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Abstract— Ultrasound elastography involves measuring the
mechanical properties of tissue, and has many applications
in diagnostics and intervention. A common step in different
elastography methods is imaging the tissue while it undergoes
deformation and estimating the displacement field from the
images. A popular next step is to estimate tissue strain, which
gives clues into the underlying tissue elasticity modulus. To
estimate the strain, one should compute the gradient of the
displacement image, which amplifies the noise. The noise is
commonly minimized by least square estimation of the gradi-
ent from multiple displacement measurements, which reduces
the noise by sacrificing image resolution. In this work, we
adaptively adjust the level and orientation of the smoothing
using two different mechanisms. First, the precision of the
displacement field decreases significantly in the regions with
high signal decorrelation, which requires increasing the smooth-
ness. Second, smoothing the strain field at the boundaries
between different tissue types blurs the edges, which can render
small targets invisible. To minimize blurring and noise, we
perform anisotropic smoothing and perform smoothing parallel
to the direction of edges. The first mechanism ensures that
textures/variations in the strain image reflect underlying tissue
properties and are not caused by errors in the displacement
estimation. The second mechanism keeps the edges between
different tissue structures sharp while minimizing the noise.
We validate the proposed method using phantom and in-vivo
clinical data.

I. INTRODUCTION

Ultrasound elastography reveals mechanical properties of
tissue and has numerous applications in both diagnostics and
surgical planning [1], [2]. It is usually composed of two
separate steps of estimation of a displacement field, followed
by inferring mechanical properties from the displacement
field. In the second step, it is common to estimate a strain
image, which is the spatial derivative of the displacement
field and is highly correlated with mechanical properties of
tissue. Since differentiation amplifies high frequency noise,
most strain estimation techniques combine differentiation
with smoothing to increase the signal to noise ratio (SNR)
of the strain image. An overview of common techniques for
estimating high SNR strain images is provided in [3].

Previous work for estimating the strain field has two
major disadvantages. First, it does not take into account the
precision of the displacement field. Therefore, a technique
for uniform precision strain estimation is introduced in [3],
which adaptively increases the level of smoothness in re-
gions with low precision displacement estimates. Second,
smoothing blurs boundaries of edges between regions of
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low and high strain values. A technique for generating sharp
strain images that have high SNR is introduced in [4] base
on Kalman filtering. This work combines the advantages
of these two techniques by introducing a uniform precision
edge-preserving strain imaging technique based on bilateral
filtering.

Bilateral filtering was first popularized in the computer
vision community by Tomasi and Manduch [5] as an alter-
native to anisotropic diffusion, and has since been applied to
many application in computer vision and image processing.
It starts with a standard spatial Gaussian kernel, which is
then modified based on image intensity values. The idea
is that if a neighboring pixel has a very different intensity
value compared to the center pixel, its averaging weight is
reduced. Therefore, it reduces the noise while preventing
over smoothing.

In this work, we adaptively adjust the both the /evel and
orientation of the smoothing kernel and introduce a novel
uniform precision edge-preserving strain imaging technique.
Among many different variations of elastography method,
we focus on quasi-static elastography [1], [6], where tissue
deformation is slow and its dynamical properties can be
ignored. However, the techniques that we develop here can
also be applied to other variations of elastography.

This paper is organized as follows. In the next section, we
provide details of the our uniform precision edge-preserving
filter. We then provide experimental results and compare
our method against both uniform precision [3] and Kalman
filtering [4] strain estimation techniques using both phantom
and in-vivo patient data. Conclusions and avenues for future
work are provided in Section

II. EDGE-PRESERVING FILTERS

The boundary between two different tissue types is an
edge in strain image which contains useful information and
must be preserved while smoothing. failing to preserve the
edges may render small targets inviable. In this section,
an overview of bilateral filter as an edge-preserving filter
is presented. Bilateral filter is a technique to smooth an
image while preserving edges and can be traced back to the
nonlinear Gaussian filters in the work of Aurich and Weule
[7] or in Tomasi and Manduchi [5] where its name was
first coined. Fast versions of this filter using a piecewise-
linear approximation in the intensity domain and appropri-
ate subsampling is introduced in [8]. The idea underlying
bilateral filter is fairly straightforward, the intensity value at
each pixel in an image is replaced by a weighted average of
intensity values from nearby pixels as in nearly all smoothing
filters. However, unlike others, the weights depend not only



on Euclidean distance of pixels, but also on the radiometric
differences such as range differences. Similar to the notion
of Euclidean distance closeness, intensity similarity in range
domain is introduced in bilateral filter and the overall weight
of a pixel in the average is computed by multiplying the
spatial closeness and range similarity. This makes the filter
nonlinear but it preserves sharp edges because although
pixels from different sides of the edges may be close in
terms of Euclidean distance, but their intensities are not
similar. Therefore, they will have small weights in the
weighted average. In other words the smoothing will be
parallel to the direction of the edge. Note that the term range
qualifies quantities related to pixel values like intensities. The
formulation of bilateral filter is as follows [5]:
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The Q is the window centered at x and I(x), I%F (x) are the
original and filtered image, respectively. Functions f, and g
are the range and spatial kernel for smoothing difference in
intensities and coordinates, respectively. Gaussian functions
are good candidate for the spatial and range kernel as they
give a low weight to pixels that are either spatially far or
have dissimilarity in photometric range:
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The bilateral filter with Gaussian functions has two pa-
rameters: o, and o;. The spatial spread o is chosen based
on the desired amount of smoothness or low-pass filtering. A
large o includes the intensities of pixels from more distant
image locations in the domain. Similarly, the photometric
spread o, in the image range determine how close in range
the pixels should be to be considered as similar pixels. Figure
[[fa) shows an example of a simple gray-scale image with an
edge in the middle which is perturbed by Gaussian noise.
Figure [T|b) depicts the result of applying bilateral filter to
this image and figure [T[c) shows the kernel of the bilateral
filter at a point located on the edge in which it’s clear that
only the weight of pixels that are located at one side of the
edge, are non-zero, therefore the edge will be untouched.

III. UNIFORM PRECISION EDGE-PRESERVING FILTER

In this section, first a method for calculating the precision
is reviewed and then the main contribution of this paper,
which is a proper integration of both edge-preserving and
uniform precision properties in one filter, is presented.

It was shown in [9] that the precision p of the displacement
data can be estimated, under some simplifying assumptions,
from complex cross-correlation p of matched displacement
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Fig. 1.  (a) Original gray-scale image (b) smoothed Image filtered by
bilateral filter (c) Gaussian kernel at the edge of the image /(50,50).

windows of pre- and post-deformation data. The precision
p(x,y) and cross-correlation p(x,y) can be computed as
follows [9]:
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where Q, is the displacement window, /1 and I, are the pre-
and post-deformation images and cfﬁ, d?,’ are the estimated
axial and lateral displacement, respectively. In this work,
the assumption of negligible lateral displacement in [9] and
[3] is released since both axial and lateral displacements are
calculated.

Knowing the precision, the goal is to make the smoothing
adaptive to the precision of the image while keeping the
edges untouched. The adaptation mechanism should blur the
regions with low precisions while preserving the regions
of high precision. The range kernel is in charge of the
edge-preserving function of the filter and should remain
untouched. Since the level of smoothing is related to the
spatial kernel of the bilateral filter, making the parameter
o, adaptive to the precision of the image seems to be the
logical approach. When the precision is high, the parameter
o; should be low and vice-versa. The only difficulty that
remains is defining the mathematical relation between o
and p. Suppose that a Gaussian blur is used to smooth an
image, the cut-off frequency of this linear low-pass filter in
each direction is f o< a% consequently the resolution in each
direction will be R « oy where o, is the Gaussian spatial
spread. Now, suppose the raw strain data contains indepen-
dent measurement from the same relatively homogeneous
strain distribution, the filtered strain precision will scale with
the size of the Gaussian kernel width. Note that the 2D kernel
will have a size proportional to the square of the 1D kernel
size [3]. Bearing in mind that the kernel size is proportional
to spatial spread, If the precision of the original image was
po, the precision of the smoothed image would be

p(x,y) o< po(x,y) 07 (x,). (7)

This leads to .
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Fig. 2. The result of different methods applied to the phantom data: (a) Axial displacement (b) Raw strain data calculated by simple discreet differentiation
of the axial displacement (c) The precision image (d) The result of the least square method applied to the axial displacement (e) The result of the least
square method with Kalman filter applied to the axial displacement (f) The result of the proposed uniform precision edge-preserving filter applied to the

raw axial strain image

Substituting [§] in [7] will cancel out the initial precision
po(x,y) from the Eq. El and therefore a uniform precision
image can be produced. The precision scaling factor k can
tune the level of overall precision after smoothing.

The above reasoning for Gaussian blur can be extended
to bilateral filter, Since the range kernel does not change
spatial kernel size. Note that the computation time of this
approach is less than or equal to bilateral filter because the
size of kernel is reduced when the image has some degree
of precision.

It should be noted that a precision value of zero results in
O, =o0in @ In practice o can not be infinity so a maximum
spatial spread is defined as G4y, and any value higher than
this value is substituted by Gygx-

IV. EXPERIMENTAL RESULTS

In this section, phantom results and patient trail are
presented. The RF data is acquired from an Antares Siemens
system (Issaquah, WA) at the center frequency of 6.67 MHz
with a VF10-5 linear array at a sampling rate of 40 MHz.
To evaluate the proposed filter first the 2D AM method
introduced by Rivaz et. al. [4] is used to produce axial
and lateral displacement images from RF data and then the
proposed method is applied to the displacement images to
calculate the precision and the strain. To compare the results,
two other methods are also applied to the data which are as
follows:

1) Least square method: the most common approach that is
used for generating the strain image from the displace-
ment image. Roughly speaking, the least square method
compute the strain in each pixel by calculating the slope
of a line fitted to the displacement data of a window in

axial direction. To make the strain more accurate, the
line window could be a plane in 2D where the strain is
calculated for the center of the plane.

Least square with Kalman filter: This approach origi-
nally proposed by Rivaz et. al. [4], further smooth the
result strain of the least square in the lateral direction.
The Kalman filter is used because it gives the ability to
keep the edges while smoothing the rest of the image.

2)

A Gaussian Blur filter is used to pre-process the strain
image and due to the fact that the strain image is produced
by calculating the displacement in the axial line the result
strain image needs more smoothing in lateral direction so an
unsymmetric kernel is used for the filter.

Throughout this section, the parameters of 2DAM are
set to « =5, B, =10, B;, =0.005 and T = 0.2 (Egs. 12
and 20 in [4]), and the tunable parameters of Dynamic
Programming (DP) are ag = oy = 0.15 (Eq. 1 in [4]). In
the precision calculation the window size is Q = 40, while
the spatial and range spreads in bilateral filter are adaptive to
the image properties (05 = Widfé’ (I), o, = W). Finally, in
the proposed filter, the maximum spatial spread is G;;,qx = 30,
the range spread is adaptive with the image (0, = 272
and the scaling factor of precision is: k = 3.

A. Phantom Data

Figure[2]shows the phantom results obtained from different
methods. As one can see, the least square method has
produced a somehow smooth strain data with very blurry
edges. Moreover the least square with Kalman filter is the
same as the least square but more smooth in the lateral
direction. It’s worth noting that the Kalman filter tried to
keep the edges untouched when smoothing in the lateral
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The result of different methods applied to the patient data: (a) Axial displacement generated (b) Raw strain data calculated by simple discreet

differentiation of the axial displacement (c) The precision image (d) The result of the least square method applied to the axial displacement (e) The result
of the least square method with Kalman filter applied to the axial displacement (f) The result of the proposed uniform precision edge-preserving filter.

direction. Figure 2(f) depicts the result of the proposed
uniform precision edge-preserving filter applied to the raw
axial strain image where it is clear that the edges are
untouched. The uniform precision properties of the filter is
not distinguishable here because the precision of the phantom
result is already somehow uniform (Figure Ekc)).

B. In-vivo Data

The data is acquired from patients undergoing open sur-
gical radiofrequency (RF) thermal ablation for primary or
secondary liver cancer. The Institution’s Ethical Review
Board at Johns Hopkins University approved all experimental
procedures involving human subjects. Figure [3] shows the
ultrasound and strain images of a patient before ablation.
A hard tumor, marked with an arrow, is hardly visible
in the ultrasound image. The result of applying different
methods on this data clearly shows the merits of the proposed
uniform precision edge preserving filter. Figure 2ff) offers a
more informative and less decisive image for the diagnostic
applications, because it smoothes the unreliable noisy regions
while keeping the information of the precise regions and the
edges untouched.

V. CONCLUSIONS

In this paper, we have presented an algorithm that can,
under certain assumptions, generate strain images with uni-
form precision but varying resolution. Uniform precision
property ensures that textures/variations in the strain image
reflect underlying tissue properties and are not caused by
errors in the displacement estimation. The algorithm has
also the capability of keeping the edges between different
tissue structures sharp while minimizing the noise. This is
demonstrated by the phantom and in-vivo clinical data. The

results are compared to three common methods in this field
which showed the effectiveness of the proposed algorithm,
however, further clinical studies will be necessary to assess
th benefits of the algorithm.
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