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Abstract

Displacement estimation is an essential step for ultrasound elastography and numerous techniques have been proposed to improve
its quality using two frames of ultrasound RF data. This paper introduces a technique for calculating a displacement field from
three (or multiple) frames of ultrasound RF data. To calculate a displacement field using three images, we first derive constraints on
variations of the displacement field with time using mechanics of materials. These constraints are then used to generate a regularized
cost function that incorporates amplitude similarity of three ultrasound images and displacement continuity. We optimize the cost
function in an expectation maximization (EM) framework. Iteratively reweighted least squares (IRLS) is used to minimize the
effect of outliers. An alternative approach for utilizing multiple images is to only consider two frames at any time and sequentially
calculate the strains, which are then accumulated. We formally show that, compared to using two images or accumulating strains,
the new algorithm reduces the noise and eliminates ambiguities in displacement estimation. The displacement field is used to
generate strain images for quasi-static elastography. Simulation, phantom experiments and in-vivo patient trials of imaging liver
tumors and monitoring ablation therapy of liver cancer are presented for validation. We show that even with the challenging patient
data, where it is likely to have one frame among the three that is not optimal for strain estimation, the introduction of physics-based
prior as well as the simultaneous consideration of three images significantly improves the quality of strain images. Average values
for strain images of two frames versus ElastMI are: 43 versus 73 for SNR (signal to noise ratio) in simulation data, 11 versus 15 for
CNR (contrast to noise ratio) in phantom data, and 5.7 versus 7.3 for CNR in patient data. In addition, the improvement of ElastMI
over both utilizing two images and accumulating strains is statistically significant in the patient data, with p-values of respectively
0.006 and 0.012.

Keywords: Ultrasound Elastography, Elasticity Imaging, Strain Imaging, Ablation, Liver, Hepatocellular Carcinoma, HCC,
Expectation Maximization, EM, Physics-Based Priors

1. Introduction

Displacement or time delay estimation in ultrasound images
is an essential step in numerous medical imaging tasks includ-
ing the rapidly growing field of imaging the mechanical proper-
ties of tissue (Ophir et al., 1999; Greenleaf et al., 2003; Parker
et al., 2005). In this work, we perform displacement estimation
for quasi-static ultrasound elastography (Ophir et al., 1999),
which involves deforming the tissue slowly with an external
mechanical force and imaging the tissue during the deforma-
tion. More specifically, we focus on real-time freehand pal-
pation elastography (Hall et al., 2003; Hiltawsky et al., 2001;
Doyley et al., 2001; Yamakawa et al., 2003; Zahiri and Salcud-
ean, 2006; Deprez et al., 2009; Goenezen et al., 2012) where
the external force is applied by simply pressing the ultrasound
probe against the tissue. Ease of use, real-time performance and
providing invaluable elasticity images for diagnosis and guid-
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ance/monitoring of surgical operations are invaluable features
of freehand palpation elastography.

A typical ultrasound frame rate is 20-60 fps. As a result, an
entire series of ultrasound images are freely available during the
tissue deformation. Multiple ultrasound images have been used
before to obtain strain images of highly compressed tissue by
accumulating the intermediate strain images (O’Donnell et al.,
1994; Varghese et al., 1996; Lubinski et al., 1999) and to obtain
persistently high quality strain images by performing weighted
averaging of the strain images (Hiltawsky et al., 2001; Jiang
et al., 2007, 2006; Chen et al., 2010; Foroughi et al., 2010). Ac-
cumulating and averaging strain images increases their signal to
noise ratio (SNR) and contrast to noise ratio (CNR) (calculated
according to equation 35). However, these techniques are sus-
ceptible to drift, a problem with any sequential tracking system.
We show that considering three images simultaneously to solve
for displacement field significantly improves the quality of the
elasticity images compared to sequentially accumulating them.
Multiple images have also been used to obtain tissue non-linear
parameters (Krouskop et al., 1998; Erkamp et al., 2004a; Oberai
et al., 2009; Goenezen et al., 2012).

Depth calculation from a trinocular-stereo system (Ayache

Preprint submitted to Medical Image Analysis November 19, 2013



width (mm)

de
pt

h 
(m

m
)

0 10 20 30

10

20

30

40

50

width (mm)

de
pt

h 
(m

m
)

0 10 20 30

10

20

30

40

50

width (mm)

de
pt

h 
(m

m
)

0 10 20 30

5

10

15

20

25

30

35

40

45

50

55

Figure 1: Consecutive strain images are “similar” up to a scale factor. First and
second (S 1 and S 2 from left) are two strain fields calculated from I1 and I2, and
from I2 and I3 respectively (I1, I2 and I3 not shown here). S 1 & S 2 look similar.
Third image is S 1 − ηS 2 for η = 1.1. The strain range in the first two images is
0 to 0.6%, and in the third image is ±0.3%. Images are acquired freehand and
in-vivo during liver surgery.

and Lustman, 1991; Mulligan et al., 2002; Brown et al., 2003)
is a similar problem where more than two images are used
to increase the accuracy and robustness of the stereo system.
The third image is used to introduce additional geometric con-
straints and to reduce the noise in the depth estimates. Unfor-
tunately, these geometric constraints do not hold in the elastog-
raphy paradigm, and therefore these methods cannot be applied
to elastography.

Figure 1 shows two consecutive strain images calculated
from three ultrasound images using the 2D analytic minimiza-
tion (AM) method (Rivaz et al., 2011a)1. Our motivation is
to utilize the similarity of these two images to calculate a low
variance displacement field from three images. We derive phys-
ical constraints based on the mechanical properties of soft tis-
sue, and incorporate them into a novel algorithm that we call
ElastMI (Elastography using Multiple Images). ElastMI mini-
mizes a cost function that incorporates data obtained from three
images and exploits the mechanical constraints. Like Pellot-
Barakat et al. (2004); Jiang and Hall (2006); Sumi (2008); Sumi
and Sato (2008); Brusseau et al. (2008); Rivaz et al. (2008a,
2009, 2011a); McCormick et al. (2011), we use a regularized
cost function that exploits tissue motion continuity to reduce
the variance of the displacement estimates caused by ultrasound
signal decorrelations. The cost function is optimized using an
iterative algorithm based on expectation maximization (EM)
(Moon, 1996). Compared to our previous work (Rivaz et al.,
2011b), we present significantly more details and in-depth anal-
ysis of ElastMI. We also provide extensive results for validation
and more analysis of the results.

To formally study the advantage of using three images, we
assume ultrasound noise is additive Gaussian and prove that ex-
ploiting three images not only reduces the noise in the displace-
ment estimation, but also eliminates false matches due to possi-
ble periodic patterns in the tissue. We assume an additive Gaus-
sian noise model in ultrasound images for two main reasons.
First, most real-time motion estimation techniques use differ-
ent forms of sum of squared differences (SSD) as a similarity

1The 2D AM code is available online at www.cs.jhu.edu/~rivaz

metric. This includes window-based methods 2 and the sam-
ple based methods of 2D AM and ElastMI. The fact that these
similarity metrics have been shown to give low noise displace-
ment estimates suggests that additive Gaussian noise model is
a good approximation for the true ultrasonic noise for small de-
formations. Second, using the additive Gaussian noise model
in ultrasound images allows us to analytically obtain the noise
in the estimated displacement field as a function of the image
noise for three different algorithms: AM (Rivaz et al., 2011a),
ElastMI, and a third method that we propose in the Appendix.

We use simulation, phantom and in-vivo patient trials to val-
idate our results. The in-vivo patient trials that we present in
this work are related to imaging liver tumors and also imaging
ablation lesions generated by thermal ablation. Thermal ab-
lation is a less invasive alternative for tumor resection where
the cancer tumor is coagulated at temperatures above 60◦ Cel-
sius. To eliminate cancer recurrence, the necrosis should cover
the entire tumor in addition to some safety margin around it.
Currently, both guidance and monitoring of ablation are per-
formed under ultrasound visualization. Unfortunately, many
cancer tumors in liver have similar echogenicity to normal tis-
sue and are not discernible in ultrasound images. Regarding
ablation monitoring, the hyperechoic region in the ultrasound
image caused by formation of gas bubbles during ablation does
not represent tissue ablation and usually disappears within 1
hour of ablation (Goldberg et al., 2000). To minimize the mis-
classification of these hyperechoic regions with ablated lesion,
ultrasound elastography has been proposed for monitoring abla-
tion: HIFU probes (high intensity focused ultrasound) (Righetti
et al., 1999), radio-frequency Cool-tip probes (Valleylab/Tyco
Healthcare Group, Boulder, CO) (Fahey et al., 2006; Jiang and
Varghese, 2009; Jiang et al., 2010) and radio-frequency RITA
probes (Rita Medical Systems, Fremont, CA) (Varghese et al.,
2003, 2004; Boctor et al., 2004; Rivaz et al., 2008b) have been
investigated. Electrode vibration elastography (Bharat et al.,
2008; DeWall et al., 2012a) and shear wave imaging (Arnal
et al., 2011) have also been used to monitor ablation. Elas-
tography in the presence of gas bubbles is challenging because
they are a major source of noise in the ultrasound signal and de-
grade the quality of both B-mode and strain images.The noise
associated to them is also not simply additive Gaussian and de-
pends strongly on both the spatial location and time. We show
that ElastMI generates high quality strain images in such high
noise environment in three patient trials.

The contributions of this work are: (1) introducing con-
straints on variation of the motion fields based on similarities
of strain images through time; (2) proposing ElastMI, an EM-
based algorithm to solve for motion fields using three images;
(3) formally proving that the ElastMI algorithm reduces dis-
placement estimation variance, and further illustrating that with
simulation, phantom and patient data, and (4) reporting clinical

2Real-time window based methods generally use SSD, cross correlation or
normalized cross correlation as the similarity metric. Under certain normality
conditions, it can be shown that all of these methods are maximum likelihood
estimators if the ultrasound noise model can be assumed to be additive Gaus-
sian.
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studies of ablation guidance/monitoring, with data collection
corresponding to before, during and after ablation, which is to
the best of our knowledge, the first such study.

2. Displacement Estimation Error

Assume we have a set of ultrasound frames Jk, k = 1 · · · p,
each of size m × n, and let x = (i, j), i = 1 · · ·m, j = 1 · · · n
be a 2D vector denoting the coordinates of image samples (Fig-
ure 2). The images are obtained during the freehand palpation
of the tissue. From the original sequence Jk, we pick a triple,
and set I1 as the middle image, and I2 and I3 as the first and
third images. Let d̃k(x) = (ãk(x), l̃k(x)) denote the ground truth
axial and lateral displacements of the sample x between the 1st

and k
th image (see Figure 2). Note that, by choice of refer-

ence, d̃1(x) = 0. For simplicity, we only look at a particular
A-line and also assume that the motion d̃k is in the axial direc-
tion. Therefore, ã

k

i
, i = 1 · · ·m denote the ground truth axial

displacement of samples of the particular A-line. The subscript
i shows the dependency of ã

k to x. Assuming that ultrasound
noise is additive Gaussian, the image intensity at point i is

Ik(i) = Ĩ(i − ã
k

i
) + nk(i), nk(i) ∼ N(0, σ2), k = 1 · · · p (1)

where N(µ, σ2) denotes a Gaussian distribution with the mean
µ and variance σ2, and Ĩ(i) refers to an unknown ideal image
that has no noise and no deformation. The goal of ElastMI is to
estimate ã

k

i
, i.e. a displacement for every sample. We make two

comparisons between ElastMI and companding (Chaturvedi
et al., 1998): (1) in companding, the scaling of the signal is
directly computed and can be used as a strain image, while
ElastMI does not directly estimate scaling. (2) ElastMI allows
the signal to be stretched since it allows every sample to have a
different displacement. Therefore, like companding methods it
can give accurate results for images with large displacements.

In Rivaz et al. (2011a), we proposed the following cost func-
tion for calculating the displacement field between I1 and Ik:

C(ak

1 · · · ak

m
) = CD +CR,

CD =

m�

i=1

�
I1(i) − Ik(i + a

k

i
)
�2
,

CR =

m�

i=2

�
a

k

i
− a

k

i−1

�2
(2)

where CD and CR are respectively the data and regularization
terms. We have assumed pure axial motion. Replacing I1 and
Ik with Ĩ from equation 1 we have

CD(ak

1 · · · ak

m
) =

m�

i=1

�
Ĩ(i) − Ĩ(i + a

k

i
− ã

k

i
) + n1(i) − nk(i + a

k

i
)
�2

(3)
Using Taylor series to linearize Ĩ(i + a

k

i
− ã

k

i
) around i we have

CD(ak

1 · · · ak

m
) =

m�

i=1

�
−(ak

i
− ã

k

i
)T · Ĩ�

a
(i) + n1(i) − nk(i + a

k

i
)
�2

(4)

where Ĩ
�
a

is the derivative of the image in the axial direction
(subscript a indicates that the derivative is performed in the ax-
ial direction). The value of a

k

i
that minimizes CD can be easily

found by setting the ∂CD/∂ak

i
to zero:

a
k

i
= ã

k

i
−
�
Ĩ
�
a
(i)
�−1 �

n1(i) − nk(i + a
k

i
)
�

(5)

where [·]−1 denotes inversion. The expected value and variance
of the a

k

i
are therefore

E[ak

i
] = ã

k

i
(6)

var[ak

i
] =
�
Ĩ
�
a
(i)
�−2

var[n1(i) − nk(i + a
k

i
)] = 2σ2

�
Ĩ
�
a
(i)
�−2

(7)

where σ2 is the noise in the images as presented in equation 1.
These equations show that without regularization, the expected
value of the displacement is the true displacement (i.e. there is
no bias), and its variance increases with image noise σ. The
variance decreases where image gradient is high, i.e. at the
tissue boundaries and areas where speckle is present. This is
why speckle tracking methods do not work (i.e. have very high
estimation variance) in cysts, which do not have speckle.

We now investigate the redundancy in consecutive strain im-
ages by looking at the mechanics of the tissue. We then in-
troduce new priors into our displacement estimation technique
based on this redundancy.

3. Deriving Physical-Based Constraints

In this Section, we assume quasi-static motion and derive
constraints on the variations of the tissue displacement with
time. We use these constraints in the ElastMI algorithm, Sec-
tion 4, to decrease the error in the displacement estimation.

To calculate the deformations of a continuum, mechanical
characteristics of the continuum and the external forces (i.e.
boundary conditions) are required. The mechanical character-
istics of a continuum itself can be described by the three prop-
erties of stress-strain relationship (linear or nonlinear), homo-

geneity and isotropy. Linear stress-strain behavior means that
if we scale the stress (or force) by a factor, the strain (or dis-
placement) also gets scaled by the same factor, i.e. the Hooke’s
law. The stress-strain relation is linear for a large range ordi-
nary objects. Many tissue types also display linear stress-strain
relation in the 0 to 5% strain range (Emelianov et al., 1998; Yeh
et al., 2002; Greenleaf et al., 2003; Erkamp et al., 2004a,b; Hall
et al., 2007, 2009; Oberai et al., 2009). Homogeneity means
that the continuum has uniform mechanical properties, i.e. its
properties are spatially invariant. Isotropy means that at each
point, the continuum has the same properties in different di-
rections. Muscle for example is not an isotropic material due
to its fibers. For simplicity and for intuitive analysis, we only
consider scalar fields and ignore anisotropy. We can therefore
analyze how a continuum deforms by selecting one of these
three properties: linear or non-linear continuum, homogeneous
or inhomogeneous continuum, and external forces that result in
uniform stress or nonuniform stress (resulting in 23 = 8 cases).
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Figure 2: Axial, lateral and out-of-plane directions. The coordinate system is attached to the ultrasound probe. The sample (i,j) marked by x moved by (ai, j, li, j).

We hypothesize that the ratio of two strain (or displacement)
images obtained at different times from the same continuum
has small spatial variations (as observed in Figure 1). To il-
lustrate this, we show that among the 8 total cases, this ratio
is spatially invariant in the five cases shown in Figure 3. The
remaining three cases all share tissue non-linearity, which we
avoid by limiting the total strain to less than 5%. In this figure,
image I1 is acquired at zero compression (to simplify the fig-
ure), image I2 after compression and image I3 after more com-
pression. We assume the applied pressure in I2 and I3 has the
same profile (i.e. the two external pressure fields are the same
up to a scale factor). This means that in cases (a), (c) and (e)
the applied pressure is always uniform and in (b) and (d) the
applied pressure has the same profile. P1 and P2 are two arbi-
trary points whose strain values are �k1 and �k2 and whose axial
displacement values are a

k

1 and a
k

2 respectively, where k = 2, 3
refers to strain value at image k. We prove that in the five cases
shown in Figure 3 , the ratio of the strain images and the ratio
of the displacement images are spatially invariant, i.e.

�21
�31
=
�22
�32

and
a

2
1

a
3
1
=

a
2
2

a
3
2
. (8)

An intuitive proof for this equation in the five cases shown in
Figure 3 is as following:

(a) Linear, homogeneous, uniform stress. This is the simplest
case, and equation 8 can be proven because �21 = �

2
2 and

�31 = �
3
2 (since the stress is uniform). The second part

a
2
1

a
3
1
=

a
2
2

a
3
2

can also be simply proven by noticing that two

triangles OZ1P2
1 and OZ2P2

2, as well as the two triangles
OZ1P3

1 and OZ2P3
2 are similar.

(b) Linear, homogeneous, non-uniform stress. Either the
hole in the continuum or the non-uniform force applied to
the top is enough to generate non uniform stress and strain
fields. This case might be the hardest to prove equation
8. Consider the finite element analysis of the continuum,
which meshes the continuum into small parts. Since the
continuum is linear, the final force-displacement equation
becomes f = Ka where f is the force vector applied to the

boundaries, K is the stiffness matrix and a is the displace-
ment of each node in the mesh. Let the forces when I2 and
I3 are acquired be respectively f2 and f3, and the displace-
ments be respectively a2 and a3. Since we have assumed
the pressure keeps its profile, f2 and f3 are identical up to
a scale, i.e. f2 = ηf3. Using f = Ka, we have a2 = ηa3 and
therefore the second part of equation 8. Since the displace-
ments are scaled version of each other, so are the strains
and therefore we have the first part of equation 8.

(c) Linear, inhomogeneous, uniform stress. Because of lin-
earity and uniform stress, s

2 = E1�21 = E2�22 and s
3 =

E1�31 = E2�32 (s
2 and s

3 are the stress values corresponding
respectively to I2 and I3 and are not related to s

2 which is
variance elsewhere in the paper). Dividing two equations
gives equation 8. The second part a

2
1

a
3
1
=

a
2
2

a
3
2

can be proven as
following. Because both parts are linear, it can be shown
that the extension of the two curves corresponding to the
bottom part of the image (the dashed lines) intersect at
a = 0 axis (if linearity is not met, they do not intersect
on a = 0 axis). Therefore, it can be shown that a

2
1

a
3
1
=

a
2
2

a
3
2

holds exploiting similarity relationships between the six
triangles generated in the displacement-depth curve. If lin-
earity is not held, neither part of equation 8 holds.

(d) Linear, inhomogeneous, non-uniform stress. Since the
tissue is linear, this case can be proven by superposition
using cases (b) and (c).

(e) Non-linear, homogeneous, uniform stress. The proof is
the same as case (a) where linearity was not used.

Our analysis in (c) and (d) can be simply extended to an inho-
mogeneous medium with n homogeneous parts, which is a good
approximation for most inhomogeneous tissues. Although we
assumed only axial displacement and strain, equation 8 can be
similarly proven for 2D strain and stress in the above five cases.
For the remaining 8 − 5 = 3 cases equation 8 does not hold
even in the 1D case. In addition, other simplifications such
as assuming strain and stress to be scalars (rather than ten-
sors), neglecting anisotropic behavior of tissue, assuming that
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Figure 3: Five cases for which equation 8 holds (i.e. different strain or dis-
placement images are simply scaled version of each other). s, �, a and z are
respectively stress, strain, axial displacement and axial direction as before. Re-
fer to the text for details.

the pressure profile does not change from I2 to I3, and biolog-
ical motions inside the living tissue limit the scope of equa-
tion 8. However many tissue types (linear or nonlinear, homo-
geneous or inhomogeneous and isotropic or anisotropic) com-
bined with any applied pressure can be locally approximated
with one of the above cases. Therefore, we impose the addi-
tional constraint that the ratio between two displacement fields

should have limited spatial variations (instead of the more rig-
orous constraint that it should be spatially invariant). Let ηi

(which has small spatial variations) be the scaling factor at each
sample i: a

3
i
= ηia

2
i
. In the 2D case, the scale factor is ηi where

d3
i
= ηi. ∗ d2

i
where .∗ denotes element-wise multiplication3.

In the next Section, we present the algorithm that utilizes this
constraint.

3Axial and lateral strains are related through the Poisson’s ratio ν. For now
we simply assume they are independent and hence we use the point-wise oper-
ation. In Section 4 we take the relation between the axial and lateral strains into
account.
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which results in a better estimate for η(i,j),l. The lateral strain �l (the gradient of the
lateral displacement in the lateral direction) is simply ν�a where ν is an unknown
Poisson’s ratio. Since ν has a small dynamic range in soft tissue (Konofagou and
Ophir, 1998) and since the difference between the two displacement maps d2 and d3

is small, we can assume that ν does not vary from d2 to d3. Therefore, η(i,j),l =
η(i,j),a. This gives better estimate for η(i,j),l since axial displacement estimation is
more accurate (Rivaz et al., 2011a).

Calculating θ by maximizing its posterior probability. Knowing the value
of the latent variable η, the posterior probability of θ can be written as

Pr(θ | I1, I2, I3) =
Pr(I1, I2, I3 | θ, η) Pr(θ | η)

Pr(I1, I2, I3)
∝ Pr(I1, I2, I3 | θ, η) Pr(θ | η) (12)

where we have ignored the normalization denominator. The data term Pr(I1, I2, I3 |
θ, η) is the likelihood of θ parameters L(θ | I1, I2, I3, η). We set the prior term
Pr(θ | η) to a regularization R(θ | η). The MAP estimate for θ is

θMAP = argmax
θ

Pr(θ | I1, I2, I3). (13)

To be able to solve this equation analytically, we assume all the samples in the three
images are independent and identically distributed and that their noise is Gaussian
(equation 1). The likelihood of θ can therefore be simply written as the product of
Gaussian random variables:

L(θ | I1, I2, I3, η) =
m�

i=1

1√
2πσ2

exp(−(I1(xi)− I2(xi + d2
i ))

2

2σ2
) ·

m�

i=1

1√
2πσ2

exp(−(I1(xi)− I3(xi + d3
i ))

2

2σ2
) (14)

Note that we are calculating the displacements of the vertical columns (RF-line sam-
ples) simultaneously and therefore the multiplication is performed from 1 to m. d3

i

can be replaced by ηi. ∗ d2
i . Since the prior Pr(θ | η) and the likelihood function are

multiplied in the posterior probability (equation 12), we set the regularization to be
Gaussian so that the posterior probability can be easily minimized:

Pr(θ | η) =
m�

i=1

1

2π |A|1/2
exp[−(d2

i −d2
i−1)

TA(d2
i −d2

i−1)], A = diag(α(η,ϕ), β(η,ϕ))

(15)
where A is a 2x2 diagonal matrix as indicated, |·| denotes the determinant operator
and α and β are the axial and lateral regularization weights. α and β can be dependent
on η and also on the angle ϕ between a3

i,j and a2
i,j (Figure 5), but in this work we

12

Figure 4: The ElastMI algorithm. The reference image I1 corresponds to an
intermediate deformation between I2 and I3.

4. ElastMI: Elastography using Multiple Images

We have a set of p = 3 images Ik, k = 1 · · · 3, and would
like to calculate the two 2D displacement fields d2 = (a2, l2)
and d3 = (a3, l3) as described in the beginning of Section 2. We
assume d3 = η. ∗ d2 where η = (ηa, ηl) and ηa and ηl are the
ratios between respectively the axial and lateral displacement
images. Following the discussion in Section 3, d2 and d3 have
to result in strain values of less than 5% so that the tissue can
be approximately linear. In a freehand palpation elastography
setup with ultrasound acquisition rate of 20 fps or more, taking
three consecutive images as I2, I1, I3 guarantees this.

Let θ contain all the displacement unknowns d2 and d3. If
we know η, it is relatively easy to estimate θ by maximizing its
posterior probability. On the other hand, it is easy to estimate
η if we have θ. Since we know neither, we iterate between the
steps of estimating θ and η using an Expectation Maximization
(EM) framework. Our proposed algorithm, shown in Figure 4,
is as follows.

1. Find an estimate for θ by applying the 2D AM method (Ri-
vaz et al., 2011a) to two pairs of images (I1,I2) and (I1,I3)
independently.

2. Find an estimate for η using the calculated θ (details be-
low).

3. Using the estimated η, estimate θ by maximizing its pos-
terior probability (details below). Note that unlike the tra-
ditional EM where the likelihood of θ is maximized, we
maximize its posterior probability.

4. Iterate between 2 and 3 until convergence.

Different stopping criteria can be used in step 4, such as termi-
nating the iteration when the changes in the displacement field
or the cost function is smaller than a predefined threshold. We
found that the convergence of the ElastMI algorithm is fast and
iterating it only once always generates strain images with high
quality and CNR; we therefore use this simple criteria. Steps 2
and 3 are elaborated below.
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Figure 5: Calculating the scale factor η from two strain images a2 and a3. Left
shows how the calculation of η through equation 10 is not symmetric. It is
trivial to show that η�(i, j),a = 1/η(i, j),a holds if and only if ϕ = 0 or ϕ = π, a
condition that is not generally guaranteed. Right shows a symmetric approach
for calculating η where both vectors are projected into a2

i, j + a3
i, j. The ratio of

the two projections is a symmetric measure for η (equation 11).

Calculating η from θ using least squares: At each sample
(i, j) in the displacement field d2

i, j, i = 1 · · ·m, j = 1 · · · n take
a window of size mw × nw centered at the sample (mw and nw

are in the axial and lateral directions respectively and both are
odd numbers). Stack the axial and lateral components of d2

i, j

that are in the window in two vectors a2
i, j and l2

i, j, each of length
mw × nw. Similarly, generate a3

i, j and l3
i, j using d3. Note that

since both displacement fields d2
i, j and d3

i, j are calculated with
respect to samples on I1, the displacements correspond to the
same sample (i, j). We first calculate the axial component η(i, j),a
(η(i, j) = (η(i, j),a, η(i, j),l)). Discarding the spatial information in
a2

i, j and a3
i, j, we can average the two vectors into two scalers

ā2
i, j and ā3

i, j and simply calculate η(i, j),a = ā3
i, j/ā

2
i, j. However,

a more elegant way which also takes into account the spatial
information is by calculating the least squares solution to the
following over-determined problem

a2
i, jη(i, j),a = a3

i, j (9)

which results in

η(i, j),a =
a2T

i, j a3
i, j

a2T

i, j a2
i, j

(10)

where superscript T denotes transpose. This is however not
symmetric w.r.t. a2

i, j and a3
i, j: if we define η�(i, j),a to be the least

square solution to a3
i, jη
�
(i, j),a = a2

i, j, it is easy to show η�(i, j),a �
1/η(i, j),a (Figure 5). A method for symmetric calculation of η
is depicted in Figure 5 where both vectors are projected into
a2

i, j + a3
i, j. The ratio of the two projections is η, i.e.

η(i, j),a =
a3T

i, j (a2
i, j + a3

i, j)

a2T

i, j (a2
i, j + a3

i, j)
(11)

To calculate the ratio of the lateral displacement fields η(i, j),l,
we take into account possible lateral slip of the probe, which
results in a rigid-body-motion. The rigid-body-motion can be
simply calculated by averaging the lateral displacement in d2

i, j

and d3
i, j in the entire image i = 1 · · ·m, j = 1 · · · n, and then

calculating the difference between these two average lateral dis-
placements. The lateral scaling factor η(i, j),l can be calculated
using an equation similar to 11 where the axial displacement

ai, j is replaced with the lateral displacements li, j. However, we
use the following approach which results in a better estimate
for η(i, j),l. The lateral strain �l (the gradient of the lateral dis-
placement in the lateral direction) is simply ν�a where ν is an
unknown Poisson’s ratio. Since ν has a small dynamic range
in soft tissue (Konofagou and Ophir, 1998) and since the dif-
ference between the two displacement maps d2 and d3 is small,
we can assume that ν does not vary from d2 to d3. Therefore,
η(i, j),l = η(i, j),a. This gives better estimate for η(i, j),l since axial
displacement estimation is more accurate (Rivaz et al., 2011a).

Calculating θ by maximizing its posterior probability.
Knowing the value of the latent variable η, the posterior proba-
bility of θ can be written as

Pr(θ | I1, I2, I3) ∝ Pr(I1, I2, I3 | θ, η) Pr(θ | η) (12)

where we have ignored the normalization denominator. The
data term Pr(I1, I2, I3 | θ, η) is the likelihood of θ parameters
L(θ | I1, I2, I3, η). We set the prior term Pr(θ | η) to a regulariza-
tion R(θ | η). The MAP estimate for θ is

θMAP = arg max
θ

Pr(θ | I1, I2, I3). (13)

To be able to solve this equation analytically, we assume all
the samples in the three images are independent and identically
distributed and that their noise is Gaussian (equation 1). The
likelihood of θ can therefore be simply written as the product
of Gaussian random variables:

L(θ | I1, I2, I3, η) =
m�

i=1

1√
2πσ2

exp(−
(I1(xi) − I2(xi + d2

i
))2

2σ2 )·

m�

i=1

1√
2πσ2

exp(−
(I1(xi) − I3(xi + d3

i
))2

2σ2 ) (14)

Note that we are calculating the displacements of the vertical
columns (RF-line samples) simultaneously and therefore the
multiplication is performed from 1 to m. d3

i
can be replaced

by ηi. ∗ d2
i
. Since the prior Pr(θ | η) and the likelihood function

are multiplied in the posterior probability (equation 12), we set
the regularization to be Gaussian so that the posterior probabil-
ity can be easily minimized:

Pr(θ | η) =
m�

i=1

1
2π |A|1/2

exp[−(d2
i
− d2

i−1)T
A(d2

i
− d2

i−1)],

A = diag(α(η, ϕ), β(η, ϕ)) (15)

where A is a 2x2 diagonal matrix as indicated, |·| denotes the
determinant operator and α and β are the axial and lateral regu-
larization weights. α and β can be dependent on η and also on
the angle ϕ between a3

i, j and a2
i, j (Figure 5), but in this work we

simply set them to constant values. Inserting equations 14 and
15 into equation 12 and taking its log followed by negation, we
arrive at the cost function

C(θ) = − log Pr(θ | I1, I2, I3) =
m�

i=1

(I1(xi) − I2(xi + d2
i
))2+

6



m�

i=1

(I1(xi)−I3(xi+ηi.∗d2
i
))2+

m�

i=1

(d2
i
−d2

i−1)T
A(d2

i
−d2

i−1)+ f (A, σ2)

(16)
where f (A, σ2) contains all the terms that do not have d and
therefore can be ignored in finding the optimum d value. We
can now linearize I2(xi + d2

i
) and I3(xi + ηi. ∗ d2

i
) respectively

around xi + dAM

i
and xi + ηi. ∗ dAM

i
where dAM

i
is an estimate

value for d2
i
, known by comparing I1 and I2 using 2D AM. This

approach, however, is not symmetric and does not take d3 into
account as the initial estimate (although d3 is used to estimate
η). A symmetric initial estimate for d2

i
and d3

i
is

d̂2
i
=
ηi,ad2

i
+ d3

i

2ηi,a
, d̂3

i
=
ηi,ad2

i
+ d3

i

2
= ηi,ad̂2

i
. (17)

Note that we have only used ηi,a since we have assumed ηi,l =
ηi,a. We have also dropped the subscript j since the cost func-
tion C is defined for a specific A-line at each time. Tay-
lor expansion can now be used to linearize I2(xi + d2

i
) and

I3(xi + ηi. ∗ d2
i
) in equation 16 respectively around d̂2

i
around

d̂3
i

:

C(θ) =
m�

i=1

�
I1(xi) − I2(xi + d̂2

i
) − ∆d2T

i
∇I2(xi + d̂2

i
)
�2

+

m�

i=1

�
I1(xi) − I3(xi + ηi,ad̂2

i
) − ηi,a∆d2T

i
∇I3(xi + ηi,ad̂2

i
)
�2

+

m�

i=1

(d2
i
− d2

i−1)T
A(d2

i
− d2

i−1) + f (A, σ2)

(18)

where ∆d2
i
= d2

i
− d̂2

i
. Setting the derivative of C w.r.t. the

axial (∆a
2
i
= ∆d2

i,a) and lateral (∆l
2
i
= ∆d2

i,l) components of ∆d2
i

for i = 1 · · ·m to zero and stacking the 2m unknowns in ∆d2 =�
∆a

2
1 ∆l

2
1 ∆a

2
2 ∆l

2
2 · · ·∆a

2
m
∆l

2
m

�T
and the 2m initial estimates in

d̂2 =
�
â

2
1 l̂

2
1 â

2
2 l̂

2
2 · · · â2

m
l̂
2
m

�T
we obtain the linear system of size

2m:
(I � +D)∆d2 = r −Dd̂2,

D =




α 0 −α 0 0 0 · · · 0
0 β 0 −β 0 0 · · · 0
−α 0 2α 0 −α 0 · · · 0
0 −β 0 2β 0 −β · · · 0
0 0 −α 0 2α 0 · · · 0
...

. . .

0 0 0 · · · −α 0 α 0
0 0 0 · · · 0 −β 0 β




, (19)

where I � is a symmetric tridiagonal matrix of size 2m × 2m

with 2 × 2 matrices I� in its diagonal:

I � = diag(I�2(1) · · · I�2(m)),

I�2(i) =
�

I
�
2,a

2 + ηi,a
2
I
�
3,a

2
I
�
2,aI
�
2,l + ηi,aηi,lI

�
3,aI
�
3,l

I
�
2,aI
�
2,l + ηi,aηi,lI

�
3,aI
�
3,l I

�
2,l

2 + ηi,l
2
I
�
3,l

2

�

(20)
where I

�
2 and I

�
3 are calculated respectively at (xi + d̂2

i
) and at

(xi + ηi. ∗ d̂2
i
), superscript � indicates derivative and subscript a

and l determine whether the derivation is in the axial or lateral
direction, and r is a vector of length 2m with elements:

i odd : ri =I
�
2,a(xi + d̂2

i
)
�
I1(xi) − I2(xi + d̂2

i
)
�
+

ηi. ∗ I
�
3,a(xi + ηi. ∗ d̂2

i
)
�
I1(xi) − I3(xi + ηi. ∗ d̂2

i
)
�

i even : ri =I
�
2,l(xi + d̂2

i
)
�
I1(xi) − I2(xi + d̂2

i
)
�
+

ηi. ∗ I
�
3,l(xi + ηi. ∗ d̂2

i
)
�
I1(xi) − I3(xi + ηi. ∗ d̂2

i
)
�

(21)

The inverse gradient estimation method Rivaz et al. (2011a) can
be used to make the method more computationally efficient: all
the derivatives of I2 at (xi+ d̂2

i
) and derivatives of I3 at (xi+ηi.∗

d̂2
i
) will be simply replaced with the derivatives of I1 at xi. With

this modification, equation 20 becomes

I�2(i) =



(1 + ηi,a
2)I�1,a

2 (1 + ηi,aηi,l)I�1,aI
�
1,l

(1 + ηi,aηi,l)I�1,aI
�
1,l (1 + ηi,l

2)I�1,l
2




and equation 21 becomes

i even : ri = I
�
1,a(xi)

�
I1(xi) − I2(xi + d̂2

i
)
�
+

ηi. ∗ I
�
1,a(xi)

�
I1(xi) − I3(xi + ηi. ∗ d̂2

i
)
�

i odd : ri = I
�
1,l(xi)

�
I1(xi) − I2(xi + d̂2

i
)
�
+

ηi. ∗ I
�
1,l(xi)

�
I1(xi) − I3(xi + ηi. ∗ d̂2

i
)
�
(22)

We minimize the effect of outliers via iterative reweighted least
squares (IRLS) by giving a small weight to the outliers. Each
image pair in equation 18 is checked independently, i.e. for the
same sample i, two different weights w12,i and w13,i are used:

C(θ) =
m�

i=1

w12,i
�
I1(xi) − I2(xi + d̂2

i
) − ∆d2T

i
∇I2(xi + d̂2

i
)
�2

+

m�

i=1

w13,i
�
I1(xi) − I3(xi + ηi,ad̂2

i
) − ηi,a∆d2T

i
∇I3(xi + ηi,ad̂2

i
)
�2

+

m�

i=1

(d2
i
− d2

i−1)T
A(d2

i
− d2

i−1) + f (A, σ2)

(23)

where w12 and w13 are Huber (Hager and Belhumeur, 1998;
Huber, 1997) weights and are calculated as:

w12,i = w(I1(xi) − I2(xi + d̂2
i
))

w13,i = w(I1(xi) − I3(xi + ηi,ad̂2
i
))

w(ri) =

�
1 |ri| < T

T

|ri | |ri| > T
(24)

where T is a tunable parameter which determines the residual
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level for which the sample can be treated as outlier. A small T

will treat many samples as outliers. With these new weights,
equation 19 still holds with the following modifications:

I�2(i) =



(w12,i + w13,iηi,a
2)I�1,a

2 (w12,i + w13,iηi,aηi,l)I�1,aI
�
1,l

(w12,i + w13,iηi,aηi,l)I�1,aI
�
1,l (w12,i + w13,iηi,l

2)I�1,l
2




(25)
and equation 21 becomes

i even : ri =w12,iI
�
1,a(xi)

�
I1(xi) − I2(xi + d̂2

i
)
�
+

w13,iηi. ∗ I
�
1,a(xi)

�
I1(xi) − I3(xi + ηi. ∗ d̂2

i
)
�

i odd : ri =w12,iI
�
1,l(xi)

�
I1(xi) − I2(xi + d̂2

i
)
�
+

w13,iηi. ∗ I
�
1,l(xi)

�
I1(xi) − I3(xi + ηi. ∗ d̂2

i
)
�
.

(26)

To obtain a displacement field from three images using the
ElastMI algorithm, equation 19 -with parameters defined in
equations 25 and 26- is solved.

In the next two Sections we show that exploiting the third
image reduces displacement variance and eliminates ambiguity.

4.1. Reducing Variance in Displacement Estimation

Similar to Section 2, we assume the motion is only in the
axial direction. Adding the similarity metric between images 1
and 2 and 1 and 3 we have

CD(a2
1 · · · a2

m
, η1 · · · ηm) =

m�

i=1

�
I1(i) − I2(i + a

2
i
)
�2

+

m�

i=1

�
I1(i) − I3(i + ηia

2
i
)
�2

(27)

and using the noise model of equation 1 we arrive at

CD(a2
1 · · · a2

m
, η1 · · · ηm) =

m�

i=1

�
Ĩ(i) − Ĩ(i + a

2
i
− ã

2
i
) + n1(i) − n2(i + a

2
i
)
�2
+

m�

i=1

�
Ĩ(i) − Ĩ(i + ηia

2
i
− ηiã

2
i
) + n1(i) − n3(i + ηia

2
i
)
�2
.

(28)

The displacement can now be estimated by linearizing Ĩ(i+a
2
i
−

ã
2
i
) and Ĩ(i + ηia

2
i
− ηiã

2
i
) around i and minimizing CD:

a
2
i
= ã

2
i
−
�
Ĩ
�
a
(i)
�−1 −(ηi + 1)n1(i) + n2(i + a

3
i
) + ηin3(i + a

3
i
)

η2 + 1
(29)

and therefore

E[a2
i
] = ã

2
i

(30)

var[a2
i
] = σ2

�
Ĩ
�
a
(i)
�−2 (ηi + 1)2 + η2

i
+ 1

(η2
i
+ 1)2

. (31)

Let’s consider a case where ηi = −1, which indicates that the
deformation from I1 to I2 is equal to the negative of the defor-
mation from I1 to I3 (i.e. one is compression and the other one

xo

o

xi +d2
ixi xi +d2

i+ 

xi

I1(x)-n1

x

x

I2(x)-n2

x

o

xi + d2
ixi xi + (d2

i+ )
x

I3(x)-n3

xo

o

xi +d2
ixi xi +d2

i+ 

xi

I1(x)-n1

x

x

I2(x)-n2

* * *

* *

*

Figure 6: Eliminating ambiguity with three images. Left shows that it is impos-
sible with two images to differentiate true displacement from false displacement
when the underlying ultrasound image is periodic. The O and X marks can both
be the match of the O in the top image. Right shows the addition of the third
image (in the bottom) disambiguates the false displacement from the true dis-
placement. Here, the X cannot be the match anymore since in the third image
it corresponds to a different intensity value. η is approximately 1.5.

is extension) . Setting η = −1 we have var[a2
i
] = 0.5σ2

�
∇Ĩ

�−2
,

which is 1/4th of the var[a2
i
] when only two images are utilized

(equation 7). This reduction in the noise is a result of using
three images and also incorporating the prior that the displace-
ment fields at different instances of the tissue deformation are
not independent. Please note that in our formulation all images
are compared to image 1, so that ElastMI formulation can be ex-
tended to more than 3 images. However, in our implementation
we compare images with the middle image, i.e. we compare I1
with I2, and I2 with I3. Therefore, since the ultrasound frame
rate is much higher than the hand-held palpation frequency, ηi

is negative.
It is important to note that this equation does not provide an

exact comparison between ElastMI and AM. It assumes zero
regularization, while the regularization terms in both AM and
ElastMI methods significantly reduce the displacement estima-
tion variance.

By way of comparison, we propose a method in the Ap-
pendix for calculating two displacement fields from three ul-
trasound RF data frames. Unlike ElastMI, this method does not
impose constraints based on mechanics of materials. Instead,
it uses natural constraints among the three displacement fields
defined by the three images. We show that this method does not
decrease the variance of displacement estimation.

4.2. Eliminating Ambiguity in Displacement Estimation

Ambiguity has been reported before as a source of large er-
rors in the displacement estimation (Hall et al., 2003; Viola and
Walker, 2005). Periodic ultrasound patterns happen if the tis-
sue scatterers are organized regularly on a scale comparable to
ultrasound wavelength, such as the lobules of the liver and the
portal triads (Fellingham and Sommer, 1983; Varghese et al.,
1994). We show that an ambiguity in displacement estimation
using two images can be resolved with three images. Assume

8
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Figure 5: Calculating the scale factor η from two strain images a2 and a3. Left shows how the
calculation of η through equation 10 is not symmetric. It is trivial to show that η�(i,j),a = 1/η(i,j),a
holds if and only if ϕ = 0 or ϕ = π, a condition that is not generally guaranteed. Right shows a
symmetric approach for calculating η where both vectors are projected into a2i,j + a3i,j . The ratio of
the two projections is a symmetric measure for η (equation 11).
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the two projections is a symmetric measure for η (equation 11).
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Figure 8: Strain results of the simulated images of Figure 7. (a) to (c) show the axial and lateral strain images, with color-maps shown in (d). In (a) only F7 and F8
are used, while in (b) and (c) three frames of F5, F7 and F8 are utilized. (e) shows the ratio of the variance of the strain of different methods compared to 2D AM
with different η values. Accumulating strains and ElastMI both give lower than 1 ratios. ElastMI gives the smallest variance.

 != -3 

F1 F2 F3 F4 F5 F6 F7 F8 
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Figure 7: 8 simulated ultrasound image frames of a uniform phantom. The
percentile under each frame shows the value of the compression w.r.t. F1. We
set I1 and I2 to F7 and F8 as shown and one of F1 to F6 frames as I3, resulting
in different η values shown at the bottom. Note that we set the reference image
I1 such that its deformation is between I2 and I3.

that the ground truth image Ĩ of equation 1 has the same inten-
sity at i and at i + τ, i.e.

Ik(i) = Ĩ(i − ã
k

i
) + nk(i), k = 1, 2, 3, Ĩ(i) = Ĩ(i + τ) (32)

where nk(i) is Gaussian noise as defined in equation 1. Equation
3 now can be written as

CD =

m�

i=1

�
Ĩ(i) − Ĩ(i + τ + a

k

i
− ã

k

i
− τ) + n1(i) − nk(i + a

k

i
)
�2

(33)

where we have added and subtracted τ to the argument of Ĩ(i +
a

k

i
− ã

k

i
). Now it can be seen that CD has two local minima at

a
k

i
= ã

k

i
and at a

k

i
= ã

k

i
+ τ. In addition, the expected value of

CD at both local minima is equal:

E
�
CD(ãk

1 · · · ãk

m
)
�
= E
�
CD(ãk

1 + τ · · · ãk

m
+ τ)
�
= 2mσ2 (34)

where σ2 is the variance from equation 1. Therefore, the false
match ã

k

i
+ τ cannot be eliminated. Now assume that we have

three images I1, I2 and I3 for displacement estimation. Similar
to the case for two images, equation 28 can be modified by
adding and subtracting τ to i + a

k

i
− ã

k

i
:

CD(a2
1 · · · a2

m
, η1 · · · ηm) =

m�

i=1

�
Ĩ(i) − Ĩ(i + τ + a

2
i
− ã

2
i
− τ) + n1(i) − n2(i + a

2
i
)
�2
+

m�

i=1

�
Ĩ(i) − Ĩ(i + τ + ηa2

i
− ηã2

i
− τ) + n1(i) − n3(i + ηa2

i
)
�2

9



It can now be easily seen that CD has two local minima at a
2
i
=

ã
2
i

and at a
2
i
= ã

2
i
+ τ. However unlike the case for two images,

the expected value of CD at the incorrect match a
2
i
= ã

2
i
+ τ is

more than its expected value at a
2
i
= ã

2
i

because:

E
�
CD(ãk

1 · · · ãk

m
)
�
=4mσ2

E
�
CD(ãk

1 + τ · · · ãk

m
+ τ)
�
=4mσ2 + E




m�

i=1

(Ĩ(i) − Ĩ(i + ητ))2




In the other words, unlike the case for two images (equation 34),
the true match results in smaller average cost compared to the
false match. Figure 6 shows how with two periodic images it is
not possible to differentiate the true displacement (ã2, marked
with a circle) from the false displacement (ã2 + τ, marked with
a cross) since

�
I1(i) − I2(i + ã

2)
�2

and
�
I1(i) − I2(i + ã

2 + τ)
�2

are in average (i.e. ignoring the noise) equal. However, by
adding a third image it is possible to differentiate the true
displacement ã

2 from the false displacement ã
2 + τ since�

I1(i) − I2(i + ã
2)
�2
+
�
I1(i) − I3(i + ηiã

2)
�2

is in average smaller

than
�
I1(i) − I2(i + ã

2 + τ)
�2
+
�
I1(i) − I3(i + ηi(ã2 + τ))

�2
.

5. Results

We use data from simulation, phantom experiments and pa-
tient trials to validate the performance of the ElastMI algorithm.
All the ElastMI results are obtained using equation 19 with pa-
rameters defined in equations 25 and 26. The ElastMI algorithm
is currently implemented in Matlab mex functions and runs in
real-time on a P4 3.6GHz single core processor. In (Rivaz et al.,
2011a), we proposed to estimate the strain from the displace-
ment as following: we first applied a least square filtering in
the axial direction to find an estimate for the strain. We then
applied a Kalman filter in the lateral direction to remove the
noise, while preventing blurring. We use the same technique
here, with 50 samples in the axial direction to perform the least
square fitting.

We compare ElastMI against the 2D AM strain and accu-
mulated strain images. Two approaches are usually taken to
utilize multiple images: (1) Displacements are accumulated to
increase the displacement amplitudes, i.e. the Lagrangian par-
ticle tracking (e.g. for cardiac strain imaging over the cardiac
cycle (Shi et al., 2008; Ma and Varghese, 2012)), and (2) strain
images are averaged to reduce noise. In Lagrangian particle
tracking, one should note that the location of a particle keeps
changing in the image sequence, and therefore appropriate dis-
placements must be accumulated. In ElastMI, both displace-
ments are calculated with respect to the one reference image,
i.e. I1. Therefore, we do not need to perform any Lagrangian
tracking and the displacements are not accumulated in ElastMI.

In all our results, we map the strain images of 2D AM, accu-
mulated strain and ElastMI to the same range, so that they can
be easily compared.
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Figure 5: Calculating the scale factor η from two strain images a2 and a3. Left shows how the
calculation of η through equation 10 is not symmetric. It is trivial to show that η�(i,j),a = 1/η(i,j),a
holds if and only if ϕ = 0 or ϕ = π, a condition that is not generally guaranteed. Right shows a
symmetric approach for calculating η where both vectors are projected into a2i,j + a3i,j . The ratio of
the two projections is a symmetric measure for η (equation 11).

Steps 2 and 3 are elaborated below.
Calculating η from θ using least squares: At each sample (i, j) in the dis-

placement field d2
i,j, i = 1 · · ·m, j = 1 · · ·n take a window of size mw × nw centered

at the sample (mw and nw are in the axial and lateral directions respectively and
both are odd numbers). Stack the axial and lateral components of d2

i,j that are in
the window in two vectors a2

i,j and l2i,j, each of length mw × nw. Similarly, gener-
ate a3

i,j and l3i,j using d3. Note that since both displacement fields d2
i,j and d3

i,j are
calculated with respect to samples on I1, the displacements correspond to the same
sample (i, j). We first calculate the axial component η(i,j),a (η(i,j) = (η(i,j),a, η(i,j),l)).
Discarding the spatial information in a2

i,j and a3
i,j, we can average the two vectors

into two scalers ā2
i,j and ā3

i,j and simply calculate η(i,j),a = ā3
i,j/ā

2
i,j. However, a more

elegant way which also takes into account the spatial information is by calculating
the least squares solution to the following over-determined problem

a2
i,jη(i,j),a = a3

i,j (9)

which results in

η(i,j),a =
a2T
i,j a

3
i,j

a2T
i,j a

2
i,j

(10)

where superscript T denotes transpose. This is however not symmetric w.r.t. a2
i,j

and a3
i,j: if we define η�(i,j),a to be the least square solution to a3

i,jη
�
(i,j),a = a2

i,j, it is
easy to show η�(i,j),a �= 1/η(i,j),a (Figure 5). A method for symmetric calculation of η
is depicted in Figure 5 where both vectors are projected into a2

i,j + a3
i,j. The ratio of

the two projections is η, i.e.

η(i,j),a =
a3T
i,j (a

2
i,j + a3

i,j)

a2T
i,j (a

2
i,j + a3

i,j)
(11)
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Figure 5: Calculating the scale factor η from two strain images a2 and a3. Left shows how the
calculation of η through equation 10 is not symmetric. It is trivial to show that η�(i,j),a = 1/η(i,j),a
holds if and only if ϕ = 0 or ϕ = π, a condition that is not generally guaranteed. Right shows a
symmetric approach for calculating η where both vectors are projected into a2i,j + a3i,j . The ratio of
the two projections is a symmetric measure for η (equation 11).

Steps 2 and 3 are elaborated below.
Calculating η from θ using least squares: At each sample (i, j) in the dis-

placement field d2
i,j, i = 1 · · ·m, j = 1 · · ·n take a window of size mw × nw centered

at the sample (mw and nw are in the axial and lateral directions respectively and
both are odd numbers). Stack the axial and lateral components of d2

i,j that are in
the window in two vectors a2

i,j and l2i,j, each of length mw × nw. Similarly, gener-
ate a3

i,j and l3i,j using d3. Note that since both displacement fields d2
i,j and d3

i,j are
calculated with respect to samples on I1, the displacements correspond to the same
sample (i, j). We first calculate the axial component η(i,j),a (η(i,j) = (η(i,j),a, η(i,j),l)).
Discarding the spatial information in a2

i,j and a3
i,j, we can average the two vectors

into two scalers ā2
i,j and ā3

i,j and simply calculate η(i,j),a = ā3
i,j/ā

2
i,j. However, a more

elegant way which also takes into account the spatial information is by calculating
the least squares solution to the following over-determined problem

a2
i,jη(i,j),a = a3

i,j (9)

which results in

η(i,j),a =
a2T
i,j a

3
i,j

a2T
i,j a

2
i,j

(10)

where superscript T denotes transpose. This is however not symmetric w.r.t. a2
i,j

and a3
i,j: if we define η�(i,j),a to be the least square solution to a3

i,jη
�
(i,j),a = a2

i,j, it is
easy to show η�(i,j),a �= 1/η(i,j),a (Figure 5). A method for symmetric calculation of η
is depicted in Figure 5 where both vectors are projected into a2

i,j + a3
i,j. The ratio of

the two projections is η, i.e.

η(i,j),a =
a3T
i,j (a

2
i,j + a3

i,j)

a2T
i,j (a

2
i,j + a3

i,j)
(11)

11

(b) lateral strain

Figure 9: Box plot of the variance of strain accumulation and ElastMI, com-
pared to 2D AM. A ratio of smaller than 1 indicates a reduction in the variance
achieved with using 3 frames.

5.1. Simulation Results

Field II (Jensen, 1996) and ABAQUS (Providence, RI) soft-
ware are used for ultrasound simulation and for finite element
simulation. The specifications of the ultrasound probe and the
uniform phantom are in Rivaz et al. (2011a). 8 ultrasound im-
age frames are simulated at different compression levels from
0% to 4%, as shown in Figure 7. We set frame F7 as I1 and
frame F8 as I2 as shown in the figure. I3 is set to one of the
other frames, resulting in different η values shown in the bot-
tom of Figure 7.

The axial and lateral strain images obtained from F7 and F8
using 2D AM are shown in Figure 8 (a). Using the three frames
of F5, F7 and F8, we calculate strains between consecutive
frames, add the strains, and divide it by two to have a 1% strain
image similar to (a). The result is in (b). The ElastMI results us-
ing the same three frames is shown in (c). Note the SNR values
shown on top of each strain image, and how it increases from
2D AM to accumulated strain to ElastMI. The axial and lateral
strains in (a) to (c) have the same intensity scale (as shown in
(d)) to ease comparison.

We repeat this experiment by setting I3 to frames F1 through
F6, and compute the ratio of the noise compared to the 2D AM
strain. The result is shown in Figure 8 (e). Both ElastMI and
accumulation of strain decrease the variance. However, this re-
duction is significantly more in ElastMI because it incorporates
a powerful physical constraint into its cost function and consid-
ers all three images to estimate the displacement estimates.

Finally, we generate 10 different realizations of frame F1 in
Figure 7 with 10 different simulated phantoms, and compress
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Figure 10: Axial and lateral strain images of the phantom with the target and background windows (see Table 1 for SNR and CNR values). All axes are in mm.
The hard lesion is spherical and has a diameter of 1 cm. The axial and lateral strain scales are identical for all images and are shown in (a): the maximum axial and
lateral strains are respectively 7% and 2%. The difference between different methods is most visible at a 2x zoom.

each phantom to obtain 10 instances of frames F3, F5, F7 and
F8. We then repeat the experiment of Figure 8 (e) for each
phantom. Figure 9 shows the results. Please note that we do
not perform Lagrangian speckle tracking; we rather average the
strain images to get the accumulated strain values. We see that
using 3 images, both strain accumulation and ElastMI result in
a reduction in the variance. Also, the variability in the lateral
strain results in (b) is generally more than that of the axial strain
images in (a). This can be attributed to the lower resolution in
the lateral direction, and the lack of phase information in this
direction. In both axial and lateral strains, ElastMI improves
the results of strain accumulation by a statistically significant
amount (p < 0.00002 for paired t-tests). This improvement is
mainly due to imposing the physics-based prior in ElastMI.

5.2. Phantom Results

RF data is acquired from an Antares Siemens system (Is-
saquah, WA) at the center frequency of 6.67 MHz with a VF10-
5 linear array at a sampling rate of 40 MHz. An elastography
phantom (CIRS elastography phantom, Norfolk, VA) is com-
pressed axially in two steps using a linear stage, each step 0.1 in.
The Young’s elasticity modulus of the background and the le-
sion under compression are respectively 33 kPa and 56 kPa.
Three RF frames are acquired corresponding to before com-
pression (F1), after the first compression step (F2) and after the
second compression step (F3). I1, I2 and I3 are respectively set
to F2, F1 and F3. Two displacement maps, one between F1
and F2, and the second between F2 and F3 are estimated with
2D AM. They are then added to give the F1 to F3 displacement
map. The unitless metrics signal to noise ratio (SNR) and con-

trast to noise ratio (CNR) are calculated to compare 2D AM,
accumulated and ElastMI strains:

CNR =
C

N
=

�
2(s̄b − s̄t)2

σ2
b
+ σ2

t

, SNR =
s̄

σ
(35)

where s̄t and s̄b are the spatial strain average of the target and
background, σ2

t
and σ2

b
are the spatial strain variance of the

target and background, and s̄ and σ are the spatial average and
variance of a window in the strain image respectively. Figure 10
shows the axial and lateral strain images along with the target
and background windows used for SNR and CNR calculation.
The SNR is only calculated for the background window. The
results are in Table 1. In comparison with 2D AM, both accu-
mulating strain and ElastMI improve the SNR and CNR. How-
ever, the improvement of ElastMI is significantly more which is
due to the utilization of our novel mechanical prior and the EM
optimization technique.

Using the same ultrasound machine and probe, we collect
RF data from freehand palpation of a CIRS breast elastography
phantom (CIRS, Norfolk, VA). The lesion is three times stiffer
than the background. We select 10 set of ultrasound frames
with 3 frames per set. We then set I1 to the image with inter-
mediate compression, and I2 and I3 to maximum and minimum
compression. In each set, we first compute the 2D AM strains
between I1 and I2. We then use all the three frames to compute
accumulated and ElastMI strains, and compute the contrast to
noise ratio between the lesion and background in each set. Fig-
ure 11 shows the results. The improvement of ElastMI over
both 2D AM and strain accumulation is statistically significant
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Table 1: The SNR and CNR of the strain images of Figure 10. The improvement % is w.r.t. 2D AM. The SNR is calculated for the background window. For
B-mode, we calculate two values: one for the top (vertical) and another for the left (horizontal) background windows. Maximum values are in bold font.

B-mode 2D AM Accumulation ElastMI
Vert. Horiz. Axial Lateral Axial Lateral Axial Lateral

SNR 2.6 2.9 11.1 6.0 12.0 6.3 14.9 6.6
SNR improv. % - - 0 0 8 5 34 10

CNR 0.2 0.5 8.5 3.0 8.6 3.1 11.1 3.4
CNR improv. % - - 0 0 3 5 31 13

2D AM accum. ElastMI
4

5

6

7

8

C
N

R

Figure 11: The CNR values of the lesion in axial strain images computed over
10 sets of ultrasound frames.

with p-values of paired t-test less than 0.002.

5.3. Clinical Study

RF data is acquired from ablation therapy of three patients
with liver cancer using an Antares Siemens system (Issaquah,
WA) ultrasound machine. The patients underwent open surgical
radiofrequency (RF) thermal ablation for primary or secondary
liver cancer. All patients enrolled in the study had unresectable
disease and were candidates for RF ablation following review
at our institutional multidisciplinary conference. Patients with
cirrhosis or suboptimal tumor location were excluded from the
study. All patients provided informed consent as part of the
protocol, which was approved by the institutional review board.
The RF data we acquired is as follows: for the first patient only
after ablation, for the second patient before and after ablation,
and for the third patient before, during and after ablation. A
VF10-5 linear array at the center frequency of 6.67 MHz with
a sampling rate of 40 MHz is used for RF data acquisition. The
ablation is administered using the RITA Model 1500 XRF gen-
erator (Rita Medical Systems, Fremont, CA). Tissue is simply
compressed freehand at a frequency of approximately 1 com-
pression per 2 sec with the ultrasound probe without any at-
tachment and the strain images are generated offline.

The strain-stress curve of liver is approximately linear for a
large strain range (Yeh et al., 2002), and therefore, the assump-
tion that the tissue should remain linear in the three images of
ElastMI is comfortably met. In addition, higher graded fibrotic
liver tissue is about 4 times stiffer than lower graded fibrotic
tissue (DeWall et al., 2012b), and hence, elastography imaging
can potentially be used to estimate the fibrotic grade.

The strain images obtained with 2D AM, accumulation of
consecutive strains and the ElastMI algorithm are shown in Fig-
ures 12, 13 and 14. Images before ablation show the tumor.
Images corresponding to during ablation (second row, Figure
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Figure 12: Strain images of the 1st
in-vivo patient trial after ablation. The ther-

mal lesions is delineated and pointed to by an arrow. The lateral strain images
does not immediately carry anatomical information and will not be shown here-
after. All axes in mm. See also Table 2.

14) are acquired approximately 3 min after start of the ablation
while the ablation device is temporarily shut down, but remains
in tissue, for ultrasound data acquisition, but is still in the liver
tissue. The prongs of the ablation probe are visible in the US
image of the second row and are pointed to by blue arrows.
Images after ablation show the ablated lesion and are acquired
approximately 3 min after the ablation device is retracted from
the tissue.

The severe attenuation in the B-mode image of Figure 12 has
not degraded the strain images. The region with low strain in
Figure 14 (d) - (f) is caused by both ablation and by the ab-
lation probe’s prongs holding the tissue, as also suggested by
Varghese et al. (2004).

CNR values are calculated between target and background
windows, each of size 10 mm × 10 mm. The target window
is inside the tumor (before ablation) or the ablation lesion, and
the background window is outside. Table 2 shows the results.
ElastMI significantly improves all the CNR values. The aver-
age values for before and after ablation are shown in the last
row. The average CNR over all values of this table are 5.7 for
2D AM, 5.7 for accumulating strains, and 7.3 for ElastMI. The
improvements of ElastMI over both 2D AM and strain accumu-
lation are statistically significant, with paired t-test p-values of
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Figure 13: Strain images of the 2nd
in-vivo patient trial corresponding to before and after ablation. The tumor in the first row and the ablation lesion in the second

row are pointed to by arrows. All axes in mm. See also Table 2.

Table 2: The CNR of the strain images of Figures 12, 13 and 14. P1, P2 and P3 respectively correspond to patients 1, 2 and 3. Maximum values are in bold font.

Before ablation During ablation After ablation
2D AM Accum. ElastMI 2D AM Accum. ElastMI 2D AM Accum. ElastMI

P1 - - - - - - 4.2 4.9 5.3
P2 12.2 11.8 15.3 - - - 2.7 2.4 3.5
P3 8.2 7.7 9.2 1.9 2.4 3.8 5.1 5.0 6.8

average 10.2 9.8 12.3 1.9 2.4 3.8 4.0 4.1 5.2

respectively 0.006 and 0.012.
Accumulating strain images generally improves the results.

However, it tends to blurs sharp boundaries and lower the con-
trast in our experience; the tumor/ablation lesion is significantly
“less dark” in Figures 12 and 13 and 12. This is an inherent re-
sult of averaging/accumulating strain images. Another reason
lies in the fact that as we add consecutive strains, the chances
of having incorrect displacement estimates at any part of the
image increases. The ElastMI algorithm however utilizes addi-
tional physics-based priors and robust-to-outlier IRLS method
to solve for displacement estimation using three images simul-
taneously. We see that these features enable it to continue gen-
erating low noise and sharp elasticity images in the challenging
data of patient trials.

6. Discussions and Conclusion

In this work, we focused on utilizing three images to cal-
culate low variance displacement fields. We first derived con-

straints on variation of displacement fields with time using con-
cepts from mechanics of materials. We then proposed ElastMI,
an EM based algorithm that uses these constraints. We showed
that ElastMI outperforms our previous algorithm AM. We cor-
roborated these results using simulation, phantom and in-vivo

experiments.

The advantages of ElastMI over accumulating displacement
fields of the intermediate images are as follows. First, by dis-
placement estimation using two images only a fraction of the
available information is utilized, making tracking prone to sig-
nal decorrelation and false matches. ElastMI uses all the three
images in a group-wise scheme to find displacement fields. Sec-
ond, the physics-based prior substantially reduces the estima-
tion variance as shown formally and using simulation and ex-
perimental data. Finally, by accumulating displacement fields,
errors are accumulated. This is in fact a well known problem of
any sequential tracking or stereo system (Brown et al., 2003).
Its disadvantage, however, is that it is computationally more ex-
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Figure 13: CT image of the third patient acquired 3 weeks after ablation (intra-
operative images shown in Figure 12).

estimated displacement fields are in fact similar up to a scale factor, which is the ad-
ditional constraint that we derived in Section 3 and impose in the ElastMI algorithm.
ϕ ≈ ±π/2 indicates that the two displacements are not similar, meaning that either
one of the displacement estimates is incorrect or that the additional constraint is not
valid. Future work will exploit ϕ in the regularization term (equation 15).

Application of ElastMI to high-frame rate ultrasound elastography [55, 56] is an
avenue for future work. We will also extend the framework presented in this paper for
calculating the displacement field from three images to the more general case where
more than three images are utilized. Finally, direct calculation of the strain from the
ultrasound frames [32, 57] will also be incorporated into ElastMI.
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Appendix

We now show that the additional constraint of equation 8 is critical in reducing the
error in displacement estimation. Consider 3 images I1, I2 and I3 from the set of p
images (Figure A-1). Let d12, d23 and d31 be the displacement between I1, I2, between
I2, I3 and between I3, I1 (using the notation of the previous Section, d12 = d2 and
d31 = −d3). These three displacements are not independent since d12+d23+d31 = 0.
The axial component of this equation gives a12 + a23 + a31 = 0, which allows us to
replace a23 with a12 = a2 and a31 = −a3:
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Figure 14: Strain images of the 3rd
in-vivo patient trial corresponding to before (1st row), during (2nd row) and after (3rd row) ablation. All axes are in mm. The

tumor in the top row, and the ablation lesion in second and third row are pointed to by arrows. Four prongs of the ablation probe are visible in the US image of the
second row and are pointed to by arrows. CT is acquired 3 weeks after ablation. All axes in mm. See also Table 2.

pensive. In our implementation, ElastMI takes 0.2 sec to gener-
ate strain images of size 1000 × 100 on a single core 3.8 GHz
P4 CPU, compared to 0.04 sec of 2D AM and 0.08 sec for ac-
cumulating strains.

Both ElastMI and 2D AM assume displacement fields are
continuous. This assumption breaks for vascular strain imag-
ing where the two vessel walls can move in opposite directions
(Shi and Varghese, 2007; Shi et al., 2008). This issue also has
been addressed in model-based elasticity reconstruction prob-
lems by assigning soft and hard constraints (Le Floc’h et al.,
2009; Richards and Doyley, 2011). Therefore an interesting
avenue for future work would be to relax the displacement con-
tinuity in ElastMI for image regions where 2D AM predicts
high variability in the direction of displacements. Discontinu-
ity preserving ElastMI can then be used in noninvasive vascular

elastography applications (Maurice et al., 2004, 2007; Shi and
Varghese, 2007; Shi et al., 2008; Hansen et al., 2009; Mercure
et al., 2011; Zakaria et al., 2010; Korukonda and Doyley, 2012;
Korukonda et al., 2013).

Accumulating strains significantly outperforms 2D AM in
the simulation and phantom experiments. This improvement,
however, mostly diminishes in the patient trials. This is mainly
due to the fact that in the challenging freehand intra-operative
settings, it is hard to find three “good” frames for strain com-
putations. Therefore, one of the strain images can be noisy or
blurry, and adversely affect the accumulated strain. ElastMI,
however, does not suffer from this problem for two main rea-
sons. First, the additional prior, and second, simultaneous es-
timation of displacement fields from three images using robust
estimation methods.
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We proved that for simple additive Gaussian noise, ElastMI
significantly reduces the estimation noise. For ablation moni-
toring, however, the nature of the noise changes dramatically
both with time and location because of the gas bubbles. Never-
theless, our results on the patient data shows that ElastMI per-
forms well in the presence of such complex noise.

In the analysis of Section 3, we assumed quasi-static defor-
mation, so that the dynamics of the continuum can be ignored.
This assumption is generally valid for freehand palpation elas-
tography. In other methods of measuring tissue elastic proper-
ties where the excitation is dynamic (Parker et al., 2005; Green-
leaf et al., 2003), Kalman filters can be used to fuse the noisy
displacement estimates and tissue dynamics models.

For noise analysis, we assumed additive Gaussian noise,
which allowed us to analytically derive estimates for measure-
ment variance. More accurate techniques for motion estimation
have been proposed based on more realistic models of ultra-
sound noise (Insana et al., 2000; Maurice et al., 2007). In the
future, we will consider more realistic speckle statistics, such
as the models in Rivaz et al. (2007a,b, 2010).

As suggested by equation 15, the regularization can be a
function of the two estimated displacement estimations. For
example, ϕ ≈ 0 or ϕ ≈ π indicate that the two estimated dis-
placement fields are in fact similar up to a scale factor, which
is what we assume in this work. However, ϕ ≈ ±π/2 indicates
that the two displacements are not similar, meaning that either
one of the displacement estimates is incorrect or that the tissue
is highly nonlinear. Future work will exploit ϕ in the regular-
ization term (equation 15).

In the future, we will also extend the framework presented
in this paper for calculating the displacement field from three
images to the more general case where more than three images
are utilized. Finally, direct estimation of the strain from ultra-
sound frames (Brusseau et al., 2008) will also be incorporated
into ElastMI.
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Appendix

We now show that the additional constraint of equation 8 is
critical in reducing the error in displacement estimation. Con-
sider 3 images I1, I2 and I3 from the set of p images (Figure
A-1). Let d12, d23 and d31 be the displacement between I1, I2,
between I2, I3 and between I3, I1 (using the notation of the pre-
vious Section, d12 = d2 and d31 = −d3). These three displace-
ments are not independent since d12 + d23 + d31 = 0. The axial
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Figure A-1: Pairwise cost functions between 3 images.

component of this equation gives a12 + a23 + a31 = 0, which
allows us to replace a23 with a12 = a

2 and a31 = −a
3:
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where we have modified the data term of the cost function by
adding the intensity similarity between each two of the three
images. Note that this equation is for the displacements of any
3 images and the images need not be consecutive. Using the
noise model of equation 1 and linearizing I2 and I3 around i we
have
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3
i
) · Ĩ�
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will minimize CD. Setting
∂CD/∂a2
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= 0 and ∂CD/∂a3
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= 0 will result in a coupled 2-
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which are the same as equation 5. Interestingly, the solution of
the coupled linear system shows that a

2
i

does not depend on n3,
and similarly a

3
i

does not depend on n2. Therefore, the implicit
constraint of a12 + a23 + a31 = 0 will not reduce the noise in
the displacement estimation. In the other words, the third term
in the RHS of equation A-1, i.e.

�
m
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�
I2(i + a

2
i
) − I3(i + a

3
i
)
�2

will add no information to the cost function.
We have developed and implemented an algorithm that en-

forces the implicit constraint of this Appendix to calculate two
motion fields from three images. Our simulation and experi-
mental results showed that, compared to AM, this method has
negligible impact on bias, variance, SNR and CNR of the cal-
culated motion field and strain image as predicted by our Gaus-
sian noise model. We do not present these results here because
of space limitations.
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