensive and
cumbersome and requires major modifications to the oper-
ative room (OR) and surgical tools. Tracked intra-operative
ultrasound (US), however, is inexpensive and does not re-
quire significant changes to the OR or operating procedure.
In neurosurgery, intraoperative US has been used in imaging
tumor resection and epilepsy surgery [12-20] and placement
of cerebral ventricle catheters [21] for example.

This work focuses on image-guided resection of brain
tumors. When US is used in these procedures, a first set
of US is acquired after the craniotomy but before opening
the dura to help the surgeon find the tumor and its bound-
aries, and other US acquisitions can be performed during

the resection of the tumor. Fusion of the pre-operative MR
and intra-operative US is of significant clinical value since
many critical structures that have high contrast in the MR
image are not well visualized in US. In addition, surgeons
have more training in using and interpreting MR images.
Furthermore, functional and vascular data, registered to the
pre-operative MR are required during the surgery. To allow
navigation based on the preoperative MR images, a standard
patient registration procedure using a number of facial land-
marks is performed. This landmark registration allows rigid
registration of the MR to the patient space. Furthermore, the
US probe is tracked, which allows the fusion of the US and
MR images. Four main sources of error make this tracking-
based navigation system inaccurate. First, there is an error
associated with localizing the facial landmarks and regis-
tering them to the MR image. Second, the tracking system
is not perfect, and therefore the location and orientation of
the US probe is prone to error. Third, US calibration has
errors, which means that the physical location of US im-
ages is slightly different from what the IGNS system as-
sumes. Finally, due to brain shift, which can be as much
as 50 mm [5] in some locations, the pre-operative MR im-
ages are no longer an accurate registration of the patent’s
anatomy, even after a perfect linear registration. To solve
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Fig. 2: MR and US images of neurosurgery. (a) is the pre-operative MR, and (b) and (c) are respectively pre- and post-
resection US images. (d) shows that the brain deformation is large between the MR and the pre-resection US, as pointed
to by the arrow. (e) shows that the deformation is large between the MR and the post-resection US. (f) shows that the
deformation occurred during the resection is relatively low, as the two US images align well.

these problems, deformable registration of the MR and US
image using the intra-operative US data is of high clinical
importance.

Figure 1 shows the brain shift between MR and US im-
ages in a patient from the BITE database [22]. Part (d) shows
that the alignment of MR and pre-resection US is relatively
good (see septum pellucidum and ventricle boundary, which
are identified by the arrows). However, the alignment de-
grades significantly between MR and post-resection US im-
ages as shown in (e). Looking at (f), we can confirm that
most of the deformation has happened during the resection,
since the alignment of the pre- and post-resection US im-
ages is relatively poor. Recent work has, in fact, studied the
brain shift that happens after craniotomy and durotomy [23,
24].

Figure 2 shows images from another patient from the
BITE database, which present different deformation patterns
compared to Figure 1. The alignment in (d) is poor, which
means that the initial patient-to-image registration based on
skin markers was inaccurate or a large deformation has hap-
pened during the craniotomy. The deformation during the
resection is, however, low, as shown in (f), where the pre-
and post-resection ultrasound images align relatively well.

The registration of the MR to post-resection US is the
most challenging task, compared to MR to pre-resection US
and pre- to post-resection US registrations. We propose three
strategies to perform this registration as follows.

1. We first perform a registration between the MR and pre-
resection US, followed by a second registration between
the pre- and post resection US images. These two regis-
trations give us two transformations, which we compose
to find the transformation between the MR and post-
resection US.

2. We ignore the pre-resection US image and directly reg-
ister the MR and post-resection US.

3. We combine the above two methods to perform a group-
wise registration.

The advantage of the first method is that it performs
two simpler registration tasks. The advantage of the sec-
ond method is that it does not suffer from error accumu-
lation, a well-known problem with all sequential tracking
techniques [25] where incremental small errors can add to
large values. The third method combines the advantages of
the first two, and is therefore expected to outperform the
other two. We show that all three techniques substantially
improve the registration accuracy of MR and post-resection
US compared to the linear skin landmark registration used
to establish the initial patient-to-image registration.

We use two nonlinear registration techniques that we
have recently developed: for registration of US images, we
use REgistration of ultraSOUND volumes (RESOUND) al-
gorithm [26], and for registration of MR and US volumes,
we use Robust PaTch-based cOrrelation Ratio (RaPTOR)
[27]. Previous work that has tackled registration of MR and
US include the following. Roche et al. [28] performed a
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Fig. 3: The three transformations between the three MR and US volumes. More than 300 slices are acquired in both pre- and
post-resection scans; we are only showing few here for better visualization.

parametric polynomial fit of US intensity as a function of
MR and its gradient to construct a functional correlation
ratio similarity metric. Arbel et al. [29] and Mercier et al.
[19] segmented the MR image and assigned different in-
tensity transformations to different MR regions to generate
pseudo-US images. They then registered the pseudo-US to
the real US using the ANIMAL registration technique of
Collins et al. [30]. Using a similar approach, Kuklisova-
Murgasova et al. [31] recently proposed to register MR to a
segmented atlas, generate a US-like volume from the MR
volume, and finally register it with the US volume using
a uni-modal block-matching technique. Penney et al. [32]
generated blood vessels probability maps from US and MR
and registered these maps using cross correlation. Ji et al.
[33], Hartov et al. [34] and Brooks et al. [35] used mutual
information (MI) of US and MR, and Zhang et al. [36] per-
formed phase-based MI.

The contributions of this work are summarized below.
(1) We develop a group-wise registration algorithm that con-
siders the MR volume and the two US volumes simultane-
ously to estimate the transformation between the MR and
post-operative US volumes. We use the pair-wise registra-
tion algorithms of [26,27] to develop the group-wise algo-
rithm. (2) We develop a compositional registration algorithm
that composes sequential image transformations to calculate
the deformable transformation between the MR and post-
resection US volumes. (3) We compare the group-wise, com-
positional and direct registration approaches. We show that:
(3a) The direct registration method does not produce optimal
results if the amount of brain shift that occurs during cran-
iotomy and tumor resection is high. (3b) The compositional
registration method breaks solving for the large brain shift
into two smaller ones that happen during craniotomy (regis-

tration of the MR and pre-resection US) and tumor resection
(registration of the pre- and post-resection US). Therefore,
it is robust against large total brain deformations, but suf-
fers from error accumulation. (3¢c) Finally, we show that the
group-wise algorithm combines the advantages of the com-
positional and direct strategies, and therefore produces ro-
bust and accurate estimations of the registration parameters
in all cases.

This paper is organized as follows. We first elaborate on
different registration techniques that we use for registering
the MR and US images. We then provide extensive exper-
iments and results to compare the performance of different
registration methods, and suggest directions for future work.

2 Methods

There are three transformations between the three sets of
MR, pre-resection US and post-resection US images, one
transformation between each pair of images (see Figure 3).
We annotate these transformations as follows:

1. MR and pre-resection US by T, »
2. Pre- and post-resection US by Tr. 3
3. MR and post-resection US by T, 3

Due to brain deformation, we model all of these transfor-
mations using free-form cubic B-splines [37]. Calculation
of T1.» and T3 needs multi-modal registration, while es-
timation of T, 3 requires mono-modal registration of US
images. We elaborate next on how we estimate these trans-
formations.



2.1 Multi-modal Registration of MR and US Volumes

Performing registration between images of different modal-
ity, such as MR and US, is in general more challenging than
mono-modal registration. Similarity metrics such as normal-
ized cross correlation (NCC) do not usually work in this
case because the intensity relationship between two images
is complex. We proposed Robust PaTch-based cOrrelation
Ratio (RaPTOR) in [27], which uses correlation ratio (CR)
as the similarity metric for each small patch and averages
the result over N, patches to estimate RaPTOR:
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where Iysg and Iy are respectively MR and US images and
Ni(Iur | Iys) is their correlation ratio at the i’ patch. The
registration in RaPTOR is done hierarchically in three levels
to speed the computations and prevent the algorithm from
getting trapped in local minima. At the two coarse levels,
an approximate transformation is calculated that brings the
volumes closer to alignment. In the final level, an accurate
transformation that aligns the volumes is calculated using
the approximate transformation.

RaPTOR is a dissimilarity metric between Iyr and Iyg
that varies between 0 and 1: for aligned images with func-
tional intensity relationships, its value is close to 0. CR as-
sumes a non-linear functional relationship between corre-
sponding intensities, and along with mutual information (MI)
is commonly used for multi-modal registration. Using effi-
cient optimization techniques based on analytic gradients of
the CR, RaPTOR performs non-rigid volumetric registration
in about 30 sec on a single core of a 3.6 GHz processor.
We use this algorithm to estimate T, 5. This algorithm is
also used to estimate Ty, 3 by directly registering the MR
and post-resection US images (i.e. ignoring the intermediate
pre-resection US image).

2.2 Mono-modal Registration of US Volumes

We proposed non-rigid REgistration of ultraSOUND vol-
umes (RESOUND) algorithm in [26], which optimizes a
regularized cost function with normalized cross correlation
(NCC) as the similarity metric. NCC assumes a linear rela-
tionship between corresponding intensity values, and there-
fore is robust to linear intensity distortions. RESOUND av-
erages squared NCC estimations over N, small patches:
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where p;(Iyg,Iys) is the NCC value between the MR and
US images in the i/ patch. Similar to RaPTOR, the regis-
tration in RESOUND is done hierarchically in three levels.
RESOUND is also a dissimilarity metric that varies between
0 and 1. RESOUND also uses robust estimation techniques
that suppress outliers and missing data. It further exploits
efficient stochastic gradient descent optimization, which al-
lows it to perform nonlinear registration between volumetric
data in about 5 sec on a single core of a 3.6 GHz processor.
We use this algorithm to estimate a cubic B-spline deforma-
tion field for Ty, 3.

2.3 Compositional Registration for Estimating T, 3

There are three main difficulties in computing T1._3: (1) the
amount of brain shift is generally highest between the pre-
operative MR and post-resection US, (2) the images are of
different modality, and (3) the tumor in the MR image is re-
placed by the tumor cavity in the post-resection US image,
a region which should be treated as outlier data. Composi-
tional estimation of this transformation breaks this difficult
task into the two easier tasks of calculating T, and T, 3:
(1) the deformation is smaller in each transformation, (2) the
difficult multi-modal registration is now performed on MR
and pre-resection US images, which are more similar spa-
tially compared to the MR and post-resection US and (3) the
outlier suppression should be performed on a relatively eas-
ier mono-modal registration of US images. The disadvan-
tage is that the errors in estimation of T, » and T, 3 can
be accumulated into T, 3. We therefore propose the group-
wise method in the next section.

2.4 Group-wise Estimation of T3

By combining the direct and compositional approaches, we
propose a group-wise technique to estimate T1._3. Our moti-
vation is that this combination should eliminate the accumu-
lation of error in the compositional technique. Here, we first
compose T 5 and Ty, 3 transformations to get an estimate
for T1..3. We then use this estimate as the initial guess for
direct registration of the MR and post-resection US. There-
fore, this step is more straightforward due to the availability
of a relatively accurate estimate of the transformation, while
it eliminates the error accumulations of the compositional
registration step.



Fig. 4: The pre-resection US images are acquired while the
probe is tracked in 3D. The tracking data is then used to
reconstruct a 3D volume from 2D US slices.

3 Experiments
3.1 Data Description

The clinical data from image guided neuro-surgery is ob-
tained from 13 patients with gliomas in the Montreal Neu-
rological Institute. The study was approved by the Montreal
Neurological Institute and Hospital Review Ethics Board,
and informed consent from each participant was received.
The data is available online from http://www.bic.mni.
mcgill.ca/BITE. The pre-operative MR images are gad-
enhanced T1 weighted and are acquired a few days before
the surgery. The intra-operative US images are obtained us-
ing an HDI 5000 (Philips, Bothell, WA) ultrasound machine
with a P7-4 MHz phased array transducer. Full description
of the data is provided in [22]. The ultrasound probe is tracked
using a Polaris camera (NDI, Waterloo, Canada), and 3D US
volumes are reconstructed using the tracking information.
Figure 4 shows the US probe during data acquisition with
the tracking markers.

We use the tracking information to perform a rigid ini-
tial alignment of US images to the MR volume. Figure 5
shows the pre- and post-operative US slices relative to the
rendered MR volume. We reconstruct US volumes with a
pixel size of 1 mm in the x y z directions. This relatively large
pixel size means that for every pixel, multiple US measure-
ments from different images at different angles are avail-
able. Therefore, the effect of US speckle is minimized, since
the US speckle pattern changes when imaged from different
angles [38]. Each volume has a different size because the
depths and sweeping areas are different; the typical size is
approximately 1007 voxels. We resample the MR volume to
the same isotropic 1 mm pixel size.

Fig. 5: The pre- and post-resection US slices (respectively in
red and green) shown on the rendered pre-operative MR vol-
ume. US slides are transformed into the MR coordinate sys-
tem using the tracking data from the Polaris system. More
than 300 US slides are collected in either scans; we are only
showing few here for improved visualization.

3.2 Landmark Selection and mTRE Estimation

To validate the results, three experts have selected corre-
sponding anatomical landmarks in US and MR images [39,
22]. For this task, US and MR images are sampled at the
small 0.3 mm voxel size in all dimensions. The landmarks
are selected independently by all the three experts through-
out the volumes in three orthogonal planes. The landmarks
are used to calculate mean target registration error (nTRE).
The mTRE of n corresponding marks at locations x and x’
in the two images is calculated according to

1 n
mTRE = ~ 3 | T(x;) — x| (3)

where T is one of the three transformation in Figure 3 and
|lv|| is the length of the vector v. Lower mTRE indicates a
more accurate alignment.

3.3 Statistical Tests

Two types of tests are commonly used for statistical hypoth-
esis testing: a t-test for normally distributed populations, and
Wilcoxon signed-rank test for data that is not Gaussian. Our
experiments showed that the TRE estimates in IGNS are not



normally distributed (see Figure 7 for example), and there-
fore we use the Wilcoxon signed-rank test for estimating the
p-value of statistical significance.

4 Results

In this section, we first provide images that show the pattern
of the brain shift during the craniotomy and tumor resec-
tion. We then present quantitative mTRE results of different
registration methods.

4.1 Qualitative Brain Shift Estimation

Figure 6 demonstrates how different transformations are es-
timated. The MR and pre- and post-resection US images are
overlaid with the blue contours to help the reader visually
identify homologous structures between the different im-
ages. The contours are estimated automatically from the MR
image. We first use RaPTOR to estimate T, ; the magni-
tude of the brain shift corresponding to the US image of (b),
i.e. S12, is shown in (d). Using RESOUND, we estimate
T, 3 and calculate the brain shift S,._3 magnitude in (e). In
(f) to (h), we estimate S|, 3 using three different methods:
direct in (f), compositional in (g), and group-wise in (h). We
see that the brain shift value is the largest around the resec-
tion is approximately 20 mm.

4.2 mTRE Results of the Compositional Method

To estimate T, 3 using the compositional approach, we first
use RaPTOR to estimate T, . Using the landmarks pro-
vided in the BITE database [19], we quantify the registration
accuracy (see Table 1). The initial mean mTRE is 4.1 mm,
which is reduced to 2.4 mm after the registration.

We then use RESOUND to estimate T, 3. The mTRE
values before and after the registration are shown in Table 1.
Because the tumor volume is outlier data, we also report its
size in the second column. We see that despite the large out-
lier data, RESOUND has reduced the mTRE from 3.7 mm
to 1.5 mm. In Table 1, we note that the average initial mMTRE
values are respectively 4.1 mm and 3.7 mm. Since mTRE is
an indication for brain shift, this suggests that the deforma-
tions that happen during craniotomy (i.e. T1. ;) and during
resection (i.e. To.3) are in average similar. Nonetheless, this
is not the case for all patients: for patient 1, the mTRE val-
ues from Table 1 are respectively 6.3 mm and 2.3 mm, while
for patient 3 the mTRE values are 2.5 mm and 4.6 mm.

Having calculated Ti, ; and T,, 3, we now compose
them to obtain T;.3. The mTRE results are shown in the
fourth column of Table 2. The initial average mTRE value
of 5.9 mm is substantially reduced to 3.3 mm using this

technique. The maximum TRE is also reduced greatly from
14.0 mm to 4.8 mm. Furthermore, the reduction in mTRE
value is statistically significant, with a p-value of 0.002.

4.3 mTRE Results of the Direct Method

We use the robust multi-modal registration algorithm of RaP-
TOR to directly estimate T1._3. The results are presented in
the fifth column of Table 2: the average mTRE and max-
imum TRE values are substantially reduced to 2.9 mm and
4.4 mm respectively. Furthermore, the improvement in mMTRE
is statistically significant with a p-value of 0.0002. The large
mTRE and maximum TRE values of relatively 14.0 mm and
17.0 mm in patient 11 show the large capture range of RaP-
TOR. A large capture range is important to ensure that the
algorithm does not diverge, or converge to an incorrect min-
ima, for cases with large initial misalignment of MR and US
images.

4.4 mTRE Results of the Group-wise Method

Finally, we use the compositional T3 results of Section 4.2
as an initial solution and perform direct registration between
the MR and post-resection US images. The mTRE results
are summarized in the last column of Table 2: the average
mTRE and maximum TRE values are substantially reduced
to 2.8 mm and 4.1 mm respectively. Furthermore, the im-
provement in mTRE is statistically significant with a p-value
of 0.0002. Using a paired Wilcoxon test on the magnitude
of the registration residuals, we find no statistical difference
between the compositional and direct methods (p=0.24), a
significant improvement of the group-wise method over the
compositional method (p=0.008) and a trend to improve-
ment of the groupwise method over the direct method (p =
0.056).

The accuracy and robustness of a registration algorithm
are both critical in its successful clinical translation. The
accuracy is usually measured using mTRE values; the re-
sults of Table 2 show that the direct and group-wise meth-
ods have the smallest average mTRE values. The robustness
of a method can be evaluated by assessing its performance
against large initial misalignments; the highest initial TRE
is 17.0 mm in P11, which is reduced to 6.9 mm, 8.1 mm and
5.2 mm using respectively compositional, direct and group-
wise methods. This result is in fact very intuitive: the com-
positional method deals with smaller deformation since it
breaks the large deformation estimation problem into two
smaller ones. Therefore, it outperforms the direct method
when the initial misalignment is large. However, it suffers
from error accumulation as a result of composing transfor-
mations. The group-wise method exploits the advantages
of both compositional and direct methods, and is therefore
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Fig. 6: The brain shift estimation between volumes acquired at different times. (a) to (c) shows the pre-operation MR, pre-
resection US and the post resection US respectively. The arrows in (c) point to the tumor cavity. The blue contour shows
MR edges and is superimposed on all figures to help readers with visual comparison. (d) shows the brain shift between (a)
and (b), and (e) shows the brain shift between (b) and (c). The total brain shift between (a) and (c) is computed with three
different methods in (f) to (h) as shown, which are similar as expected. (f) is the direct method, (g) is the compositional
method, and (h) is the group-wise method. Note that all registrations are done in 3D.

the most accurate and robust approach. The p-values of the
paired Wilcoxon tests of the maximum TRE of the group-
wise method compared to the initial values and compose and
direct registrations are respectively 0.0002, 0.0017, 0.0017
and 0.039, all statistically significant.

The box plot of Figure 7 allows easy comparison of the
initial TRE values with the three registration methods. We
see that the direct registration method outperforms the com-
positional technique, which means that the accumulation of
error is an important factor. The group-wise method gives
the best TRE results. We believe the reason for improved
performance of the group-wise method, compared to the di-

rect method, is that the direct method can get trapped in a
local minima if the misalignment is too large in some im-
age regions. The compositional approach brings the images
closer to alignment in such regions, reducing the risk of con-
vergence to an incorrect local minima.

5 Discussion

The registration of MR and US is challenging due to nu-
merous reasons. In MR, the intensity of every voxel reflects
the proton density modulated by the magnetic properties of
that tissue, and hence MR images tissue type. In contrast,



MR & pre-resection US (T 5)

pre- & post-resection US (T« 3)

Patient Landmarks Initial RaPTOR Tumor size (cm?) Initial RESOUND
P1 35 6.3(1.9-9.1) 1.8(04-54) 79.2 2.3(0.6-54) 1.8(0.5-4.0)
P2 40 9.4 (6.3-14.6) 4.2 (0.5-9.8) 53.7 3.9(2.8-5.1) 1.4(0.7-2.3)
P3 32 3.9(1.0-6.1) 1.7 (0.5-3.3) 31.6 4.6 (3.0-59) 14(0.7-2.2)
P4 31 2.6 (0.5-6.9) 2.0 (0.3-5.8) 0.2 4.1 (2.6-5.5) 1.2 (0.3-2.4)
P5 37 2.3(0.2-44) 1.8(0.5-4.0) 32.3 2.3 (1.4-3.1) 1.0 (0.2-1.7)
P6 19 3.0(0.3-6.3) 2.5(0.6-6.2) 13.9 4.4 (3.0-5.4) 1.0 (0.4-1.7)
P7 23 3.8(0.0-8.5) 2.7(0.8-5.7) 63.1 2.7 (1.7-4.1) 1.7 (0.9-3.6)
P8 21 5.1(2.5-7.6) 2.5(0.6-6.7) 4.8 2.2(1.0-4.6) 1.4(0.6-3.2)
P9 25 3.0(0.8-5.3) 1.7 (0.3-3.0) 10.4 3.9(1.0-6.7) 1.9(0.7-4.1)
P10 25 1.5(0.6-3.5) 1.4(0.6-3.1) 39.7 2.9(0.8-9.0) 2.2(0.6-5.3)
P11 21 3.7(0.9-7.0) 2.2(1.1-4.2) 49.1 10.5 (7.8-13.0) 2.5(1.1-4.2)
P12 23 5.2(1.5-10.4) 3.8 (0.8-8.3) 31.9 1.6 (1.3-2.2) 0.7 (0.2-1.6)
P13 23 3.8(1.2-5.7) 2.7(0.7-5.2) 37.3 2.2 (0.6-4.0) 1.3 (0.2-2.8)
mean 27 4.1(1.4-7.3) 2.4(0.6-5.5) 344 3.7(2.1-5.7)  1.5(0.5-3.0)
std 6.9 2.0(2.7-2.9) 0.8 (0.2-2.0) 23.3 24(19-2.8) 0.5(0.3-1.1)

Table 1: The mean and range of TRE values (in mm) between the MR and pre-resection US volumes. RaPTOR is used here
to estimate T, 5. The minimum value of each row is in bold font. 10 landmarks are selected in all 13 datasets of pre- and
post-resection US volumes. The results of the last column are from [26].

US images the variations in the acoustic impedance of dif-
ferent tissue types, and therefore MR and US images inten-
sities are widely different. In addition, spatial variations of
the US image intensities are very high due to wave attenu-
ation and scattering. We therefore used the RaPTOR algo-
rithm for MR-US registration, which uses a local similarity
metric based on statistical and information theoretic mea-
sures.

The presence of outliers in pre-operative MR to post-
operative US registration further complicates MR to US reg-
istration. We therefore proposed three pair-wise and group-
wise approaches to register these two volumes. The group-
wise technique is a combination of RESOUND and RaP-
TOR algorithms, and is more computationally expensive com-
pared to the pair-wise methods. Nevertheless, due to the ef-
ficient stochastic gradient decent optimization strategies, it
runs in less than 2 min. This time includes the two registra-
tions performed to find T, and T, 3, the time needed to
compose these two transformations, and the final registra-
tion to refine T ._3.

Our validation was based on real patient data using man-
ually selected homologous landmarks. While the complex-
ity of this data challenged our algorithms, there is an in-
herent uncertainty in manual landmark selection. In addi-
tion, although the landmarks cover most of the volumes and
their number is large, some regions can be unrepresented in
mTRE estimation. Therefore, qualitative study of the brain
shift (such as in Figure 6) is an essential complement to the
quantitative mTRE analysis.

Two factors are critical in determining the outcome of
tumor resection surgery: the completeness of the resection
while minimizing damage to healthy tissues. Accurate reg-
istration of the intra-operative US and pre-operative MR is
significant in both fronts. It can help the surgeon accurately
identify the safety zone, knowing that the intra- and post-
resection scans enables identification of residual tumor. The
results of Table 2 show that all three methods significantly
reduce the mTRE errors. Among the three, the direct and
group-wise methods give the smallest average mTRE val-
ues of respectively 2.9 mm and 2.8 mm. Another important
factor is the robustness of the technique against large initial
misalignments. The registration results of P11, which has
the largest initial mMTRE, show that the maximum TRE val-
ues of the direct and group-wise methods are respectively
8.1 mm and 5.2 mm, showing that the group-wise method
is significantly more robust. The results of Figure 7 visu-
ally show the same behavior (see the last four columns that
show the maximum TRE values): the group-wise method is
significantly more robust in giving the smallest maximum
TRE values.

It is informative to summarize the advantages and dis-
advantages of previous work that has also tackled MR and
US registration, and provide a comparison to this work. The
work of Roche et al. [28] is unique in that it uses both the
intensity and gradient of MR to estimate the correlation ra-
tio. Utilizing more information from the MR image can sig-
nificantly improve the results. A disadvantage of this work
is that a polynomial functional relationship is assumed be-
tween MR and US intensities, and therefore an interesting



Patient Landmarks Initial Compose Direct Group-wise
P1 13 7.2(5.2-10.6)  3.6(1.3-5.8) 3.8(2.1-5.7) 3.7(1.6-5.6)
P2 11 8.9(6.2-13.8) 4.8(1.7-94) 4.1(1.7-83) 4.0(1.8-7.0)
P3 19 8.7(6.6-12.7)  2.2(1.4-33) 29(0.9-69) 2.1(0.9-3.4)
P4 20 4.6(1.1-11.3)  2.5(0.5-6.5) 2.5(1.0-6.8) 2.5(1.1-6.0)
P5 21 3.6 (0.4-5.6) 2.5(0.4-48) 25(09-4.1) 2.6(1.0-4.1)
P6 16 3.6 (1.4-7.9) 3.5(0.8-6.0) 2.5(0.4-54) 2.4(0.4-5.3)
P7 17 6.4 (3.6-7.9) 542.7-1.5) 27(1.5-54) 29(1.9-6.5)
P8 15 5.1(1.3-8.3) 29(04-6.2) 25(04-6.8) 2.4(0.4-6.4)
P9 12 4.2 (2.4-6.5) 1.9(0.8-4.8) 23(0.5-5.2) 1.8(0.5-4.3)
P10 16 2.3 (0.2-4.6) 25(0.3-5.6) 1.6(0.4-33) 1.7(0.4-3.5)
P11 9 14.0(11.8-17.0) 42(1.1-69) 4.4(1.8-8.1) 3.9(1.3-5.2)
P12 13 4.6 (1.7-7.1) 39(2.2-6.6) 39(2.1-6.1) 3.8(2.0-6.0)
P13 12 3.8 (2.1-7.0) 3.0(1.0-49) 25(1.1-49) 2.5(.1-4.8)

mean 15 5.9(3.4-9.3) 33(1.1-6.00 29(1.1-59) 2.8(1.1-5.3)
max 21 14.0(11.8-17.0) 4.8(2.7-94) 4.4(2.1-83) 4.0(2.07.0)
std 3.7 3.2(3.3-3.6) 1.1(0.7-1.5) 0.8(0.6-1.4) 0.8 (0.6-1.3)

p-value - - 0.002 0.0002 0.0002

Table 2: The mean and range of TRE (in mm) between the MR and post-resection US image. Second column shows the
number of landmarks. Three methods are used here to estimate T1,_3. The smallest number in every row is in bold. The p-
values in the last row show the statistical significance of improvement over the initial mTRE. Also see Figure 7. The results

of the fifth column are from [27].

area of future work is to extend this method to the estimation
of nonparametric functional relationship. The work of Arbel
et al. [29], Mercier et al. [19] and Kuklisova-Murgasova et
al. [31] transform the multi-modal registration problem to a
uni-modal one, and hence enables the use of well-established
and computationally efficient uni-modal registration meth-
ods. A disadvantage is that the presence of pathology can
render US simulation from the MR volume challenging. A
big advantage of the work of Ji et al. [33], Hartov et al. [34]
and Brooks et al. [35] is that they use MI, a well-established
similarity metric that has been rigorously tested. A draw-
back is that MI assumes that the intensity relations between
the two modalities is the same throughout the two volumes,
and therefore is susceptible to the large spatial intensity vari-
ations in the US images. It is also computationally expen-
sive. Our work is unique in that it addresses the problem of
registering post-resection US to pre-operative MR. In addi-
tion, we take advantage of the information in the pre-resection
US image and use it to improve the registration results. By
utilizing the pre-resection US image in the group-wise reg-
istration of MR and post-resection US, we are breaking the
hard registration problem of estimating a large deformation
between two images of different modality with outliers into
two simpler problems: estimation of T, requires multi-
modal registration without outliers with relatively small de-
formations, and estimation of T». 3 needs an easier uni-
modal registration with outliers. Finally, we use efficient
stochastic gradient-based optimization techniques, and hence

the running time of our algorithms is under 2 min for volu-
metric data.

The deformable image registration techniques presented
in this work significantly improves the alignment between
US and MR images, which results in improved confidence
in the neuronavigation system, and can potentially reduce
surgical time and complications. In future work, we will an-
alyze a larger series of patient data, and will study how often
the improved image alignment leads to a change in the surgi-
cal plan. In addition, we will apply the techniques developed
in this work to other operations in the brain that are subject
to brain shift.

6 Conclusions

Three sets of images are commonly available in IGNS: pre-
operative MR, pre-resection US and post-resection US. We
performed nonlinear registration of MR to pre-resection US,
pre- to post-US, and MR to post-resection US. For the most
challenging problem of MR to post-resection US, we pro-
posed three approaches: compositional, direct and group-
wise. We showed that the group-wise algorithm gives the
best results, reducing the average mTRE over 13 patients
from 5.9 mm to 2.8 mm, and the maximum TRE from 17.0
mm to 7.0 mm. The computational time of all of these non-
rigid volumetric registration methods is less than 2 min on a
single CPU core. Therefore, these methods are highly suit-
able for integration within IGNS systems.
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