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Abstract. Displacement estimation is an essential step for ultrasound
elastography and numerous techniques have been proposed to improve
its quality using two frames of ultrasound RF data. This paper intro-
duces a technique for calculating a displacement field from three frames
of ultrasound RF data. To this end, we first introduce constraints on
variations of the displacement field with time using mechanics of ma-
terials. These constraints are then used to generate a regularized cost
function that incorporates amplitude similarity of three ultrasound im-
ages and displacement continuity. We optimize the cost function in an
expectation maximization (EM) framework. Iteratively reweighted least
squares (IRLS) is used to minimize the effect of outliers. We show that,
compared to using two images, the new algorithm reduces the noise of
the displacement estimation. The displacement field is used to generate
strain images for quasi-static elastography. Phantom experiments and
in-vivo patient trials of imaging liver tumors and monitoring ablation
therapy of liver cancer are presented for validation.

1 Introduction

Displacement, motion or time delay estimation in ultrasound images is an essen-
tial step in numerous medical imaging tasks including the rapidly growing field
of imaging the mechanical properties of tissue [1]. In this work, we perform dis-
placement estimation for quasi-static ultrasound elastography [1], which involves
deforming the tissue slowly with an external mechanical force, imaging the tis-
sue during the deformation, and performing displacement estimation using the
images. More specifically, we focus on real-time freehand palpation elastography
[2-5] where the external force is applied by simply pressing the ultrasound probe
against the tissue. Ease of use, real-time performance and providing invaluable
elasticity images for diagnosis and guidance/monitoring of surgical operations
are the key factors that have led to its successful commercialization.

A typical ultrasound frame rate is 20-60 fps. As a result, an entire series
of ultrasound images are freely available during the tissue deformation. Multi-
ple ultrasound images have been used before to obtain strain images of highly
compressed tissue by accumulating the intermediate strain images, and to ob-
tain persistently high quality strain images by performing weighted averaging
of the strain images [6-8]. Accumulating and averaging strain images increases
their signal to noise ratio (SNR) and contrast to noise ratio (CNR). However,
these techniques are susceptible to drift, a problem with any sequential tracking
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Fig. 1. Left: in-vivo images of liver. First and second (Si and Sz from left) are two
strain fields calculated from I; and I3, and from I> and I3 respectively. S1 & S2 look
“similar”. Third image is S1 —nS2 for n = 1.1. The strain range in the first two images
is 0 to 0.6%, and in the third image is +0.3%. Right shows the ElastMI algorithm.

system [9]. In addition, these techniques do not exploit additional images to im-
prove displacement estimation, which has numerous applications besides strain
estimation. Time series of ultrasound data has also been used to characterize tis-
sue [10], improve elasticity reconstruction [11] and find viscoelastic parameters
[12,13].

Figure 1 shows two consecutive strain images calculated from three ultrasound
images using the 2D analytic minimization (AM) method [14]. Our motivation is
to utilize the similarity of these two images to calculate a low variance displace-
ment field from three images. The contributions of this work are: (1) introducing
constraints on variation of the motion fields based on similarities of strain images
through time; (2) proposing an EM algorithm to solve for motion fields using
three images, and (3) reporting clinical trials of ablation guidance/monitoring,
with data collection corresponding to before, during and after ablation.

The rest of this paper is summarized as follows. We first introduce the Elas-
tography using Multiple Images (ElastMI) algorithm for tissue displacement es-
timation, which minimizes a cost function that incorporates data obtained from
three images and exploits mechanical constraints. The estimated low variance
displacement field can be used in numerous applications in imaging mechanical
properties of tissue; we use it for generating strain images by calculating its spa-
tial derivative. We use phantom and in-vivo patient trials to compare ElastMI
versus the recently developed elastography technique of 2D AM [14].

2 ElastMI: Elastography using Multiple Images

We have a set of p = 3 images Iy, k = 1---3, each of size m x n. Let the 2D
displacement field d* = (a*,1*) denote the displacement between I and I,
where a refers to the axial (i.e. in the direction of the ultrasound beam) and [ to
the lateral (i.e. perpendicular to the beam and in the imaging plane) directions.
By the choice of reference d! = 0. Note that we set I; as the reference image
to simplify the notation. However, in our implementation we always take the



middle image (i.e. I) as the reference. Our goal is to calculate a high quality d?
by utilizing all three images, as opposed to the traditional approach which only
uses I; and Is.

It is well known that many tissue types display linear strain-stress relation
in the 0 to 5% range (see [1] for example). In a freehand palpation elastography
setup with ultrasound acquisition rate of 20 fps or more, taking three consecutive
images as Iy, I, I3 corresponds to strain values of less than 1% and therefore
the linearity assumption is valid. Using this property and some simplifying as-
sumptions, it can be shown that the ratio of the strain and displacement fields
in different times is a constant value, i.e. strain images are similar up to a scale
as in Figure 1. We denote the scale factor by n = (94, m:), and allow it to slightly
change spatially to account for small nonlinearities in the tissue. As such, 7,
and 7; are themselves scale fields in the axial and lateral directions each of size
m x n. Using this notation we have a3 = n,.*a? and [* = n;.*[? where .* denotes
point-wise multiplication.

Let 6 contain all the displacement unknowns d? and d®. The MAP estimate
of 0 is obtained by maximizing its posterior probability

PI‘(O | 11712,13) X PI‘(Il,I2713 | 0) PI‘(O) (1)

where we have ignored the normalization denominator. The data term is cal-
culated as Pr([y, I, I3 | 0) = Xy, Pr(ly,I5,I3,m | 0). The summation over the
latent variable n makes the optimization problem intractable. We therefore use
Expectation Maximization (EM) to make the problem tractable as following.

1. Initialize: find an estimate for 8 by applying the 2D AM method [14] to two
pairs of images (I1,I2) and ([,I3) independently.

2. E-step: find an estimate for n using 6 (details below).

3. M-step: update @ with the current estimate of n (details below).

4. Tterate between 2 and 3 until convergence.

The algorithm is shown in Figure 1 right. Note that unlike the traditional EM
which maximizes Pr(1y, I, I3 | ), we maximize the posterior probability of
(Equation 1). Steps 2 and 3 are elaborated below.

Calculating n from 6 using least squares: At each sample (4, 5) in the
displacement field df}j, i=1---m,j=1---n take a window of size m,, X n,
centered at the sample (m,, and n,, are in the axial and lateral directions re-
spectively and both are odd numbers). Stack the axial and lateral components of
d; ; that are in the window in two vectors a? ; and 17 ;» €ach of length my, X ny,.
Similarly, generate a,ij and lij using d3. Note that since both displacement
fields d?; and d}; are calculated with respect to samples on Iy, they corre-
spond to the same sample (i, 7). We first calculate the axial component 7; ;) o
(Ma.j) = (Nij),asMG,j)0))- Discarding the spatial information in aij and aij,
7, and a}; and simply cal-
culate 1¢; .0 = éij /éij' However, a more elegant way which also takes into
account the spatial information is by calculating the least squares solution to

we can average the two vectors into two scalers a



the following over-determined problem (superscript T' denotes transpose)
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which is what we use in our implementation. To calculate the ratio of the lateral
displacement fields 7;; j,;, we take into account possible lateral slip of the probe,
which results in a rigid-body-motion. The rigid-body-motion can be simply cal-
culated by averaging the lateral displacement in d?’ ; and df ; in the entire image,
and calculating the difference between these two average lateral displacements.
The lateral scaling factor 7; j); can be calculated using an equation similar to 2
where the axial displacement a; ; is replaced with the lateral displacements 1; ;.
However, we use the following approach which results in a better estimate for
N, j),1- The lateral strain ¢ is simply ve, where v is an unknown Poisson’s ratio.
Since v has a small dynamic range in soft tissue and since the difference between
the two displacement maps d? and d? is small, we can assume that v does not
vary from d? to d3. Therefore, N(i,j)0 = N(i,j),a- Lhis gives better estimate for
N(i,j), since axial displacement estimation is more accurate [14].

Calculating 6 by maximizing its posterior probability. To analytically
solve the MAP estimate of 0, we assume that the data is independent and
that the noise model is Gaussian. Although not completely held in real images,
these assumptions are also the foundation behind sum of square difference and
correlation based elastography methods, which have been extensively shown to
produce reliable results. With these assumptions, the robust MAP estimate for
6 can be obtained by minimizing the following cost function

m N LoN2
0(0) = Z’wlgﬂ' (Il(Xl) — IQ(X»L' + d?) — 5d12TVIQ(X1 + df)) +
=1
U . o N2
> wis (Il(xi) — I3(%i + 0i,ad}) — m5,00d; TV I3(x; + ni,adf)) +
=1
Do —di)TA(d] - diy) (3)
=1

where d? is the estimate obtained using 2D AM, §d? = d? — d2 is the update
in the displacement that we are looking for, A = diag(c, 3) is a 2 x 2 diagonal
matrix with tunable regularization weights («, 3) that we adjust manually in
this work, and V denotes the gradient operator. Robustness is achieved using
IRLS through weights w12 ; and w13 ; which are calculated as following

1 |T2| <T
L on>1 W

|7

Wik, = w1 (x;) — Ie(x; + af)),for k=2,3,and w(r;) = {

where T is a tunable parameter which determines the residual level for which
sample ¢ can be treated as outlier. A small T" will treat many samples as outliers.



Setting the derivative of C' w.r.t. the axial (daj = dd7,) and lateral (517 =
5d12,1) components of 6d? for i = 1---m to zero and stacking the 2m unknowns

in 6d? = [6a} 613 6a3 613 - a2, 6lfn]T and the 2m initial estimates in d? =

s 1T
[&% 13 a313---a2, lfn} we obtain the linear system of size 2m:

@« 0 —a0 0 0--0
0 8 0 -0 0 -0
—a 0 2a¢ 0 —a O -0
/ , o 0 -8 0 28 0 —B---0
(#"+D)od*=r-Dd*, D=| 09 0 -4 0 2 0 ---0|, (5
0O 0 0 - —-a 0 ao0O0
00 0 -0 -30 5]

where ¢’ is a symmetric tridiagonal matrix with 2 x 2 matrices J’ in its diagonal:

7' = diag(3(1) -+ T2(m)),

2

32(i) = (w12, + wls,mi,az)ﬂ,a (w12, + w13,i77i,ani,l)ji7a[17l (6)

= 2
(wiz,i + wiziiali) o1l (wizi +wisini®) I,

where I} and I} are calculated respectively at (x; + d2) and at (x; + ;. * d2),

superscript / indicates derivative and subscript a and [ determine whether the

derivation is in the axial or lateral direction, and r is a vector of length 2m with
elements:

ieven: 1y =wiail] ,(X;) [Il(xi) — Ia(x; + 8-12)] +
W13 * I{,a(xi) [11 (%) — I3(x; + 1. * 5112)]
i odd 1y = wiag I (%) [Il(xi) — Io(x; + &f)} +
wig M- * 1] (%) [Il(xi) — I3(x; + M * &3)} : (7)

The coefficient matrix in Equation 5 is pentadiagonal and symmetric. As such,
it can be solved in 8m operations, significantly less than (2m)3/3 required for
solving a full system. For all the results presented in this work, the EM algorithm
is iterated once.

3 Results of Phantom Experiments and Patient Trials

RF data is acquired from an Antares Siemens system (Issaquah, WA) at the
center frequency of 6.67 MHz with a VF10-5 linear array at a sampling rate
of 40 MHz. An elastography phantom (CIRS elastography phantom, Norfolk,
VA) is compressed axially in two steps using a linear stage, and three images



L=
B
o

5
=
G

0.04

depth (mm)
depth (mm)

€
E
=
2
g
3

S

0.03

N
S

0.02

N
il
N
il

0.01 >
0 20 30 0 10 20 30 10 20
width (mm) width (mm) width (mm)

(a) 2D AM axial (b) ElastMI axial  (c) 2D AM lateral (d) ElastMI lateral

30

10 20
width (mm)

Fig. 2. Strain images of the CIRS elastography phantom with the target and back-
ground windows (for calculation of SNR and CNR). The hard lesion is spherical.

Table 1. The SNR and CNR of the strain images of Figure 2.

Axial, 2D AM|Axial, ElastMI|Lateral, 2D AM|Lateral, ElastMI
SNR 11.11 12.64 6.06 6.63
CNR 8.48 9.63 2.96 3.39

are acquired. Resulting strain images are shown in Figure 2. The unitless metric
signal to noise ratio (SNR = f;—l;) and contrast to noise ratio (CNR = 4/ %)
b t
[1] of the ElastMI algorithm are shown in Table 1 (The SNR is only calculated
for the background window). Comparing to the 2D AM, the ElastMI algorithm
improves the SNR by approximately 14% and the CNR by approximately 11%.
The high quality of the lateral strain image, compared to state of the art strain
imaging techniques, is visually noticeable.

In the clinical trials, RF data was acquired from ablation therapy of three
patients with liver cancer using the Siemens Antares ultrasound machine in
the following way: for the first patient only after ablation, for the second patient
before and after ablation, and for the third patient before, during and after abla-
tion. The ablation was administered using the RITA Model 1500 XRF generator
(Rita Medical Systems, Fremont, CA). Tissue is simply compressed freehand at
a frequency of approximately 1 compression per 2 sec with the ultrasound probe
without any attachment and the strain images are generated offline.

Results of the second patient trial are shown in Figure 3. Considering the
numerous sources of noise in the clinical data, the high contrast of the tumor
(top row) and the ablated lesion (bottom row) in the strain images make ElastMI
a promising tool for both finding the tumor and monitoring the ablation. It
should be noted that elastographic analysis of the ablated lesion is known to be
challenging due to high temperatures which significantly degrade the quality of
ultrasound data (mainly because of the air bubbles). Table 2 summarizes the
CNR, as well as noise and contrast values, in the patient trials obtained using
2D AM and ElastMI methods. In the six cases presented in this table (two before
ablation, one during ablation and three after ablation), the average increase in
the CNR achieved using ElastMI compared to 2D AM is 17%.
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Fig. 3. Axial strain images of the second in-vivo patient trial corresponding to before
(top row) and after (bottom row) ablation. The first, second and third columns are
respectively B-mode, 2D AM strain and ElastMI strain images. The cancer tumor in
the top row, and the ablated lesion in the bottom row are delineated. The CNR between
the target and background (marked by t & b) windows are given in Table 2.

4 Conclusions

In this work, we proposed to utilize three ultrasound images to calculate high
quality displacement fields. We neglected the dynamics of tissue motion and
assumed a static model for tissue mechanics, which is valid in the quasi-static
elastography. Using this model and assuming tissue linearity, which holds in
the low strain rates of the freehand elastography, we introduced constraints on
the variations of the strain field with time. We then proposed ElastMI, an EM
algorithm that exploits these constraints for estimating displacement fields using
three images. The algorithm involves solving sparse linear systems, and therefore
runs in real-time. The low variance motion field that we compute by exploiting
this new prior can be used in numerous applications in ultrasound imaging; we
used it here to generate strain images.
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