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Background: Correlation methods are commonly used for Time-Delay Estimation (TDE) of tissue
displacement. Large correlation windows utilize more information and reduce the estimation variance,
but result in significant signal decorrelation and decrease the spatial resolution. Furthermore, most
correlation techniques only estimate axial strain because of the poor resolution of ultrasound data in the
lateral direction. An attractive alternative approach to correlation-based methods is minimization of a
regularized cost function. These methods exploit the prior information that tissue deformation is smooth,
and therefore are robust to signal decorrelation [1]. A disadvantage of these methods is their
computational complexity, and as such, they are not suitable for real-time implementation. Previous work
[2] proposed a real-time method for optimization of the cost function, but only exploited individual RF-
lines at during each optimization, which results in artifacts in the form of vertical streaks (Fig. 1).

Aims: This paper presents a novel technique for time-delay estimation of all RF-lines simultaneously
instead of utilizing individual RF-lines, thereby exploiting all the information in the entire image. In other
words, we optimize for the displacement of all samples of all RF-lines simultaneously, which requires
optimizing a cost function with close to 1 million variables.

Methods: The main idea is to incorporate similarity of RF data intensity, as well as prior information of
displacement continuity in a cost function. The cost function optimization entails solving a sparse linear
system which is computationally efficient. Let I:(ij) and I2(i,j) be two ultrasound RF frames acquired
before and after some tissue deformation, and i and j respectively be samples in the axial and lateral
directions. The global cost function with the summation on all image pixels is defined as C = min 3{ [I:1(i,j)
-+ aij + Aaij, j + lij+ AlLj)2 + aifaij+ Adij- ai1j- Aai1j)? + Bi1(lij+ Alij- li1j- Ali1j)? + az(aij+ Aaij- aij1-Aadiji)? +
Po(lij+tALj-lij1-Alij1)2 } where a and B are regularization terms for axial and lateral displacements
respectively. I;r and Iz are the corresponding intensity of each pixel in first and second RF frame. Assume
an initial estimate of the 2D displacement field is available from Dynamic Programming (DP) [3]. By
minimizing the cost function using DP initial guess, the sub-sample axial and lateral displacements (Aai; ,
Alij) for the total image are calculated. The integer initial displacements (ai;j, lij provided through the
previous step are added to the subsample displacements. This presents us the final lateral and axial
displacements i.e. (aij + Aaij , ljj + Alij ). The spatial gradient of the displacement field is used to acquire
the strain image.

Results: We show that the proposed method substantially outperforms the two previous methods of
DPAM [2] and normalized cross correlation (NCC) [1] methods using simulation data, phantom
experiments and in-vivo patient data (Figs. 1, 2 and 3).
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Fig. 1 Left to rlght NCC strain, DPAM strain, GTDE strain Fig. 2 In-vivo data: BMODE i 1mage DPAM strain, GTDE strain.
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Fig. 3 Axial & Lateral strains of phantom data. Left to rlght CC (Ax.), CC (Lat.), DPAM (Ax.), DPAM (Lat.), GTDE (Ax.), GTDE (Lat.)




