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Abstract. Tissue deformation during brain tumor removal often ren-
ders the original surgical plan invalid. This can greatly affect the quality
of resection, and thus threaten the patient’s survival rate. Therefore,
correction of such deformation is needed, which can be achieved through
image registration between pre- and intra-operative images. We proposed
a novel automatic inter-modal affine registration technique based on the
correlation ratio (CR) similarity metric. The technique was demonstrated
through registering intra-operative ultrasound (US) scans with magnetic
resonance (MR) images of patients, who underwent brain gliomas resec-
tion. By using landmark-based mean target registration errors (TRE) for
evaluation, our technique has achieved a result of 2.32±0.68 mm from
the initial 5.13±2.78 mm.

1 Introduction
Gliomas are tumors in glial cells occurring either in brain or spine, and are cur-
rently the most common types of brain tumors in adults [1]. According the world
health organization (WHO), brain gliomas can be classified into four different
grades: low grade (Grade I and II) and high-grade (Grade III and IV). Low-grade
gliomas (LGG) have a slower tumor growth rate, but will eventually progress to
the deadlier high-grade tumors. Thus, early tumor removal can increase patient’s
survival rate [2].

During brain surgery, brain deforms to some extent, which is called brain shift
and is caused by multiple reasons such as physiological factors [3]. Therefore,
image guided neurosurgery systems (IGNS) that do not take brain shift into
account can often render the pre-surgical plans invalid and can lead to incomplete
or unnecessary resection.

Acquiring Magnetic Resonance Imaging (MRI) intra-operatively is difficult
and requires special surgical tools and setups. Therefore, intra-operative ultra-
sound (US) has become popular due to its portability and non-invasiveness in
recent years. The drawbacks with US are the low image quality and difficulty
in interpreting the image contents. In order to track the surgical progress and
brain shift, US images can be registered to pre-operative MRI to help recover the
tissue deformation during operation [4]. Both T1-weighted MRI and T2-FLAIR
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MRI are rountinely acquired for planning brain tumor resection procedures.
However, low-grade gliomas are often more distinguishable in T2-FLAIR than
in T1-weighted MRI [5].

Intensity based registration techniques need a similarity metric to evaluate
similarities between two images. In these techniques, the goal of the registra-
tion is maximization of the similarity metric. Among popular similarity metrics,
mutual information (MI) is the most general one and assumes statistical rela-
tionship between images. On the contrary, normalized cross-correlation (NCC)
and sum of squared differences (SSD) assume linear relationship between images
and are more restrictive. Correlation ratio (CR) assumes functional relationship
between images, and provides enough generality to be used as a similarity metric
between US and MRI [6, 7, 8]. In [7] automatic multimodal deformable registra-
tion performed with utilization of a modified version of CR. They also proposed
a robust method for dealing with resected tumor [9].

Deformable registration problems, usually have much more parameters than
affine and rigid registration, which respectively have twelve and six parameters.
As a result, they usually have more accurate registration. However, in practice,
affine registration has a lower chance of failure and is generally less computa-
tionally intensive.

In this paper, we introduced an automatic affine registration method using
Robust paTch based cOrrelation Ration (RaPTOR) [7] to help recover brain shift
using intra-operative US and pre-operative MRI scans. We used REtroSpective
Evaluation of Cerebral Tumors (RESECT) database [5] to validate our method.

2 Materials and Methods

2.1 Registration Overview

Let If and Im be respectively fixed and moving images. In the context of IGNS,
we set If to the pre-operative MRI, and deform the intra-operative US image
Im towards the pre-operative MRI. We formulate the registration process as an
optimization problem. Our cost C is defined in Eq. 1:

C = D(If (x), Im(T(x))) (1)

where D is our objective function that should be minimized, If is the fixed
image, Im is the moving image, x is the point of interest in space, and T is the
affine transformation matrix. The affine transformation matrix is defined in Eq.
2:

T =

a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 a12
0 0 0 1

 (2)

where ai, 1 ≤ i ≤ 12 denotes the twelve affine transformation parameters. If
x = [xi, xj , xk] denotes the position of a point in Cartesian coordinates, we
employ the transformation as in Eq. 3:yiyjyk

1

 = T (x) = T ×

xixjxk
1

 (3)
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where y = [yi, yj , yk] specifies the transformed point. We define the objective
function D as a dissimilarity metric in Eq. 4. The dissimilarity metric is RaP-
TOR (Robust PaTch based cOrrelation Ratio), which is modified version of CR
(Correlation Ratio) [7].

D(Y,X) = RaPTOR(X,Y ) =
1

Np

Np∑
i=1

(1− η(Y |X;Ωi)) (4)

In Eq. 4, NP is the number of patches, Ωi is the set of all voxels included in
patch i, and η is CR. D varies between 0 and 1. In higher similarity, D is closer
to 0 and in lower similarity D is closer to 1.

The definition of CR in Eq. 4 is as following:

1− η(Y |X) =
1

Nσ2

(
N∑
t=1

i2t −
Nb∑
j=1

Njµ
2
j

)
(5)

µj =

∑N
t=1 λt,jit
Nj

, Nj =
∑
t

λt,j (6)

where N is total number of samples in Y , σ2 = V ar[Y ], it is the intensity of
voxel number t in Y , Nb is the total number of bins, and λt,j is the contribution
of sample t in bin j as explained in [7].

2.2 Optimization and Outlier Suppression

We calculated the derivation of objective function analytically in order to speed
up the registration procedure. We used derivative of the cost function in two
distinct part. First in outlier suppression part. Second in updating equation of
the optimization part.

Derivative of the cost function with respect to affine transformation param-
eters is as following:

∂D

∂a
=
[
∂D
∂a1

∂D
∂a2

... ∂D
∂a12

]T
(7)

In Eq. 7, a is a vector consisting of affine transformation parameters. Now the
derivative with respect to each of the parameters is:

∂D

∂ak
=

1

Np

Np∑
i=1

∂(1− η(Y |X;Ωi))

∂ak
(8)

where ak, 1 ≤ k ≤ 12 declares affine transformation parameters. Utilizing the
chain rule, we have:

∂(1− η(Y |X;Ωi))

∂ak
=
∂(1− η)

∂ak
=

∂(1− η)

∂Im(T(x))
.
Im(T(x))

∂d
.
∂d

∂ak
(9)

where d = [dx, dy, dz] in Eq. 9 is the displacement vector in Cartesian coordi-
nates. Right hand side of Eq. 9 has three terms. The first term was calculated
in [7]. In order to comply with our equations, we bring up the calculation in
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following equations. Note that the first term in Eq. 9 is the size of transformed
moving image and we consider each element of this term as in Eq. 10 using Eq.
5.

∂(1−η)
∂it

= ∂
∂it

(
1

Nσ2

(∑N
k=1 i

2
k −

∑Nb

j=1Njµ
2
j

))
=

−2(N−1)
N3σ4 (it − µ)

(∑N
k=1 i

2
k −

∑Nb

j=1Njµ
2
j

)
+

2(it −
∑Nb

j=1 µjλt,j)(
1

Nσ2 )

(10)

In Eq. 10 µ is mean of Y . Second term in right hand side of Eq. 9 is simply the
gradient of transformed moving image and third term is Jacobian of transfor-
mation.

Mini-Batch Gradient Descent Optimization: While batch gradient descent is
time consuming and stochastic gradient descent (SGD) doesn’t have required
accuracy, choice of mini-batch gradient descent gives a trade-off between imple-
mentation time and result accuracy. For a certain resolution of input images, we
select a set of random patches from the images in every iteration.

We employ Gaussian pyramid in the optimization. There are three pyramid
levels in our analysis excluding the original size of images. In order to enable
the dissimilarity metric to have a better perception of similarities between two
input images, we select the set size of patches proportional to the resolution and
size of input images in each level. Note that increasing the set size of patches
will increase the computation time. Thus selecting the set size of patches in each
pyramid level is a compromise between accuracy and computation time. The
update equation for mini-batch gradient descent is as Eq. 11:

an = an−1 − αn
∂D

∂an−1
(11)

where an is the vector consisting of affine transformation parameters in n-th
iteration, ∂D

∂an
can be achieved by Eq. 7, and αn is step size. Step size is a

function of iteration number and is defined in Eq. 12.

αn =
a

(A+ n)τ
(12)

In Eq. 12 a > 0, A ≥ 0, 0 < τ ≤ 1 are constants. Klein et. al. [8] suggested
approximate values for these parameters. According to [8], we set a = 0.001,
A = 0.3×MaxIterations, and τ = 0.65.

In comparison to the MRI, US has quite unique image features and its own
challenges. The inherent properties of the ultrasound images can have a major
effect on performance of the dissimilarity metric. Since we select patches in each
iteration randomly, before any operation on the selected patches, we should pre-
select the patches that have potent image features (e.g., consistent and strong
lines). We used outlier suppression proposed in [7]. We discard patches that are
greater than a threshold T in Eq. 13.

r.rg > T (13)
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Heuristically, T = 1 gives acceptable results for us. Parameter r is defined in Eq.
14.

r = min

{
V ar( ∂D∂dx )

〈 ∂D∂dx 〉
2
,
V ar( ∂D∂dy )

〈 ∂D∂dy 〉
2
,
V ar( ∂D∂dz )

〈 ∂D∂dz 〉
2

}
(14)

where ∂D
∂dx

, ∂D
∂dy

, and ∂D
∂dz

are derivatives in x, y, and z direction respectively and

〈.〉 is mean operator. The denominators are low at relatively uniform regions,
but are high in textured regions (i.e., with high gradients). Definition of rg in
Eq. 13 can be found in Eq. 15.

rg =
‖∇If‖ ∗B
‖∇Im‖ ∗B

(15)

Here ∇ is gradient operator, ‖.‖ indicates magnitude of the gradient, ∗ is con-
volution, and B is a kernel of size of the image with all ones in the selected
patch and zeros the rest. The nominator and denominator represent summation
of gradient values of fixed and moving image respectively.

2.3 Patient Data

To validate the proposed technique, we employed the MRI and intra-operative
US scans of five patients, who underwent brain tumor resection procedures.
All patients’ data were randomly selected from the publicly available RESECT
(REtroSpective Evaluation of Cerebral Tumors) database [5], which includes
both pre-operative MRI and intra-operative US scans of patients with low-grade
gliomas, as well as homologous anatomical landmarks for validating registra-
tion algorithms. For registration, we employed T2w FLAIR MR images, which
better visualize the boundaries of the brain tumors than the T1w MR scans,
and intra-operative US scans obtained before resection. The T2w FLAIR im-
ages (TE=388ms, TR=5000 ms, flip angle=120 deg., voxel size=1x1x1 mm3,
sagittal acqusition) were obtained one day before surgery on a 3T Magnetom
Skyra (Siemens, Erlangen). The MRI volumes have been rigidly registered to the
patient’s anatomy on the surgical table. The spatially tracked US images were
obtained with a sonowand Invite neuronavigation system (Sonowand AS, Trond-
heim, Norway), and then reconstructed as 3D volumes with resolutions range
from 0.14x0.14x0.14 mm3 to 0.24x0.24x0.24 mm3 depending on the transducer
types and imaging depths. All US volumes have full coverage of the tumors. Since
the US volumes were spatially tracked during surgeries, the positions of the tis-
sues truthfully reflect the tissue formation during the procedures. Corresponding
anatomical landmarks between the MRI and US volumes were provided in the
dataset for registration validation.

2.4 Registration Procedure

For each patient, we first up-sampled the MR image to the image space (and res-
olution) of the corresponding US images. Then, the US volumes were registered
to the re-sampled MRI volumes using the technique introduced earlier. For our
registration, we used a hierarchical approach, which facilitate the optimization
efficiency. The registration results are reported as mean target registration errors
(mTREs) for all patients under study.
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2.5 Validation

In order to assess the accuracy of our method, we used the landmarks which
were provided in RESECT database for each patient. Supplied landmarks can
be used to calculate mean target registration error (mTRE) [10]. mTRE for a
patient is defined as Eq. 16.

mTRE =
1

N

N∑
i=1

‖T (xi)− x′i‖ (16)

Where xi and x′i are two corresponding landmarks in moving image (US in our
case) and fixed image respectively. In Eq. 16, N is the total number of landmarks.

3 Results
After image registration, we have observed an improvement in terms of image
feature correspondence. From Fig. 1 and 2, we can see that borders of tumors
(blue arrows) and sulci (green arrows) have been visibly re-aligned between the
MR and US images. The detailed mTRE evaluation for each patient is shown in
Table 1. Figure 3 depicts mTRE values before and after registration as well. Both
in Table 1 and Fig. 3, we observe that mTRE values decreased after registration.
Moreover, it is instructive to compare mean and standard deviation of mTRE
values before registration with ones after registration. In Table 1, we can see not
only the mean value but also the standard deviation decreased.

Fig. 1: Overlay of MR and US before and after registration for patient one, two,
and three. First row is before registration and second row is after registration.
Patient one, two, and three are first, second, and third column respectively. Green
arrows correspond to sulcus and blue arrows correspond to tumor borders.

4 Discussion and Future Work
Although affine transformation has much fewer parameters than non-linear de-
formation, and thus may not fully represent the underlying soft tissue deforma-
tion, a few reasons justify the use of affine transformation for the demonstrated
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Fig. 2: Overlay of MR and US before and after registration for another view of
patient three, four, and five. First row is before registration and second row is
after registration. Patient three, four, and five are first, second, and third column
respectively. Green arrows correspond to sulcus and blue arrows correspond to
tumor borders.

Table 1: mTRE before and after registration

Patients No. Initial mTRE Final mTRE No. of Landmarks
1 5.72 2.86 15
2 9.58 3.21 15
3 2.65 1.79 15
4 4.70 2.14 15
5 2.99 1.62 15

mean 5.13 2.32
std 2.78 0.68

application. First, as important factors in the clinic, affine registration is often
faster and less prone to failure than nonlinear registration. Second, the US vol-
umes used mainly cover the tumorous tissues, and thus the deformation can
be approximated sufficiently well locally with affine transformation. Lastly, the
tissue deformation before resection is not severe, and affine registration is often
sufficient for the surgeons to navigate the surgical plans. Here, we have prelim-
inarily demonstrated the proposed technique using five brain cancer patients,
in the future, we will validate the method on more subjects from the RESECT
database, as well as inter-modality registration tasks in other applications.

5 Conclusion

We have proposed an automatic affine registration method based on correlation
ratio. The technique has been demonstrated retrospectively for MRI-US regis-
tration in the context of brain shift correction during low-grade brain gliomas
resection. From both quantitative and qualitative assessments, our proposed
method has shown to successfully realigned the intra-operative US with the pre-
operative MRI scans.
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Fig. 3: Mean Target Registration Error (mTRE) Before and After Registration.
Yellow and green bars indicate standard deviation before and after registration
respectively.
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