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Abstract. Displacement estimation is a critical step in ultrasound elas-
tography and failing to estimate displacement correctly can result in large
errors in strain images. As conventional ultrasound elastography tech-
niques suffer from decorrelation noise, they are prone to fail in estimating
displacement between echo signals obtained during tissue deformations.
This study proposes a novel elastography technique which addresses
the decorrelation in estimating displacement field. We call our method
GLUENet (GLobal Ultrasound Elastography Network) which uses deep
Convolutional Neural Network (CNN) to get a coarse but robust time-
delay estimation between two ultrasound images. This displacement is
later used for formulating a nonlinear cost function which incorporates
similarity of RF data intensity and prior information of estimated dis-
placement [3]. By optimizing this cost function, we calculate the finer
displacement exploiting all the information of all the samples of RF data
simultaneously. The coarse displacement estimate generated by CNN is
substantially more robust than the Dynamic Programming (DP) tech-
nique used in GLUE for finding the coarse displacement estimates. Our
results validate that GLUENet outperforms GLUE in simulation, phan-
tom and in-vivo experiments.

Keywords: Convolutional neural network · Ultrasound elastography
Time-delay estimation · TDE · Deep learning · Global elastography

1 Introduction

Ultrasound elastography can provide mechanical properties of tissue in real-time,
and as such, has an important role in point-of-care ultrasound. Estimation of
tissue deformation is very important in elastography, and further has numerous
other applications such as thermal imaging [9] and echocardiography [1].

Over the last two decades, many techniques have been reported for estimat-
ing tissue deformation using ultrasound. The most common approach is window-
based methods with cross-correlation matching techniques. Some reported these
techniques in temporal domain [5,10,14] while others reported in spectral domain
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[8,11]. Another notable approach for estimating tissue deformation is usage of
dynamic programming with regularization and analytic minimization [3,12]. All
these approaches may fail when severe decorrelation noise exists between ultra-
sound images.

Tissue deformation estimation in ultrasound images is an analogous to the
optical flow estimation problem in computer vision. The structure and elastic
property of tissue impose the fact that tissue deformation must contain some
degree of continuity. Hence, tissue deformation estimation can be considered as
a special case of optical flow estimation which is not bound by structural con-
tinuity. Apart from many state-of-the-art conventional approaches for optical
flow estimation, very recently notable success has been reported at using deep
learning network for end-to-end optical flow estimation. Deep learning networks
enjoy the benefit of very fast calculation by trained (fine-tuned) weights of the
network while having a trade-off of long-time computationally exhaustive train-
ing phase. Deep learning has been recently applied to estimation of elasticity
from displacement data [4]. A promising recent network called FlowNet 2.0 [6]
has achieved up to 140 fps at optical flow estimation. These facts indicate the
potential for using deep learning for tissue deformation estimation.

This work takes advantage of the fast FlowNet 2.0 architecture to estimate an
initial time delay estimation which is robust from decorrelation noise. This initial
estimation is then fine-tuned by optimizing a global cost function [3]. We call
our method GLUENet (GLobal Ultrasound Elastography Network) and show
that it has many advantages over conventional methods. The most important
one would be the robustness of the method to severe decorrelation noise between
ultrasound images.

2 Methods

The proposed method calculates the time delay between two radio-frequency
(RF) ultrasound scans which are correlated by a displacement field in two phases
combining fast and robust convolutional neural network with the more accurate
global optimization based coarse to fine displacement estimation. This combi-
nation is possible due to the fact that the global optimization-based method
depends on coarse but robust displacement estimation which CNN can provide
readily and more robustly than any other state-of-the-art elastography method.

Optical flow estimation in computer vision and tissue displacement estima-
tion in ultrasound elastography share common challenges. Therefore, optical
flow estimation techniques can be used for tissue displacement estimation for
ultrasound elastography. The latest CNN that can estimate optical flow with
competitive accuracy with the state-of-the-art conventional methods is called
FlowNet 2.0 [6]. This network is an improved version of its predecessor FlowNet
[2], wherein Dosovitskiy et al. trained two basic networks namely FlowNetS and
FlowNetC for optical flow prediction. FlowNetC is a customized network for opti-
cal flow estimation whereas FlowNetS is rather a generic network. The details
of these networks can be found in [2]. These networks were further improved for
more accuracy in [6] which is known as FlowNet 2.0.
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Fig. 1. Full schematic of FlowNet 2.0 architecture: The initial network input is Image 1
and Image 2. The input of the subsequent networks includes the image pairs, previously
estimated flow, Image 2 warped with the flow, and residual of Image 1 and warped
image (Brightness error). Input data is concatenated (indicated by braces).

Figure 1 illustrates the complete schematic of FlowNet 2.0 architecture. It can
be considered as the stacked version of a combination of FlowNetC and FlowNetS
architectures which help the network to calculate large displacement optical flow.
For dealing with the small displacements, small strides were introduced in the
beginning of the FlowNetS architecture. In addition to that, convolution layers
were introduced between upconvolutions for smoothing. Finally, the final flow is
estimated using a fusion network. The details can be found in [6].

The displacement estimation from FlowNet 2.0 is robust but needs more
refinement in order to produce strain images of high quality. Global Time-Delay
Estimation (GLUE) [3] is an accurate displacement estimation method provided
that an initial coarse displacement estimation is available. If the initial displace-
ment estimation contains large errors, then GLUE may fail to produce accurate
fine displacement estimation. GLUE refines the initial displacement estimation
by optimizing a cost function incorporating both amplitude similarity and dis-
placement continuity. It is noteworthy that the cost function is formulated for
the entire image unlike its motivational previous work [12] where only a single
RF line is optimized. The details of the cost function and its optimization can
be found in [3]. After displacement refinement, strain image is obtained by using
least square or a Kalman filter [12].

3 Results

GLUENet is evaluated using simulation and experimental phantom, and in-vivo
patient data. The simulation phantom contains a soft inclusion in the middle
and the corresponding displacement is calculated using Finite Element Method
(FEM) by ABAQUS Software (Providence, RI). For ultrasound simulation, the
Field II software package [7] is used. A CIRS breast phantom (Norfolk, VA) is



24 Md. G. Kibria and H. Rivaz

used as the experimental phantom. RF data is acquired using an Antares Siemens
system (Issaquah, WA) at the center frequency of 6.67 MHz with a VF10-5 linear
array at a sampling rate of 40 MHz. For clinical study, we used in-vivo data
of three patients. These patients were undergoing open surgical RF thermal
ablation for primary or secondary liver cancer. The in-vivo data were collected
at John Hopkins Hospital. Details of the data acquisition are available in [12]. For
comparison of the robustness of our method, we use mathematical metrics such as
Mean Structural Similarity Index (MSSIM) [13], Signal to Noise Ratio (SNR) and
Contrast to Noise Ratio (CNR). Among them, MSSIM incorporates luminance,
contrast, and structural similarity between ground truth and estimated strain
images which makes it an excellent indicator of perceived image quality.

3.1 Simulation Results

Field II RF data with strains ranging from 0.5% to 7% are simulated, and
uniformly distributed random noise with PSNR of 12.7 dB is added to the RF
data. The additional noise is for illustrating the robustness of the method to
decorrelation noise given that simulation does not model out-of-plane motion
of the probe, complex biological motion, and electronic noise. Figure 2(a) shows
ground truth axial strain and (b–c) shows axial strains generated by GLUE
and GLUENet respectively at 2% applied strain. Figure 2(d–f) illustrates the
comparable performance of GLUENet against GLUE [3] in terms of MSSIM,
SNR and CNR respectively.

3.2 Experimental Phantom Results

Figure 3(a–b) shows axial strains of the CIRS phantom generated by GLUE and
GLUENet respectively. The large blue and red windows in Fig. 3(a–b) are used
as target and background windows for calculating SNR and CNR (Table 1). The
small windows are moved to create a total combination of 120 window pairs (6
as target and 20 as background) for calculating CNR values. The histogram of
these CNR values is plotted in Fig. 3(c) to provide a more comprehensive view
which shows that GLUENet has a high frequency at high CNR values while
GLUE is highly frequent at lower values. We test both methods on 62 pre- and
post- compression RF signal pairs chosen from 20 RF signals of CIRS phantom
for a measure of consistency. The best among the estimated strain images is
visually marked to compare with other strain images using Normalized Cross
Correlation (NCC). A threshold at 0.6 is used to determine failure rate of the
methods (Table 1). GLUENet shows very low failure rate (19.3548%) compared
to GLUE (58.0645%) which indicates greater consistency of GLUENet.

3.3 Clinical Results

Figure 4 shows axial strains of patient 1–3 from GLUE and GLUENet and his-
togram of CNR values. Similar to experimental phantom data, small target and
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Fig. 2. First row shows axial strain images of simulation phantom with added random
noise (PSNR: 12.7 dB); (a) Ground truth, (b) GLUE and (c) GLUENet. Second row
shows the performance metrics graph with respect to various range of applied strain;
(d) MSSIM vs Strain, (e) SNR vs Strain and (f) CNR vs Strain.

Fig. 3. Axial strain images of experimental phantom data generated by (a) GLUE and
(b) GLUENet, and (c) histogram of CNR values of GLUE and GLUENet. (Color figure
online)
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Fig. 4. Axial strain images of patients and histogram of CNR values: The three rows
correspond to patients 1–3 respectively. First and second columns depict axial strain
images from GLUE and GLUENet respectively. Third column shows histogram of CNR
values of GLUE and GLUENet. (Color figure online)
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Table 1. SNR and CNR of the strain images, and failure rate of GLUE and GLUENet
for experimental phantom data and in-vivo data of patients 1–3.

GLUE GLUENet

SNR CNR Failure rate (%) SNR CNR Failure rate (%)

Phantom 39.0363 12.6588 58.0645 43.4363 15.5291 19.3548

Patient 1 53.9914 22.1641 34.6939 54.7700 27.9264 04.8469

Patient 2 47.5051 22.7523 68.3673 55.9494 25.4911 14.5408

Patient 3 31.2440 07.7831 77.0408 28.6152 19.6954 60.7143

background windows are moved to create a total combination of 120 window
pairs for calculating CNR values. Their histogram shows that GLUENet has a
high frequency at high CNR values while GLUE is more frequent at low val-
ues. Table 1 shows the SNR and CNR values for all patients which is calculated
by using the large blue and red windows as target and background. We calcu-
late failure rate of GLUE and GLUENet from 392 pre- and post- compression
RF echo frame pairs chosen from 60 RF echo frames of all three patients. The
best axial strain is marked visually to compare with other strains using NCC.
A threshold of 0.6 is used to determine the failure rate of the methods shown
in Table 1. The failure rate of GLUENet is very low compared to GLUE for all
patient data thus proving the robustness of GLUENet to decorrelation noise in
clinical data.

The failure rates of GLUE in Table 1 are generally high because no parame-
ter tuning is performed for the hyperparameters. Another reason for high failure
rates is that we select pairs of frames that are temporally far from each other
to test the robustness at extreme levels. This substantially increases non-axial
motion of the probe and complex biological motions, which leads to severe decor-
relation in the RF signal. In real-life, the failure rate of these methods can be
improved by selecting pairs of RF data that are not temporally far from each
other.

4 Conclusions

In this paper, we introduced a novel technique to calculate tissue displacement
from ultrasound images using CNN. This is, to the best of our knowledge, the
first use of CNN for estimation of displacement in ultrasound elastography. The
displacement estimation obtained from CNN was further refined using GLUE
[3], and therefore, we referred to our method as GLUENet. We showed that
GLUENet is robust to decorrelation noise in simulation, experiments and in-
vivo data, which makes it a good candidate for clinical use. In addition, the high
robustness to noise allows elastography to be performed by less experienced
sonographers as a point-of-care imaging tool.
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