
Non-local Super Resolution in Ultrasound Imaging
Parviz Khavari

Department of Electrical and
Computer Engineering
Concordia University

Montreal, Canada
Email: p khavar@encs.concordia.ca

Amir Asif
Department of Electrical and

Computer Engineering
Concordia University

Montreal, Canada
Email: amir.asif@concordia.ca

Hassan Rivaz
Department of Electrical and

Computer Engineering
Concordia University

Montreal, Canada
Email: hrivaz@ece.concordia.ca

Abstract—The resolution of ultrasound (US) images is limited
by physical constraints and hardware restrictions, such as the
frequency, width and focal zone of the US beam. Different
interpolation methods are often used to increase the sampling rate
of ultrasound images. However, interpolation methods generally
introduce blur in images. Herein, we present a super resolution
(SR) algorithm for reconstruction of the B-mode images using
the information from the envelope of radio frequency (RF) data.
Our method is based on utilizing repetitive data in the non-
local neighborhood of samples. The performance of the proposed
approach is determined both qualitatively and quantitatively
using phantom and in-vivo data.

I. INTRODUCTION

Ultrasound is a commonly used medical imaging modality
since it is non-invasive, real-time, portable, and inexpensive.
However, US images are intrinsically noisy and, therefore,
numerous methods are used to increase the quality of the
data. These procedures are applied to improve the quality
of ultrasound (US) images, or, as a preprocessing step to
perform high-level image analysis tasks [1], [2], [3]. Extensive
previous work exists on the enhancement of US images and
on the impact it has on image analysis techniques, such as
image segmentation [4], [5] and registration [6], [7]. Various
interpolation approaches have been proposed to increase the
number of samples in US images [8], [9].

Several factors such as physical hardware, limitation on
the processing time, and poor signal to noise ratio limit
the quality of the images in medical imaging modalities
such as US. Interpolation techniques are therefore applied in
the aforementioned scenarios to improve the quality of the
images [10], [11].

Interpolation methods assume that high resolution (HR)
patches can be represented by a polynomial function under
some smoothing assumptions. However, in US imaging, the
pattern of B-mode images is very variable and may invalidate
these assumptions. An alternative approach to improve the
resolution in the B-mode images of US is based on the super
resolution (SR) techniques. In the SR process, one or more
HR patches are reconstructed based on corresponding one
or more low resolution (LR) observations [12], [13]. Multi
image SR techniques try to restore the HR images based on
samples of LR patches in the temporal domain [14], or using
machine learning techniques [15]. Nevertheless, due to scarcity
of ground truth and training data sets in the US images, we

choose the single image SR path. In the single image SR,
which can be classified as interpolation- and recursion-based,
the process often attempts to recreate the HR images from
information in LR observations of a single image.

In this paper, we propose a recursive image reconstruction
on the envelope of US images that preserves delicate structure
while maintaining the margin between different issues. The
rest of the paper is organized as follows. In Section II,
we explore the proposed method in detail and provide a
mathematical framework that validates the proposed approach
as a Bayesian estimation. In Section III, we evaluate the
performance of the proposed method using different measures
on both in-vivo and phantom data, and we conclude the paper
in Section IV.

II. SUPER RESOLUTION

In US imaging, interpolations for upsampling the US images
are based on an assumption that HR pixels can be expressed
in terms of LR pixels. To simplify our explanation, we focus
on 1D signals but our results are generalizable to 2D images.
Mathematically speaking, let yn be a LR noisy pixel in the
image. Assume pixels in the HR image are denoted as xi,
then yn can be expressed as:

yn =
1

N

N∑
i=1

xi + n, (1)

where in RF data, n can be consider as Gaussian noise and N
is the size of the averaging filter. Within neighborhoods of LR
pixels, the interpolation algorithm can be used to reconstruct
the HR pixels by assigning the weights to them as follows:

xi =

{∑
j∈Ω wijyj if i 6= j

yj if i = j
(2)

where symbol Ω is a neighborhood of pixels in the HR image.
The weights, ωij , are calculated as a function based on the
distance between the location of HR pixel and LR ones. If the
location of the pixels are the same, the value of LR pixel yj
is kept for HR pixel xi.

The goal of SR or interpolation algorithms is to find values
for xi using the eq. (1). This problem is an ill-posed problem
because there are infinite values for xi that satisfy eq. (1). In
the next section, a new algorithm is proposed for upsampling



the US images using information in a non-local neighborhood
of pixels.

A. Non-local Super Resolution Approach

The proposed method (illustrated by the block diagram in
fig. 1) is based on denoising the noisy data first and then
applying the SR method on the denoised data. The input
RF data is denoised using the non-local means (NLM) based
approach on RF data. The output of the denoising filter will
be y that is the denoised version of yn.

y =
1

N

N∑
i=1

xi. (3)

The eq. (3) can be rewritten as

y − 1

N

N∑
i=1

xi = 0. (4)

This equation enforces the upscaled image to be consistent and
is referred to as the subsampling consistency [16]. We used
this equation as the stopping criterion for the SR algorithm.

In the next step, an iterative process is exploited to extract
the information of LR patches. It consists of two separate
blocks, used to: (i) smooth the image without losing edges
(non-local means), and (ii) update the HR part from the LR
denoised pixels. The input to the algorithm is the preprocessed
LR image y and the stopping criterion sc for the algorithm.
sc is set to 0.01% for err function output value and algorithm
halts in cases when the err function returns a value less
than sc. The err function gives the average of absolute value
difference between its arguments.

The upsampling and downsampling operations are used in
the SR algorithm for making the number of computations and
comparisons equal. Firstly, y is upsampled to the desire aspect
ratio and dimensions. In our case, the upscaling factor is set
to 2 and has been done using bicubic interpolation. Assuming
that x′ is the approximation output of x and considering the
interpolation operation as U , the output will be

x′ = U(y). (5)

The other blocks of this figure (fig. 1) are elaborated in
the next subsections. We investigate the NLM algorithm for
assuring smoothing in the neighborhood of pixel and then by
using the subsampling consistency of eq. (4). The error of
difference between y and downsampled version of x′ is used
to refine the algorithm output x′.

1) Patch-wise Smoothing: Let x′(i) be the observed value
of the discretized image for pixel i and x(i) be its true value.
Due to the presence of noise n(i), we have

x′(i) = x(i) + n(i). (6)

To remove the distortion present in image for each pixel
i, NLM searches a reference area of the image within a
rectangular search window Ωi, which is centered around pixel
i. A neighborhood Ni of known dimensions is selected around
pixel i and compared to neighborhood Nj around pixel j for

start

inputs
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end
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Fig. 1. The flowchart for the proposed method. The inputs are the LR patch
and stopping criterion (y and sc), and the output is x′ that is the HR patch.
The operator U stands for upsampling using bicubic interpolation. The err
function returns the mean of absolute value difference between its arguments.

all j ∈ Ωi. For pixel i, weight w(i, j) is assigned to each pixel
j. The value of pixel i is then replaced by

NLM[x′](i) =
∑
j∈Ωi

w(i, j) ∗ x′(j). (7)

The distance metric is proportional to the square of Euclidian
distance between the two patches. The weight is then calcu-
lated as

w(i, j) =
1

Zi
exp

{
−
||x′(Ni)− x′(Nj)||22,a

h2

}
. (8)

Based on (8), it is clear that the weight is the convolution of
a Gaussian with standard deviation a > 0 and the squared
Euclidean distance between two neighborhoods ||x′(Ni) −
x′(Nj)||22, for Ni and Nj . The smoothing parameter h controls
the contribution of the Gaussian-Euclidean distance exponent
in the weights. The normalization factor Zi for pixel i is given
by

Z(i) =
∑
j∈∆i

exp

{
−
||x′(Ni)− x′(Nj)||22,a

h2

}
, (9)

where the weight is normalized to ensure that the dynamic
range of the NLM[x′](i) is the same as that of its counterpart
x′(i). The NLM is applied to the envelope of RF data.
More details of the NLM implementation are presented in
Section II-B.

2) Retrieving Low Resolution Pixels: The LR pixels, y,
are observations that are assumed to be the ground truth for
reconstruction of the HR image. For retrieving the pixels in
the LR patch, the algorithm upsamples the difference between
LR patch and corresponding pixels in the upsampled image, x′

using a downsampling operation. This difference is upsampled
using interpolation and added to the existing x′ to create the
updated x′:

x′ = x′ + U(y −D(x′)), (10)

where D and U are downsampling and upsampling operations,
respectively. Finally, the error is evaluated based on the up-
sampled image x′ and upsampled version of the LR patch y. If
the stopping criterion is met, the algorithm halts. Fig. 1 shows
the flowchart of the proposed algorithm. Similar to Coupe et
al. [2] and Kevrann et al. [17], next we suggest a Bayesian
framework that provides the mathematical foundation of the
proposed algorithm.
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Fig. 2. An example of illustration patches of an observed radio frequency
image. Patches and corresponding vectorized indices are presented in this
figure for n = 9.

B. Bayesian Framework

Suppose g(x) and o(x) are vectorized ground truth and
upscale of observed version patches of size n centered at x
of the radio frequency data, defined as g(x) := g(xk) and
xk ∈ Ng(x) and o(x) := o(xk), where xk ∈ No(x) (No and
Ng are the neighborhoods (patch) of size

√
n by

√
n around

the central pixel x in the ground truth and observed images.)
The goal is to get the Bayesian estimator, ĝ(x), of patch
g(x) based on the observed patch o(x). Let’s define optimal
estimator by minimizing the posterior expected loss as follows

E[L(g(x), ĝ(x))] =
∑

g(x)∈Γ

[L(g(x), ĝ(x))]p(g(x)|o(x)), (11)

where Γ is all possible configurations of g(x). The loss
function is defined as

L(g(x), ĝ(x)) = ‖g(x)− ĝ(x)‖2 . (12)

If eq. (12) is substituted in eq. (11), the optimal Bayesian
estimator, ĝ(x)opt, is given by

ĝ(x)opt = arg min
ĝ(x)

∑
g(x)

‖g(x)− ĝ(x)‖2 p(g(x)|o(x))

=
∑
g(x)

g(x)p(g(x)|o(x)).
(13)

Then eq. (13) can be expressed as

ĝ(x)opt =
∑
g(x)

g(x)
p(g(x), o(x))

p(o(x))
=

∑
g(x) g(x)p(o(x)|g(x))p(g(x))∑

g(x) p(o(x)|g(x))p(g(x))
.

(14)
Note that only a subset of Γ is accessible in the search region
of central pixel xi. We refer to this subset as the search region,
SR(x)) = {g1(x), g2(x), g3(x), ..., gK(x)}. Assuming that K
is number of samples in the SR (the number of members
in, we get the mentioned subset) and p(g(x)) is uniformly
distributed

p(gi(x)) =
1

K
, for all 0 ≤ i ≤ K. (15)
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Fig. 3. The flowchart for comparison of the proposed method.

Based on these assumptions, eq. (14) leads to

ĝ(xi) =
1
K

∑K
j=1 g(xj)p(o(xi)|g(xj))

1
K

∑K
j=1 p(o(xi)|g(xj))

=

∑K
j=1 g(xj)p(o(xi)|g(xj))∑K

j=1 p(o(xi)|g(xj))
,

(16)

where ĝ(xi) is the optimal estimator based on assumption (15).
However, there is only the upscaled of observed values and
the ground truth is not accessible. Consequently, we substitute
the observed values of the neighborhood patches to get.

ĝ(xi) =

∑K
j=1 o(xj)p(o(xi)|o(xj))∑K

j=1 p(o(xi)|o(xj))
. (17)

By assuming that the likelihood can be considered as (see Fig.
2)

p(o(xi)|o(xj)) ∝ exp−‖o(xi)−o(xj )‖2 , (18)

the estimator for ĝ(xi) can be rewritten as

ĝ(xi) =
1

C(xi)

K∑
j=1

exp−‖o(xi)−o(xj )‖2 o(xj);

C(xi) =

K∑
j=1

exp−‖o(xi)−o(xj )‖2 .

(19)

For smoothing the similarities, the parameter h is introduced
and final estimator for ĝ(xi) is

ĝ(xi) =
1

C(xi)

K∑
j=1

exp−

∥∥∥∥o(xi)−o(xj)
∥∥∥∥2

h2 o(xj);

C(xi) =

K∑
j=1

exp−

∥∥∥∥o(xi)−o(xj)
∥∥∥∥2

h2 .

(20)

The pixels of upsampled image can be grouped into two
kinds of pixels, the synthesized pixels created by upsampling
operation and the input pixels to upsampling algorithm. The
Baye sian estimator can be used for the former group and the
value of pixels in the latter group are retrieved from the output
of SR algorithm as discussed in the algorithm illustrated in
Fig. 1.



Method Patient 1 Patient 2 Patient 3 Phantom

NN 0.0538 0.1358 0.1232 0.1078
Bilinear 0.0472 0.1224 0.1085 0.0985
Bicubic 0.0461 0.1188 0.1057 0.0940

Proposed 0.0225 0.0597 0.0544 0.0481
decreased 48.80% 50.25% 51.46% 51.70%

TABLE I
SUM OF ABSOLUTE DIFFERENCES (SAD) RESULTS OF PROPOSED

METHOD VERSUS CONVENTIONAL INTERPOLATION METHODS

III. EXPERIMENTS AND RESULTS

In our experiments, phantom and in-vivo data have been
studied. Phantom data in Fig 5 is obtained from a CIRS breast
phantom (Norfolk, VA). Patients’ data were acquired from
patients undergoing open surgical radio frequency thermal ab-
lation for primary or secondary liver cancer. The Institutional
Ethical Review Board at Johns Hopkins University approved
all experimental procedures involving human subjects. All
data is collected using a Siemens Antares ultrasound machine
(Issaquah, WA) with a VF10-5 linear probe.

For the sake of comparison, three upsampling interpolations
are used: the nearest neighbor interpolation, bilinear interpo-
lation, and bicubic interpolation. First, we apply NLM for
denoising the RF data and afterwards, by envelope detection
and log compression, the HR image for comparison is con-
structed (as depicted in Fig. 3), called x of size Rn∗m. The
denoised RF data is then fed to a downsampler followed by an
envelope detector to construct the LR image, y. We used the
downsampling with a factor of 2. The LR image is upsampled
using different interpolations and proposed method and after
logarithmic compression the outputs are used for comparison,
or equivalently x′0 to x′3 of size Rn∗m. The parameters values
for proposed algorithm are Ωi = 7, Ni = 3, h = 1 and
sc = 0.01%. Fig. 3 highlights the steps used to compare the
outputs.

The output of the proposed algorithm is compared using
two different measures. We used Sum of Absolute Difference
(SAD) between each x′i, 0 ≤ i ≤ 3, and x using

SAD(x′i, x) =
1

m ∗ n

n∑
k=1

m∑
t=1

|x′i(k, t)− x(k, t)|. (21)

The results for this comparison are shown in Table I. The
proposed algorithm outperforms the conventional interpolation
methods and produce the least SAD error. Another measure
for comparing the results is the Peak Signal to Noise Ratio or
PSNR computed as

PSNR(x′i, x) =

10 log10(
Max(x′i)−Min(x′i)√

1
m∗n

∑n
k=1

∑m
t=1|x′i(k, t)− x(k, t)|2

). (22)

The higher PSNR implies the more accurate reconstruction
of the LR image. Table II shows the PSNRs for different
interpolations. The proposed algorithm surpasses other inter-
polation methods there were considered in our experiments.
To present the qualitative improvement, different US images

Method Patient 1 Patient 2 Patient 3 Phantom

NN 13.0904 11.5248 14.0850 11.6921
Bilinear 13.9813 11.8812 14.4330 12.2291
Bicubic 14.9000 13.0660 15.4788 13.4417

Proposed 17.2063 15.5290 18.0046 15.3727
improved 15.43% 18.78% 16.88% 14.06%

TABLE II
PEAK SIGNAL-TO-NOISE RATIO (PSNR) RESULTS OF PROPOSED METHOD

VERSUS CONVENTIONAL INTERPOLATION METHODS IN DB.

and the LR and HR counterparts obtained from different
interpolation approaches are shown in Fig. 4 for patient 1
and Fig. 5 for phantom data. The residual pattern for each
interpolation and proposed method is displayed by calculating
the SAD between the upsampled images and HR image. The
residual patterns in each upsampled patient data using existing
interpolation techniques contain substantial information from
the HR image, . In contrast, the SAD of the proposed algorithm
is uncorrelated and does not show any pattern, which confirms
the superiority of the proposed method in reconstructing the
pattern of HR image.

IV. CONCLUSIONS

In this paper, we proposed an iterative SR approach for US
imaging. The proposed method is applied to the envelope of
RF data and has the ability to enhance the resolution of the
image while retaining fine structures of tissue. This is demon-
strated using phantom data and experiments based on in-vivo
data. The results of the proposed algorithm are compared
with interpolation approaches, which verifies the effectiveness
of the proposed method. More studies are needed to fully
verify the benefits of the algorithm method in US medical
applications, such as US image registration and segmentation.
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