
IJCARS manuscript No.
(will be inserted by the editor)

ARENA: Inter-modality affine registration
using evolutionary strategy

Nima Masoumi · Yiming Xiao · Hassan Rivaz

Received: date / Accepted: date

Abstract
Purpose: Image fusion of different imaging modalities renders valuable information to clinicians. In
this paper, we proposed an automatic multimodal registration method to register intra-operative ultra-
sound images (US) to pre-operative magnetic resonance images (MRI) in the context of image-guided
neurosurgery (IGNS).
Methods: We employed refined correlation ratio (CR) as a similarity metric for our intensity based
image registration method. We deem MRI as the fix image (If ) and US as the moving image (Im) and
then transform Im to align with If . We utilized the covariance matrix adaptation evolutionary strategy
(CMA-ES) to find the optimal affine transformation in registration of Im to If .
Results: We applied our method on the publicly available retrospective evaluation of cerebral tumors
(RESECT) database and Montreal Neurological Institute’s brain images of tumors for evaluation (BITE)
database. We validated the results qualitatively and quantitatively. Qualitative validation is conducted
(by the three authors) through overlaying pre- and post-registration US and MRI to allow visual assess-
ment of the alignment. Quantitative validation is performed by utilizing the corresponding landmarks in
the databases for the pre-operative MRI and the intra-operative US. Average mean target registration
error (mTRE) has been reduced from 5.40±4.27 to 2.77±1.13 in 22 patients in the RESECT database
and from 4.12±2.03 to 2.82±0.72 in the BITE database. A nonparametric statistical analysis performed
using the Wilcoxon rank sum test shows that there is a significant difference between pre- and post-
registration mTREs with a p-value of 0.0058 (p < 0.05) for the RESECT database and 0.0483 (p < 0.05)
for the BITE database.
Conclusions: The proposed fully automatic registration method significantly improved the alignment
of MRI and US images and can therefore be used to reduce the misalignment of US and MRI caused by
brain shift, calibration errors, and patient to MRI transformation matrix.

Keywords Image registration · Correlation Ratio · Affine Transformation · CMA-ES · RESECT
Database · mTRE

1 Introduction

In medical imaging, we often have chronological images of tissues (which are usually collected with differ-
ent imaging modalities) that need to be aligned [1,2]. Fusion of the information of those corresponding
images is proven to provide useful information to clinicians [3–5]. Even though registration based on
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manually selected homologous landmarks can be performed on images, the corresponding images are
often misaligned due to reasons such as tissue deformation and errors in landmark selection. For ex-
ample, in image-guided surgery, deformation of the organs, such as the brain can invalidate surgical
plannings [6–9].

Image registration is the method, which aligns corresponding misaligned images acquired in differ-
ent times and/or with different sensors [10]. One can categorize image registration methods in vari-
ous classes such as automatic or interactive [11]. Automatic image registration is generally faster and
avoids erroneous actions of the user [12]. Another classification can be made based on the method used:
intensity-based or feature-based. Intensity-based image registration methods generally work better for
smaller deformations, whereas feature-based methods generally work better if the initial misalignment is
large [13,14].

An automatic intensity-based image registration method can consist of different components. One
image would be chosen as the template or fixed image (If ). The other image is called the moving image
(Im). During the registration process, Im should move to be registered to If . The movement of Im can
be restricted and modeled by a spatial transformation. A transformation type is selected based upon
the application [15–17]. When there is no deformation of the object scene, we can simply use a rigid
transformation, which only has six degrees of freedom [18–20]. When one image has deformation with
respect to the other one, we can use transformations with more parameters for instance, affine or free-
form B-spline transformations [21–23]. The image registration method should have a similarity metric to
evaluate the similarity of two images after the transformation. On one end of the spectrum, the similarity
metric can assume a restrictive equality relationship between image intensities and easily subtract two
images as in sum of square differences (SSD). On the other end of the spectrum, it can assume a general
information-based similarity between images as in mutual information (MI) [24]. Correlation ratio (CR)
assumes a functional relationship between intensities of the two images and provides a compromise
between these two extremes. The original CR proposed by Roche et al [25,26], was calculated globally
for the entire volumes, whereas CR used in [27] is calculated in small local patches. More importantly,
unlike the original CR, we perform a binning of intensities of the reference image and calculate histograms
using Parzen windows. This allows us to reliably calculate CR from small patches. The third component
of registration methods, maximizes the similarity of the images by varying the parameters of the chosen
transformation [25–27].

We proposed an automatic intensity-based image registration method using the refined version of
CR. The proposed method is an extended version of the method (MARCEL) proposed in [28] which was
itself based on RaPTOR (Robust PaTch-based cOrrelation Ratio) [29]. Our similarity metric measures
similarity of the images based on corresponding patches locally. We modeled movement of Im with affine
transformation and utilized the covariance matrix adaptation evolutionary strategy (CMA-ES) [30] as
the optimization approach. We applied our method on RESECT (REtroSpective Evaluation of Cerebral
Tumors) database [31] to validate the results. Recent work has successfully performed US-US registration
of the RESECT database [32]. In order to show the performance of our method on different MRI and
ultrasound data, we also applied our method to the BITE database [33], which was collected using
different ultrasound and MRI machines.

The contributions of this paper are threefold. First, ARENA uses CMA-ES, which does not need
gradient of the cost function, which becomes noisy when the patch size (i.e. the number of samples) is
small. Therefore, the optimization step in ARENA is less susceptible to patch-size and noise. Second,
we show for the first time that US and MRI images of the RESECT database can be automatically
registered. And third, although CMA-ES has been successfully used in registration of other imaging
modalities [34–37], it is used for registration of MRI and US for the first time in this paper, where we
show that it works even for patients where a very large initial misalignment exists between US and MRI.

The main difference between MARCEL [28] and ARENA is that MARCEL uses gradient descent
optimization, while ARENA uses CMA-ES. Gradient descent optimization needs the derivative of the cost
function and also requires tuning the step-size, whereas CMA-ES does not need the gradient and further
does not need tuning of the optimization parameters. In addition, MARCEL was only tested on 5 subjects
in the RESECT database, whereas ARENA is tested on all 22 subjects. This further justifies the use of
CMA-ES and its ability to converge to the correct solution in all tested cases. Consequently, ARENA has
the following improvements comparing to MARCEL. First, ARENA is less computationally expensive
and is also more straightforward to implement due to the simplicity of the CMA-ES optimization method.
Second, ARENA is less sensitive to parameter tuning compared to MARCEL and RaPTOR.

This paper is organized as follows. In Section 2, we elaborate our method and derive the equations. In
Section 3, qualitative and quantitative validations of the method are presented. In Section 4, we discuss
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the advantages and disadvantages of our method and avenues for the future. And finally, we provide a
brief conclusion in Section 5.

2 Methods

Let Im and If be respectively the moving and fixed images. In our registration problem we fix If and
move Im so that it matches If . We transform Im with T. The optimal T, when applied to Im, for each
point like x in the space of images, gives us the best alignment of If and Im. Alignment of If and Im is
measured by a dissimilarity metric D. The best alignment of If and Im with T corresponds to minimum
achievable D. In other words, our goal is to minimize the following cost function:

C = D(If (x), Im(T(x))) +R(T) (1)

where R(T) is a regularization term to enforce a smooth transformation and C is the cost function.
Minimizing C by varying T provides the transformation that aligns the fixed and moving images.

2.1 Dissimilarity Metric

As explained in Eq. 1, D measures the alignment of input images i.e. the fixed and moving images. Since
CR is an asymmetric similarity metric, the order of computing CR is important. To allow either Im or
If to be the first or second image in CR, we label our input images as X and Y . D in Eq. 1 and in Eq. 2
is the amended version of RaPTOR [29]. D can vary from zero to one. In case that X and Y are the
same, D = 0. When X and Y do not have any similarity, D = 1. Therefore D is a dissimilarity metric.
In Eq. 2, η is CR, the similarity metric proposed by Roche et al [25]. The similarity metric needs to
identify corresponding features of X and Y locally. So we calculate CR in NP corresponding pacthes of
X and Y .

D(Y,X) = 1
Np

Np∑
i=1

(1− η(Y |X;Ωi)) (2)

where Ωi reperesents the patch i space. The definition of CR in Eq. 2 is as following:

1− η(Y |X) = 1
Nσ2

(
N∑
t=1

i2t −
Nb∑
j=1

Njµ
2
j

)
(3)

µj =
∑N
t=1 λt,jit
Nj

, Nj =
∑
t

λt,j (4)

where N is the total number of voxels in Y , σ2 = V ar[Y ], it is the intensity of voxel number t in Y , Nb
is the total number of bins, and λt,j is the contribution of sample t in bin j as proposed in [29].

Obviously in calculation of D in Eq. 2, pacthes that have approximately the same voxel intensities or
equally small variances, should be discarded because they do not include any image feature. Therefore,
we apply a gamma correction on patches of X and Y as the one explained in [38] after selecting patches
in X and Y to increase variance of patch intensities. The gamma correction applies an experimental
transformation, in = exp(γi0), on the voxels of patches where in is new intensity of the voxel. γ is the
correction parameter which we set it to 50 heuristically, and i0 is old intensity of the voxel. We normalize
intensities of the patches right after the gamma correction. Then every pair of patches in which σ2 < T
are discarded. Heuristically, we found that T = 1 is the best value.

2.2 Transformation

We used affine transformation to model the movement of moving image. In our formulation, no regular-
ization is needed in Eq. 1 since the affine transformation has 12 parameters to be optimizaed, and the
images provide many cues for reliably optimizing for those parameters. The affine transformation matrix
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is defined as:

T =


a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 a12
0 0 0 1

 (5)

As one can see in Eq. 5, the affine transformation has twelve parameters which are ai, 1 ≤ i ≤ 12. In
general, these twelve parameters can be any real number.

2.3 Optimization

The explanation in the Section 2 defines the registration procedure as an optimization problem. Image
registration, in general, is an ill-posed problem, and consequently entails optimizing a highly non-convex
objective function [39]. In order to tackle this problem, we deployed CMA-ES as our optimizer. In Eq. 1,
C is the cost of the objective function D. The affine transformation parameters ai, 1 ≤ i ≤ 12 in Eq. 5
are used by the optimization algorithm to minimize C in Eq. 1.

CMA-ES is similar to natural selection of the biological creatures [40]. In each iteration (generation)
λ new candidate solutions (offsprings) x(g+1)

k , 1 ≤ k ≤ λ are calculated from the best µ out of λ of the
last generation (parents) x(g)

i:λ , 1 ≤ i ≤ µ.
There are N = 12 degrees of freedom in the optimization established by affine transformation param-

eters. Hence, the parameter settings for λ and µ are λ = 4 + b3 ln(N)c and µ = bλ/2c. CMA-ES update
equation for the generation g to g + 1 is presented in Eq. 6.

x
(g+1)
k = 1∑µ

i=1 wi

µ∑
i=1

wix
(g)
i:λ + σ(g)B(g)D(g)z

(g+1)
k (6)

where wi, 1 ≤ i ≤ µ are summation weights of offsprings and they are calculated as Eq. 7.

wi = ln(λ+ 1
2 )− ln(i) (7)

In Eq. 6 σ(g) ∈ R+ is the step size at the generation g. So called covariance matrix C(g) in the
generation g is a symmetric positice definite N × N and its relationship with defined parameters is
presented in Eq. 8:

B(g)D(g)z
(g+1)
k ∼ N (0, C(g)) (8)

For detailed explanations and equations of σ(g), B(g), D(g), z(g+1)
k , and C(g) one can refer to [40,

41].

2.4 Patient Data

We applied the proposed image registration method on the RESECT database [31] and the BITE
database [33]. The RESECT database is an open source clinical database that contains 23 surgical
cases of low-grade gliomas resection operated at St. Olavs University Hospital. With the primary goal to
help develop image processing techniques for brain shift correction, for each patient, the dataset provides
pre-operative T1w and T2-FLAIR MRI scans, intra-operative 3D ultrasound volumes obtained before,
during, and after tumor resection, and corresponding anatomical landmarks between MRI-US pairs and
US-US pairs. To demonstrate our proposed algorithm, we used the pre-operative T2-FLAIR MRI and
US volume before tumor resection since often this stage sets the tone for the total brain shift after
craniotomy. More specifically, 22 patients from the RESECT dataset were used, where 15-16 pairs of
MRI-US homologous landmarks were manually tagged. The BITE database consists of 14 patients with
pre-operative T1w MRI and pre-resection US. As one of the patients’ landmarks were outside the image.
we excluded that patient from our experiment (as is also done in other publications [29,42,43]).

2.5 Registration Procedure

For each patient, we first up-sampled the MRI image (resolution = 1× 1× 1mm3) to the resolution of
corresponding US image because of the US images considerable higher resolution (resolution = 0.24 ×
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0.24× 0.24mm3). We set the US as Im and MRI as If and then we implemented the image registration
algorithm on each patient. For better performance of our method, we used up to four levels of Gaussian
pyramids to tackle the large misalignment present in some of the cases. We use [q/p] patches with the
size of 7× 7× 7 in this work to calculate CR where q is the number of nonzero voxels in the US image,
p is the number of pixels in each US slice, and [.] denotes rounding a number to the next smaller integer
operator.

3 Results

3.1 Qualitative Validation

By comparing the images before and after the registration, with visual inspection, we evaluated the
quality of the registration. We compared the alignment of corresponding brain anatomical features for
instance sulci and tumor boundaries in the MRI and US images before and after registration. Each
patient data includes the brain tumor in MRI and US images. We checked whether alignment of the
boundary of the tumor has improved as well.

Figure 1 shows overlaid US and MRI slices of sagittal view for Patient 5, 12, 19, and 21 in the RESECT
database [31]. Columns show before and after the registration respectively. Each row corresponds to an
individual patient. The arrows guide the reader to locate the improvement after the registration. The
first and second rows show significant improvements in tumor and sulci region. The second and the third
rows show improvements around the tumor region.

3.2 Quantitative Validation

Corresponding homologous landmarks are selected manually in the US and MRI in the RESECT database
by two experts. Consider N as the total number of corresponding landmarks in US and MRI volumetric
images. We used the provided landmarks to calculate mean target registration error (mTRE) [44]. mTRE
for each patient is defined as Eq. 9:

mTRE = 1
N

N∑
i=1
‖T (xi)− x′

i‖ (9)

where T is the optimal affine transformation derived after implementing the image registration algorithm.
Initial mTRE of each patient before registration and the number of landmarks for each patient is

reported in Table 1. Each patient has N landmarks and affine transformation has twelve parameters.
In this table, minimum achievable mTRE is the minimum mTRE we can achieve using an affine trans-
formation for the registration. We made system of linear equations to find the optimal achievable affine
transformation. In this system, the provided landmarks are knowns and the optimal affine transforma-
tion parameters are unknowns. Therefore, the number of knowns is more than the number of unknowns
N > 12. We solved this overdetermined problem with least squares (LS). We reported LS solution for
each patient in Table 1. It is worth mentioning that while the minimum achievable mTREs are calculated
the similar way as the fiducial registration error (FRE) [45], they are not equal to FRE. FRE is the root
mean square error (RMSE) and we calculate mean root square error (MRSE) so that it can be compared
to the initial and final mTRE values calculated before and after registration respectively.

Recently, the Correction of Brainshift with Intra-Operative Ultrasound (CuRIOUS) 2018 Challenge
(curious2018.grand-challenge.org) was held in conjunction with Medical Image Computing and Com-
puter Assisted Intervention (MICCAI) 2018 Conference and addressed the same problem of registration
of pre-resection US to MRI in the RESECT database. These papers used methods such as Multilayer
Perceptron (MLP) [46], Demons [47], Linear Correlation of Linear Combination (LC2) [48], Spatial
Transformer Network (STN) using 3D Convolutional Neural Network (CNN) [49], Self-Similarity Con-
text descriptors (SSC) [50], Scale-Invariant Feature Transform (SIFT) [51], symmetric block matching
using Normalized Cross-Correlation (NCC) [52], and LC2 using Bound Optimization BY Quadratic Ap-
proximation (BOBYQA) [53]. ARENA is compared to the first [48] and second [50] place participatns
in this challenge.

ARENA improved alignments for each patient. In Table 1, initial mTRE shows rather high value of
standard deviation. As in Table 1, our method had a significant improvement for standard deviation.
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Fig. 1 From the top row, sagittal view of Patient 5, 12, 19, and 21 respectively. Columns show before and after the
registration respectively. The arrows show where the images had improvements

One can interpret it as ability of the method to improve a wide range of misaligned images with high
mTRE values. Figure 2 shows the data in Table 1 graphically.

Furthermore, the proposed method was applied on the BITE database as well (Table 2). The method
is compared with SSC [43] and LC2 [42]. Figure 3 shows the results of Table 2 graphically. Note that the
SSC method utilized nonlinear deformable transformation with 107 DOFs, which allows more complex
deformation than an affine transformation with 12 DOFs.

The SSc method applied on the BITE database [43] has different transformation and similarity metric
than the one applied on the RESECT database [50]. In [43] authors utilized a complex transformation
with 107 Degree of Freedoms (DOFs) whereas in [50], they applied a linear method and nonlinear methods
to correct the brain shift. On the other hand the rigid registration performed with LC2 in [42] and [48]
are different from each other. In [42], the method registered 2D slices of US images to 3D MRI images
using rigid registration as the initialization and the cubic spline as the deformable registration. Whereas
in [48], the authors performed a 3D registration by initializing the registration with a translation, then
they performed a rigid registration, and finally they applied the method with an affine transformation.
In Table 1 and Table 2 we reported results of the rigid initialization before the principal registration
in [42] and [48].
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Table 1 Pre- and post-registration mTRE values corresponding to the RESECT database. SSC was used with linear
deformation. LC2 and ARENA were used with rigid and affine transformation respectively. The minimum achievable
mTRE using an affine transformation is shown for comparison.

Patients
ID

No.

Initial mTRE
(mm)

SSC
(mm)

LC2

(mm)
ARENA

(mm)
Minimum

Achievable
mTRE
(mm)

No. of
Land-
marks

1 1.82 (0.5-3.8) 1.88 1.72 1.49 (0.3-2.5) 1.10 15
2 5.68 (3.4-8.9) 2.38 2.53 3.23 (1.6-7.9) 1.11 15
3 9.58 (8.5-10.3) 1.29 1.33 3.65 (2.6-4.9) 0.80 15
4 2.99 (1.6-4.5) 1.31 1.65 2.04 (0.5-3.5) 0.95 15
5 12.02 (10.0-14.1) 1.87 1.50 4.08 (1.3-5.5) 0.93 15
6 3.27 (2.2-4.2) 1.86 1.67 1.55 (0.4-2.8) 0.75 15
7 1.82 (0.2-3.6) 1.58 1.57 1.70 (1.0-2.7) 1.22 15
8 2.63 (1.0-4.1) 2.66 1.94 1.76 (0.4-3.0) 1.08 15

12 19.68 (18.5-21.3) 1.43 1.06 5.52 (3.0-8.1) 0.91 16
13 4.57 (2.7-7.5) 3.47 3.74 2.55 (1.3-3.9) 0.90 15
14 3.03 (1.9-4.4) 1.33 1.20 2.61 (1.1-4.2) 0.89 15
15 3.21 (1.1-5.9) 2.32 1.91 2.46 (1.3-4.9) 1.33 15
16 3.39 (1.6-4.4) 1.41 1.24 1.63 (0.8-2.6) 0.91 15
17 6.39 (4.4-7.8) 1.78 1.71 3.69 (2.1-5.3) 1.03 16
18 3.56 (1.4-5.4) 1.23 1.24 1.96 (0.9-3.2) 0.78 16
19 3.28 (1.3-5.4) 2.12 2.12 2.66 (1.0-4.0) 0.86 16
21 4.55 (3.4-6.1) 1.90 1.87 3.08 (1.8-4.5) 0.68 16
23 7.01 (5.2-8.2) 1.59 1.89 3.15 (1.9-4.8) 0.69 15
24 1.10 (0.4-2.0) 1.57 1.12 1.04 (0.5-1.8) 0.70 16
25 10.06 (7.1-15.1) 3.21 2.78 4.56 (3.1-6.5) 0.87 15
26 2.83 (1.6-4.4) 1.60 1.36 2.50 (1.1-4.0) 0.98 16
27 5.76 (4.8-7.1) 1.58 1.44 3.99 (2.4-5.5) 1.03 16

Mean(µ) 5.37 1.88 1.75 2.77 0.93 -
Std(σ) 4.27 0.53 0.62 1.13 0.17 -

Table 2 Pre- and post-registration mTRE values corresponding to the BITE database. SSC was used with nonlinear
deformation wheras LC2 and ARENA were used with rigid and affine transformation respectively. The minimum achievable
mTRE using an affine transformation is shown for comparison.

Patients
ID

No.

Initial mTRE
(mm)

SSC (mm) LC2

(mm)
ARENA (mm) Minimum

Achievable
mTRE
(mm)

No. of
Land-
marks

2 6.50 (1.9-9.1) 1.81 (0.8-2.7) 1.73 3.65 (1.2-6.4) 1.39 35
3 9.38 (6.3-14.6) 2.60 (1.2-3.9) 2.76 2.95 (2.1-5.9) 2.17 40
4 3.93 (1.0-6.1) 1.78 (0.8-2.7) 1.96 2.61 (1.0-4.40) 1.55 32
5 2.62 (0.5-6.9) 2.30 (0.5-4.0) 2.14 2.40 (0.3-6.2) 1.82 31
6 2.30 (0.2-4.4) 1.83 (0.8-2.7) 1.94 1.81 (0.3-3.6) 1.45 37
7 3.04 (0.3-6.3) 2.41 (1.3-3.4) 2.33 2.74 (1.4-4.4) 1.98 19
8 3.65 (0.0-8.4) 2.40 (1.1-3.6) 2.87 2.95 (1.2-7.5) 2.20 23
9 5.09 (2.5-7.6) 2.41 (0.8-3.9) 2.81 3.63 (0.9-6.2) 2.23 21

10 2.99 (0.8-5.3) 1.68 (0.8-2.5) 2.06 2.25 (0.4-4.3) 1.40 25
11 1.52 (0.6-3.5) 2.17 (0.8-3.4) 2.18 1.46 (0.3-3.2) 1.27 25
12 3.70 (0.9-7.0) 3.31 (1.3-5.3) 2.67 3.05 (1.3-6.2 2.04 21
13 5.15 (1.5-10.4) 3.31 (1.7-4.8) 3.58 4.00 (0.8-8.3) 2.66 23
14 3.77 (1.2-5.7) 2.41 (0.9-3.8) 2.48 3.17 (0.6-6.7) 2.24 23

Mean(µ) 4.12 2.12 2.52 2.82 1.88 -
Std(σ) 2.03 1.29 0.87 0.72 0.43 -
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Fig. 2 Comparison of mTREs before and after the registration of patients in the RESECT database for SSC using linear
transformation, LC2 using rigid transformation, and ARENA. The minimum achievable mTRE by affine transformation
is included as well.

In addition to the validation method, we did a statistical analysis of our results. We used the Wilcoxon
rank sum test which is a nonparametric statistical analysis method [54]. In this test, the null hypothesis
H0 is: the method did not have improvement in mTRE. Using the data in Table 1, the null hypothesis
is µ = 5.40. The alternative hypothesis H1 would be µ > 5.40. Using the initial mTRE before the
image registration and the results of ARENA in Table 1, we achieved the p-value of 0.0058 by applying
Wilcoxon rank sum test. Considering the conventional significance level of α = 0.05, p = 0.0058 shows
that not only we reject H0 and H1, but also with %99.42 confidence we improved the result. With the
same setting using the data in Table 2 and the mTREs of pre- and post-registration for ARENA, the
p-value of 0.0483 (p < 0.05) has been achieved.

4 Discussion and Future Work

We showed the minimum achievable mTRE values with an affine transformation to provide a lower bound
for mTRE values. We have not used these values to optimize and improve ARENA. We achieved mTRE
values that are very close to this minimum value in some patients (e.g., in Patient 24). However, the
average minimum achievable mTRE is 0.93mm, which is in the order of inter-observer variability (below
0.5mm [31]) in landmark selection. Therefore, it is expected that our final mTRE values be larger than
the minimum achievable error.

In this work, we proposed to use a simple affine transformation to correct for brain shift. Never-
theless, non-linear transformations offer more flexibility and allow us to recover the deformation more
accurately. Before employing affine transformation we used simple translation, rigid transformation, and
rigid transformation with scaling parameters. We notice that none of them is able to improve mTRE for
all patients. Affine transformation was the least general transformation model that could give us signifi-
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Fig. 3 Comparison of mTREs before and after the registration of patients in the BITE database for SSC using nonlinear
transformation, LC2 using rigid transformation, and ARENA. The minimum achievable mTRE by affine transformation
is included as well.

cant improvement in mTRE. Affine transformation is simpler and faster than non-linear transformations,
and practical in a wide range of applications.

CR and its derivatives RaPTOR and ARENA are asymmetric similarity metrics, meaning that re-
versing the order of images changes the similarity value and likely the results. We set the US and MRI
as moving and fixed images respectively since this provided better results for ARENA. Since ARENA
uses affine transformation, it can be simply inverted if clinicians prefer to deform the MRI to align with
US.

Symmetric image registration methods are generally considered superior to asymmetric techniques [55,
56]. However, we found that asymmetric method used in this paper is superior to a symmetric version of
ARENA. In addition, changing the role of the fixed and moving image substantially degrades the results.
One reason is that CR is an asymmetric similarity measure and order of the images substantially changes
its value. Because affine transformation is an invertible transformation, we can move the MRI image by
inverting the transformation.

Image registration with affine transformation has a good performance for structural images. But for
functional data, such as tractography, nonlinear deformation is necessary to preserve the continuity of
the tracts [57]. Except for the patients with large initial mTREs in the RESECT and BITE database,
ARENA has a close performance to the SSC and LC2. ARENA was utilized with exactly the same
settings for both databases, which was not the case for either SSC or LC2 [42,43,48,50]. In addition,
LC2 method is computationally expensive and was implemented on GPU. The population size λ in
CMA-ES optimization is an important factor, and a larger λ leads to better performance by costing
more computation time.

CMA-ES implementation in MATLAB is not optimized and it is relatively slow with conventional
CPUs. More specifically, for each hierarchical level the optimization takes 2− 5 minutes. Nevertheless, it
is fast enough in IGNS settings where neurosurgeons generally spend about 10-20 min between collection
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of US images and resection of the tumor. For the next step, we plan to implement our method with
GPU in order to further accelerate the registration process. Finally, we aim to further test our method
on more datasets in different applications.

5 Conclusion

Herein, we presented ARENA, an affine registration method to align US and MRI volumetric images. We
applied our method on the RESECT database and the BITE database, validated our method qualitatively
and quantitatively, and compared to two recently published registration methods. The qualitative results
show that the registered images have improvements in alignment of salient image features. ARENA has
consistently improved the mTRE in all patients in both databases, and is therefore a potentially promising
registration method for use during IGNS.
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