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Abstract

Mutual information (MI) has been widely used as a similarity measure for rigid registration of multi-modal and uni-modal medi-
cal images. However, robust application of MI to deformable registration is challenging mainly because rich structural information,
which are critical cues for successful deformable registration, are not incorporated into MI. We propose a self-similarity weighted
graph-based implementation of α-mutual information (α-MI) for nonrigid image registration. We use a self-similarity measure
that uses local structural information and is invariant to rotation and to local affine intensity distortions, and therefore the new Self
Similarity α-MI (SeSaMI) metric inherits these properties and is robust against signal non-stationarity and intensity distortions.
We have used SeSaMI as the similarity measure in a regularized cost function with B-spline deformation field to achieve nonrigid
registration. Since the gradient of SeSaMI can be derived analytically, the cost function can be efficiently optimized using stochastic
gradient descent methods. We show that SeSaMI produces a robust and smooth cost function and outperforms the state of the art
statistical based similarity metrics in simulation and using data from image-guided neurosurgery.
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1. Intro

Image registration involves finding the transformation that
aligns one image to the second, and has numerous medical
applications in diagnosis and in image guided surgery/therapy.
The joint intensity histogram of two images, be they from dif-
ferent or the same modalities, is spread (i.e. the joint entropy
is high) when they are not aligned, and is compact (i.e. the
joint entropy is low) when the two images are aligned. There-
fore, mutual information (MI) (Wells et al. (1996); Maes et al.
(1997); Pluim et al. (2003)) and the overlap invariant normal-
ized MI (NMI) (Studholme et al. (1999)) have been proposed
and widely used for rigid registration of multi-modal images.

MI is not robust against spatially varying bias fields since
they result in different intensity relations between the two im-
ages at different locations. Therefore, Studholme et al. (2006)
and Loeckx et al. (2010) proposed respectively regional MI
(RMI) and conditional MI (CMI) where spatial information is
used as an extra channel for conditioning MI. This essentially
leads to summing MI calculated for regions of the images, in-
stead of globally estimating MI. Klein et al. (2008) proposed
localized MI (LMI) where samples are randomly selected from
regions in every iteration and convergence is achieved by using
stochastic optimization Klein et al. (2007, 2009). Zhuang et al.
(2011) proposed spatially encoded MI, which instead of giving
equal weights to all pixels in a region, hierarchically weights
pixel contributions based on their spatial location. These meth-
ods have shown to significantly improve the registration results
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in the presence of bias fields. Recently, Darkner and Sporring
(in press) provided a unifying framework for NMI and other
common similarity measures and shed more intuition towards
local histograms.

A second difficulty rises because MI does not directly take
into account local structures. Therefore, nonrigid registration,
which has considerably more degrees of freedom, can distort
local structures. Utilizing image gradients and their orienta-
tions was proposed by Pluim et al. (2000). Recently, De Nigris
et al. (2012) proposed a gradient orientation metric that adap-
tively controls the trade-off between smooth or accurate cost
functions. The HAMMER framework of Shen and Davatzikos
(2002) sets local geometric moment invariants as attribute vec-
tors of each voxel in the image. These attribute vectors are then
used to form a cost function, which is hierarchically optimized
to give the transformation parameters. Xue et al. (2004) later
used wavelet-based attributes as local morphological signatures
for each voxel. Recently, Ou et al. (2011) introduced Gabor at-
tributes which can be used for different imaging modalities and
tissue organs, and further utilizes mutual saliency to weight dif-
ferent voxels based on their local appearance. Taking a different
approach, Wachinger and Navab (2012) generated entropy im-
ages independently from each image by calculating entropy in
small patches around every pixel. They show that since dif-
ferent imaging modalities show the same tissue structure, their
entropy images are similar and therefore they can be registered
using monomodal registration. In addition to the entropy image
representation, they show that structural information of patches
can be encoded into a scalar value using manifold learning tech-
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niques. Performing the same technique on both images, they
again arrive at two representations (one for each image) which
can be registered using monomodal techniques.

A third problem with MI lies in the fact that the infinite di-
mensional joint and marginal probability distributions 1 are re-
quired to calculate the scalar parameter MI. Most MI estima-
tion methods (Wells et al. (1996); Maes et al. (1997); Pluim
et al. (2003)) substitute non-parametric density estimators, such
as Parzen windows, into the MI formulation, and are called
“plug-in” estimation in Beirlant et al. (1997). An inherit prob-
lem of these methods is due to the infinite dimension of the
unconstrained densities. Strict smoothness constraints or lower
dimensional parametrization must be enforced to estimate these
densities, which can cause significant bias in the estimate (Hero
et al., 2002). Graph-based entropy estimators (Hero et al., 2002;
Neemuchwala and Hero, 2005) have been proposed to directly
calculate entropy without the need for performing density esti-
mation. Therefore, these methods have faster asymptotic con-
vergence rate especially for non-smooth densities and high di-
mensional feature spaces (Hero et al., 2002). Two drawbacks
of these methods are their computational complexity and the
discontinuity of their gradient as the graph topology changes.

Towards developing a bias invariant similarity metric for
nonrigid registration that also takes into account structural in-
formation, we build on our previous work (Rivaz and Collins,
2012) to incorporate image self-similarity into MI formulation.
Self-similarity estimates the similarity of a patch in one of the
images to other patches in the same image, and attributes the
similarity to the pixels in the center of the patches. Based on
patches, self-similarity depends on local structures which are
ignored by MI. Buades et al. (2005) first proposed exploiting
repetitive regions (or patches) in the form of non local means for
image denoising. A recent comparative study of these methods
is provided in Buades et al. (2010). Self-similarity was later
used for object detection and image retrieval (Shechtman and
Irani (2007)), and it has since been used successfully in denois-
ing MR (Coupe et al. (2008); Manjon et al. (2012)) and US
images (Coupe et al. (2009)), and image segmentation (Coupe
et al. (2011)). Compared to our previous work (Rivaz and
Collins (2012)), we present significantly more details and in-
depth analysis of SeSaMI. We also provide extensive results for
validation and more analysis of the results.

Recently, Heinrich et al. (2011, 2012) proposed using self-
similarity for multimodal image registration. The similarity of
a pixel to its neighbors, calculated using sum of square differ-
ences (SSD), are attributed to the pixel as multi-dimensional
descriptors. These descriptors are calculated independently for
both images. The multi-modal image similarity is then defined
as the SSD of the descriptors of the two images.

Since self-similarity is calculated for pairs of points, it is
natural to perceive it in a graph representation where im-
age pixels are vertices and self-similarity is the weight of the

1The probability distributions are infinite dimensional if we assume image
intensities take real continuous values. However, since intensities of digital
images are discrete and finite, the probabilities distributions are finite, but still
very high dimensional.
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Figure 1: Corresponding pre-operative MR (top row) and intra-operative US
(bottom row) images of neurosurgery. A US volume is reconstructed from 2D
US slices using tracking data, and is then re-sliced in the shown directions. The
lateral ventricles, the boundaries of a tumor and sulci can be seen in both MR
and US. While local structures correspond, intensities are not related globally.

edges. Graph-based estimators of α-mutual information (α-
MI) similarity metric have recently been proposed for both
rigid (Neemuchwala and Hero (2005); Sabuncu and Ramadge
(2008); Kybic (2007); Kybic and Vnucko (2012)) and nonrigid
(Staring et al. (2009); Oubel et al. (2012)) registration applica-
tions. These methods have been shown to outperform the tradi-
tional “plug-in” entropy estimators for MI calculation. There-
fore, we choose to incorporate self-similarity into this registra-
tion framework.

We apply the method to register pre-operative magnetic res-
onance (MR) images to intra-operative ultrasound (US) im-
ages in the context of image-guided neurosurgery (IGNS). Pre-
vious work that registers US to other modalities is relatively
rare: Roche et al. (2001) used the correlation ratio (CR) be-
tween US and MR and MR gradient, Arbel et al. (2004) and
Mercier et al. (2012b) calculated a lookup table for mapping
US and MR intensities and used the monomodal registration of
Collins et al. (1999), Kuklisova-Murgasova et al. (2012) seg-
mented the MR volume using a probabilistic atlas, generated
a US-like volume from the segmented MR volume, and then
registered the US-like volume with the US volume using robust
monomodal block-matching techniques, Penney et al. (2004)
generated blood vessels probability maps from from US and
MR and registered these maps using cross correlation, Ji et al.
(2008) used NMI of US and MR, Zhang et al. (2011) used MI
of phase information to register US to MR, De Nigris et al.
(2012) optimized MI of gradient orientations to register US to
MR, Wein et al. (2013) assumed a linear relationship between
US intensities and MR intensities and gradient magnitudes, and
finally Heinrich et al. (2013) used the self-similarity context
along with a discrete optimization approach through block-wise
parametric transformation model with belief propagation.

Most of the aforementioned methods simulate US images
from the MR data as described. These methods cannot be read-
ily applied to IGNS due to the variety of pathologies that the
brain tissue might have, such as different grade gliomas. The
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appearance of these pathologies in MR and US are also highly
variable (Mercier et al., 2012b,a), adding to the difficulty. We
assume no a priori relationship between intensities but opt for
two non-parametric MI based methods for validating our re-
sults.

Figure 1 shows an example of the registered US and MR
images. The US images suffer from strong bias field due to
signal attenuation, caused by scattering (from smaller than US
wavelength inhomogeneities), specular reflection (from tissue
boundaries) and absorption (as heat). In addition, US beam
width varies significantly with depth, and therefore the same
tissue may look different at different depths. A final and im-
portant source of spatial inhomogeneities is the time gain com-
pensation (TGC) which is manually adjusted on US machines.
Hence, it is critical to exploit local structures.

Our algorithm only needs the self-similarity of one of the im-
ages. In most image guided applications, one of the images is
pre-operative, and therefore the self-similarity estimation can
be performed offline, resulting in a small increase in the on-
line computational complexity. In addition, the pre-operative
image is also usually of higher quality, making it a more attrac-
tive choice. We use a rotation invariant self-similarity metric
that is also robust to bias fields, and utilize it in a graph-based
α-MI method. We call our method the Self Similarity α-MI
(SeSaMI) algorithm. We show that SeSaMI outperforms LMI
and multi-feature α-MI in terms of producing a smooth dissim-
ilarity function and registration accuracy.

This paper is organized as following. We first formulate the
problem of image registration as an optimization problem, and
provide background information for two popular similarity met-
rics that we use in this work for comparisons. We then elaborate
on how we estimate self-similarity between patches. We ex-
plain a graph-based α-MI similarity metric, and then formulate
SeSaMI by incorporating self-similarity into it. We also show
how the derivative of SeSaMI can be efficiently estimated. We
finally show the results on simulation and patient data for vali-
dation.

2. Background

Registration of two images Im(x), I f (x): Ω ⊂ Rd → R can
be formulated as

µ̂ = arg min
µ

C, C = S (I f (x), Im(Tµ(x)) +
ωR

2
�∇µ�2 (1)

where I f (x) and Im(x) are respectively the fixed and moving im-
ages, S is a dissimilarity metric, ωR is a regularization penalty
weight, ∇ is the gradient operator and Tµ is the transformation
modeled by µ. We choose a free-form transformation parame-
terized by the location of cubic B-spline nodes. Therefore, µ is
a vector of the coordinates of all the nodes. The dissimilarity
metric S is the focus of this work. We now briefly elaborate two
similarity metrics that we have used for US to MR registration
as benchmarks for comparison.

Normalized Mutual Information (NMI). NMI is defined in

Studholme et al. (1999) as

NMI(I f , Im) =
H(I f ) + H(Im)

H(I f , Im)
(2)

where H(I f ) and H(Im) are the marginal entropies of the fixed
and moving images, and H(I f , Im) is their joint entropy. This
formulation is used by Ji et al. Ji et al. (2008) for US and MR
registration. A problem with NMI is that it assumes a global
statistical relationship between the images, an assumption that
can be violated for various reasons such as spatial inhomogene-
ity.

Local Mutual Information (LMI). To take spatial informa-
tion into account, a popular approach is to consider spatial loca-
tion as an additional channel and multiply intensities with spa-
tial kernels when calculating the MI (Studholme et al. (2006);
Klein et al. (2008); Loeckx et al. (2010); Zhuang et al. (2011)).
For comparison, we implement the LMI method (Klein et al.
(2008)) where these kernels are box filters. In the other words,
LMI is computed by summing MI over multiple local neighbor-
hoods:

LMI(I f , Im;Ω) =
1
N

�

i

MI(I f , Im;Ni) (3)

where Ni ⊂ Ω are spatial neighborhoods and N is the num-
ber of these neighboorhoods. Each neighborhood should be
large enough to contain enough information for MI estimation,
and small enough to allow local estimation of MI (Klein et al.
(2008)). Similar to (Klein et al. (2008)), we first randomly se-
lect a point in Ω and then select samples from a neighborhood
around that point, and repeat this for N points. Also, since
US echos are strong at tissue interfaces, they generally show
higher correlation with the gradient of MR. We therefore calcu-
late both NMI and LMI between US and the magnitude of the
gradient of the MR.

In the next section, we will present a method for calculat-
ing self-similarity as a metric that represents contextual infor-
mation. We will then incorporate this measure into our novel
multi-modal similarity metric.

3. Rotationally Invariant Self-Similarity Estimation

A small patch centered on a pixel of interest is usually con-
sidered for calculating self-similarity. SSD and normalized
cross correlation (NCC) of this patch to its neighboring patches
are good options for calculating self-similarity, since we are
dealing with one imaging modality. NCC is advantageous since
it is invariant to affine intensity distortions. However, neither
measure is rotation invariant. Grewenig et al. (2011) proposed
to calculate rotation angles and subsequently rotating patches
using interpolation to achieve rotation invariance. This method
is however computationally expensive and does not give good
results because of errors due to rotation angle computation and
due to interpolation. In this Section, we describe a rotation and
bias invariant metric in three steps: construction of histogram
descriptors, region selection and histogram comparison. Each
step is described below.
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Figure 2: Construction of the spin image histogram, the output of step 1. (a) is a T1 image from BrainWeb, with two circular patches of radius r = 4 pixels around
two nominal points. The zoomed image of the patch 1 is shown in (b), and the two descriptor histogram of the patches 1 and 2 in (c) and (d). The x y axes of the
histograms are respectively distance d and normalized intensity i. Since the two pixels belong to similar structures, their histograms in (c) & (d) are similar.

(a) a 31x31 neighborhood (b) Moran mask, r = 2 (c) Moran mask, r = 4

Figure 3: Image regions with structure calculated using Moran’s I, the output of step 2. Two different patch sizes are used as noted. The green parts will be masked
out in the next step.

Step 1: Constructing Histogram Descriptors. We first es-
timate a rotationally invariant 2D histogram descriptor for all
pixels; such a sample pixel (pointed to by a red arrow) at the
center of a circular patch with radius r = 4 pixels is shown in
Figure 2 left. We show 2D images for clarity; the arguments
are trivially extended to 3D images. The rectangle in the left
image represents a local neighborhood that the center pixel is
compared to, as will be explained in step 3 below. The axes of
the histogram are d, the normalized Euclidian distance of the
pixel from the center point, and i, the pixel’s normalized inten-
sity. d = 0 and d = 1 in the histogram respectively correspond
to the center pixel and to the pixels on the circle with radius
r = 4 pixels. Each patch is normalized independently of other
patches (i.e. intensities in all patches are mapped to the range [0
1]). Each pixel inside the patch contributes to the 2D histogram:
the histogram is constructed using a Gaussian Parzen window
of isotropic σ = 0.5; both distance d and intensity i are nor-
malized and therefore σ does not have a unit. In other words,
a pixel with distance d to the center and normalized intensity i
contributes the bin indexed by db and ib according to

exp

−

(i − ib)2

2σ2
i
− (d − db)2

2σ2
d


 (4)

where we always set σd = σi = 0.5. Since d is the distance
to the center (i.e. orientation is ignored), the 2D histogram de-
scriptor is rotation invariant. It is also invariant to affine changes
in the intensity because of the intensity normalization step. Two
histogram descriptors corresponding to the two marked points

are shown in Figure 2 right. The histogram descriptor is similar
to the spin image used in Lazebnik et al. (2005).

Step 2: Selecting Regions with Structure. Parts of the im-
age with little structure do not produce reliable self-similarity
measures. Similar to Andronache et al. (2008), we use Moran’s
I spatial autocorrelation coefficient to limit the self-similarity
estimation to parts with structure. The measure is derived from
the Pearson’s correlation coefficient. For an image patch with
intensities X = {xi, i = 1 · · ·N} and the mean value E(x) = x̄,
Moran’s I is

I =
N

�N
i, j wi j

.

�N
i, j wi, j(xi − x̄)(x j − x̄)
�N

i (xi − x̄)2

where W = wi j matrix represents the connectivity weights. It
can be a binary map or a decaying map based on the distance
between i and j. Since

�N
i (xi − x̄)2 = Nσ2, letting the z-value

zi = (xi − x̄)/σ allows us to give a more intuitive equation for
Moran’s I:

I =
1

�N
i, j wi j

.
N�

i

zi

N�

j

wi, jz j (5)

I varies between -1 to 1; values close to 0 translate to random
pattern and values close to 1 or -1 indicate presence of structure.
Let d(i, j) be the Euclidian distance between i and j. We simply
set W to

w(i, j) =
�

1/d(i, j) j � i
0 j = i (6)

We calculate the I coefficient for patches centered on all pix-
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els. We set the patch size to be the same as the one for con-
structing the histogram descriptors. We then select pixels of the
image whose absolute value of Moran’s I coefficient |I| is more
than the standard deviation of the |I|. Figure 3 shows the se-
lected pixels for two different patch sizes. In the next step, we
calculate self-similarity between pixels that are selected with
Moran’s I.

Step 3: Calculating Self-Similarity using Earth Mover’s
Distance (EMD). We now calculate self-similarity between
two pixels by comparing their 2D histogram descriptor. Most
histogram comparison metrics are bin-by-bin similarity metrics
where the bins with the same index are compared. Such meth-
ods include sum of L1 or L2 norms of differences, Kullback-
Leibler (KL) divergence and χ2 (chi-squared) test. A prob-
lem with such metrics is the following. Consider three his-
tograms H1 = {1, 0, 0, 0, 0}, H2 = {1/2, 1/2, 0, 0, 0} and H3 =
{1/2, 0, 0, 0, 1/2}. Such metrics will give the same distance be-
tween H1-H2 and H1-H3. However, H1 and H2 are more similar
because all of mass of H2 is in its first two bins, compared to
H1 which has all of its mass in the first bin, a difference which
can be caused by binning. Therefore, we use the Earth Mover’s
Distance (EMD) (Rubner et al., 2000; Ling and Okada, 2007)
which finds the minimum cost required to transform one his-
togram into another. The cost is the multiplication of the moved
mass of the bins and a weight, which depends on the bin in-
dices. EMD is computationally expensive because it needs to
optimize a transport cost function; we use EMD-L1 (Ling and
Okada, 2007), an efficient implementation of EMD where the
weight between two bins is their L1 distance. EMD reduces
quantization and binning problems associated with histograms,
and has been shown by Rubner et al. (2000) to outperform other
histogram comparison techniques.

Figure 4 left shows the EMD distance of all image pixels to
the central pixel. The distances are calculated for two different
patch radii r = 2 and r = 4. We empirically found that the
histogram sizes of 4 × 4 to 7 × 7 generate good results; given
the computational complexity, we use 4 × 4 histogram descrip-
tors throughout this work. Small values of the EMD distance
(darker pixels) mean smaller distances and represent more sim-
ilar regions. We however calculate the EMD distance only to
their local neighbors (the rectangle in Figure 2 left). Figure 4
right shows the local self-similarity to pixels that are selected by
the Moran’s I test. The left two images show that without pixel
selection with Moran’s I, patches that are not similar can get a
small EMD distance. Figure 5 shows the EMD distances com-
puted using the 3D volumetric images of the BrainWeb. Here,
the local patches are 3D spheres, while the local histogram de-
scriptors are 4×4, the same size as the histograms of 2D images.

We set the EMD distance between the center patch and a
structureless patch (with low Moran’s I value) to the maximum
possible EMD distance. The maximum EMD between two n×n
histograms H1 and H2 happens when H1 = δ[i − 1, j − 1]
and H2 = δ[i − n, j − n] where δ is the impulse function:
δ[0, 0] = 1 and is zero everywhere else. These “most different”
histograms have zero bins everywhere except for the left bot-
tom corner in H1 and the top right corner in H2. It can be shown
that the EMD distance between these two n × n histograms is

(a) EMD dist., r = 2 (b) EMD dist., r = 4

(c) EMD dist., r = 2 (d) EMD dist., r = 4

Figure 4: The self-similarity distance of the center pixel to other image pixels,
computed using the EMD between spin images of Figure 2. Black represents
smaller distance, i.e. more similar. The patch radius is r. In (a) and (b), the
Moran’s mask is not used, and therefore some dissimilar pixels have small dis-
tance. In (c) and (d), these incorrect small distances are excluded using Moran’s
I.

maxH1,H2 EMD(H1,H2) = 2(n − 1). For our 4 × 4 histograms,
this number is 6.

It can be seen from Figure 4 that the similarity metric is fully
rotation invariant. The computational complexity of calculat-
ing the EMD distance is not an issue since it can be calculated
offline on only the pre-operative image.

The histogram descriptor provides stability against small de-
formations of structures (due to the binning process), while sub-
dividing the distance to the center (d in the histogram) encodes
the spatial information. As a result, it is more robust than filter
banks and differential invariants, which are also local descrip-
tors (Lazebnik et al., 2005). Its disadvantage is its computa-
tional complexity. Performing self-similarity estimations on a
volume of size 1003 pixels takes about 5 hours on one core of a
3GHz processor.

To speed self-similarity estimation, we propose the two fol-
lowing approaches, which are based on the observation that
self-similarity maps generated by EMD are smooth and there-
fore can be sampled at lower resolutions. (I) When computing
the self-similarity of a pixel to others, compute only one self-
similarity for every 23 cube of pixels, i.e. skip one pixel in all
dimensions. (II) Downsample the volume by a factor of 2 in
each dimension and perform self-similarity estimation on this
volume, with a patch size that is also twice smaller. Using the
approaches (I) or (II), the self-similarity at the original scale can
be approximated using linear interpolation. The speed gains are
approximately factors of 23 = 8 and 26 = 64 respectively. We
test these approaches on T1 images of BrainWeb (Collins et al.,
1998) and MR images of our IGNS trials. Both volumes have
an isotropic pixel size of 1 mm. Figure 6, (b) and (f) show the
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(a) EMD dist., r = 2 (b) EMD dist., r = 3

(c) EMD dist., r = 2 (d) EMD dist., r = 3

Figure 5: The self-similarity distance of the center pixel to other image pixels,
computed in 3D.

EMD self-similarities to the center pixel at the original resolu-
tion, (c) and (g) show the results of the approach (I), and (d)
and (h) show the results of the approach (II). The weights in
the third and forth columns are very similar to that of the sec-
ond column ((b)&(f)), which allows computing the weights at
a coarse resolution. We use the approach (II) on patient data,
and therefore the self-similarities are estimated in less than 10
min on one core of a 3GHz processor for a volume of size 1003

pixels.
The rich structural self-similarities between two pixel loca-

tions are now encoded in a single number, the EMD distance.
We will now use this distance to efficiently incorporate struc-
tural information into α-MI. In the next section, we first briefly
explain α-MI and then formulate SeSaMI.

4. Self-Similarity α-MI (SeSaMI)

Multi-feature graph-based α-MI. The MI similarity metric
is usually calculated on the intensities only, and therefore the
joint histogram is 2D. α-MI is usually calculated on multiple
features like intensities and their gradients. Adopting the no-
tation of Staring et al. (2009), let z(xi) = [z1(xi) · · · zq(xi)]T be
a q-dimensional vector containing all the features at point xi
(z(xi) is not related to the z-score used for estimating Moran’s
I in Eq. 5). Similar to Staring et al. (2009), we choose im-
age intensities and gradients at two different scales as fea-
tures, resulting in four total features. Let z f (xi) and zm(Tµ(xi))
be respectively the features of the fixed and moving image
at xi and Tµ(xi), and z f m(xi,Tµ(xi)) be their concatenation
[z f (xi)T zm(Tµ(xi))T ]T . z f m is in the joint feature space. Mini-
mal spanning tree (MST) (Sabuncu and Ramadge, 2008) and k-
nearest neighbor (kNN) (Staring et al., 2009; Oubel et al., 2012)
are among different methods for estimating α-MI from multi-

(a) BrainWeb T1 (b) EMD, original (c) EMD, approach I

(d) EMD, approach II (e) Patient T1 (f) EMD, original

(g) EMD, approach I (h) EMD, approach II

Figure 6: The effect of downsampling on EMD distance. First and Second row
are respectively BrainWeb and patient data. Please see the text for details.
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Figure 7: Joint feature space with one feature from each image. The superscript
f m is omitted from z for more clarity. In the left image, the density of points is
respectively high and low close to zi and z j, and therefore close (for zi) and far
points (for z j) are taken into account for kNN estimation of α-MI. This can be
perceived as having adaptive bin sizes, depending on the data distribution. In
the right image, the self-similarity weights wip are shown for the graph edges.

feature samples. With N samples, the complexities of con-
structing MST and kNN graphs are O(N2 log N) and O(N log N)
respectively (Neemuchwala and Hero, 2005). Therefore, we
choose kNN.

Let z f (xip), zm(Tµ(xip)) and z f m(xip,Tµ(xip)) be respec-
tively the pth nearest neighbors of z f (xi), zm(Tµ(xi)) and
z f m(xi,Tµ(xi)) (see Figure 7 left). Note that these three near-
est neighbors in general do not correspond to the same point.
We limit the nearest neighbor search to local neighborhood of
xi and Tµ(xi). The size of this local neighborhood is the same as
that of the self-similarity analysis. To prevent notation clutter,
we show the dependencies on location xi or Tµ(xi) only through
i after this point whenever clear. Let d f

ip = z f
i −z f

ip, dm
ip = zm

i −zm
ip

and d f m
ip = z f m

i − z f m
ip be the vectors that connect the node i to its

pth nearest neighbor in respectively the fixed, moving and joint
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Figure 8: The nearest neighbors in the joint feature space of the aligned images
are more likely to be self-similar compared to misaligned images. Please refer
to the text for details.

feature spaces. For a node i, set

Γ
space
i (µ) =

k�

p=1

�dspace
ip �, space = f ,m, and f m (7)

where �.� is the Euclidian norm. A kNN estimator for α-MI=−S
(the dissimilarity function in Eq. 1) is

�α-MI(µ) =
1
α − 1

log
1

Nα

N�

i=1



Γ

f m
i (µ)

�
Γ

f
i Γ

m
i (µ)




2γ

(8)

where γ = (1 − α)q and 0 < α < 1 (q is the number of di-
mensions of z as mentioned at the beginning of this Section);
experimental results of rigid registration in (Sabuncu and Ra-
madge, 2008) suggest that for MST graphs, α close to 1 gives
better registration accuracy, while α close to 0.5 yields a wider
capture range. To achieve a wide capture range, we perform hi-
erarchical registration. Therefore, to achieve high accuracy we
use α = 0.9 throughout this work.

Weighting α-MI by self-similarity. In an analogy to MI,
small Γ f m

i for majority of locations i means that data in the joint
histogram is clustered and compact, and Γ f

i and Γm
i are for nor-

malization. Therefore, accurate estimates of Γ f m
i are essential.

In registered images, generally most of the nearest neighbors in
the joint feature space correspond to similar patches in the fixed
image. However, due to spatially varying bias, small geometri-
cal distortions, lack of an adequate number of features and mis-
alignment, not all the nearest neighbors are self-similar. There-
fore, to penalize points that are close but are not self-similar,

we modify Γ f m
i by (see Figure 7 right)

Γ
f m
i (µ) =

k�

p=1

wip�d f m
ip �,wip = EMD(H(xi),H(xip)) (9)

where EMD(H(xi),H(xip)) is the EMD between the histogram
descriptors. Further intuition for this equation is provided in
Figure 8. Images I f and Im each have two rows and six columns.
The letters in I f pixel encode location (i.e. indices i, p in Eq. 7)
and the numbers represent intensity (i.e. features z in Eq. 7).
Pixels are also colored to aid visualization: values close to 1,
2 and 3 are respectively dark gray, gray and white. The inten-
sity of every pixel is the only feature used, and therefore the
joint feature space in this figure is simply 2D. When the im-
ages are aligned, the nearest neighbor of point B is D, which
is from a similar structure (i.e. at the border of low and high
intensities). In the misaligned case, the nearest neighbor of B
is A, a pixel from a completely different structure. Since this
nearest neighbor is not particularly far in the feature space, i.e.
�z f m

A − z f m
B � is small, this can result in a low Γ f m and therefore an

incorrect local minima. However, multiplying distances by the
self-similarity weight according to Eq. 9 can prevent this since
wBA is a large number.

Optimization of the cost function. We adopt an iterative
stochastic gradient descent optimization method (Klein et al.,
2007) for solving Eq. 1, which is fast and is less likely to get
trapped in local minima. In this method, the cost function and
its derivative are calculated from new randomly selected subset
of pixels in each iteration. We select these points from pixels
with high values of Moran’s I since we do not calculate self-
similarity of pixels with low I to other pixels. Some of kNN of
these pixels, however, can be from pixels with low I. Letting
∇µC be the gradient of C (from Eq. 1) w.r.t. µ, the update
equation is µt+1 = µt + at∇µC. The step size is a decaying
function of the iteration number t:

at = a/(A + t)τ (10)

with a > 0, A ≥ 0 and 0 < τ ≤ 1 user-defined constants Klein
et al. (2007). The recommended values for these parameters are
provided in (Klein et al., 2007): A should be around 0.1 of the
maximum number of iterations or less and τ should be more
than 0.6. The value of a is critical as it determines the step-size;
its value is user-defined. Generally speaking, if a is too small
more iterations are required and it is also more likely that the
optimization gets trapped in a local minima. On the other hand,
the registration can diverge if a is too large. Fortunately, for
large enough number of iterations the final registration result
varies negligibly if a is varied by as much as 100%. a also de-
pends on the similarity metric; we set it to values between 1 and
104 by multiplying it by 10 each time and evaluated the defor-
mation at each iteration. After we found its order of magnitude,
we varied it by smaller steps and finally set it to 500 for NMI
and LMI and to 200 for α-MI and SeSaMI.

From Eq. 1, we have ∇µC = −∇µ�α-MI + ωR∆µ where
∆ = ∇.∇ is the Laplacian operator. Numerical methods, such
as finite difference and simultaneous perturbation (Spall, 1998)
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can be used to estimate the derivative of the cost function. How-
ever, analytically estimating the derivative is usually faster and
has better convergence properties. Assuming the topology does
not change for small changes in µ, the gradient of �α-MI is cal-
culated analytically in Staring et al. (2009); Oubel et al. (2012)
using the chain rule; we refer the reader to them for details. The
chain rule finally results in computation of the ∇µΓ f m

i (µ). From
Eq. 9, we have

∂

∂µ j
Γ

f m
i (µ) =

k�

p=1


wip

d f m
ip

T

�d f m
ip �
.
∂

∂µ j
d f m

ip + �d
f m
ip �
∂

∂µ j
wip




=

k�

p=1

wip

�d f m
ip �

dm
ip

T .
∂

∂µ j
dm

ip

(11)

where T means transpose. We have ignored the term which
involves the derivative of wip because it is calculated for either
I f or Im; in the former case, its derivative w.r.t. µ is trivially
zero, and in the latter case it is zero because the 2D histogram
descriptors are invariant to small deformations (Lazebnik et al.,
2005). Also, even for large global deformations, the histogram
patches can be assumed locally rigid. The equality in the second
line is true because z f m is the concatenation of z f and zm, and
∂z f /∂µ = 0. Finally,

dm
ip

T · ∂
∂µ j

dm
ip = dm

ip
T ·
�
∂

∂T(xi)
zm

i
∂

∂µ j
T(xi) −

∂

∂T(xip)
zm

ip
∂

∂µ j
T(xip)

�
.

(12)
Note that partial derivative of zm w.r.t. T means calculating
derivatives in Im’s native space, i.e. w.r.t. its own x, y or z coor-
dinate. In our implementation, we pre-compute all the features
of the I f and Im, and the derivatives of Im’s features w.r.t. x, y
and z directions.

For each dm
ip, the partial derivatives of Eq. 12 should be esti-

mated for 2r4r nodes (i.e. µ j) where r is the image dimension,
4 is the number of the nodes of the cubic B-splines and 2 is be-
cause of having two points i and ip. For 2D and 3D images, that
is 64 and 384 respectively, making gradient estimation compu-
tationally expensive. To speed the derivative calculation, we
use the chain rule ∂

∂µ j
�α-MI = ∂

∂T
�α-MI

T · ∂∂µ j
T (again, note that

T and µ are simply x, y or z of respectively all Im pixels and
B-spline nodes); therefore for any dm

ip only partial derivatives
w.r.t. T(xi) and T(xip) (2r partial derivatives) are non-zero and
should be computed, instead of the 2r4r values of Eq. 12. In
our implementation ∂

∂T
�α-MI is a matrix of size r×sizeof(Im),

easily multiplied by the transformation Jacobian ∂
∂µ j

T at the last
step of the gradient computation.

We then accumulate all the summations into a matrix of di-
mension r×sizeof(Im), where each entry corresponds to the
partial derivative w.r.t. x, y or z of that pixel. Formally speak-
ing, we factor out the transformation Jacobian ∂

∂µ j
T(x) until the

very end and multiply it by ∂
∂T

�α-MI of all pixels according to

the chain rule ∂
∂µ j

�α-MI = ∂
∂T

�α-MI
T
. ∂∂µ j

T(x)

If Im h(If , Im ) 

NMI! LMI! !-MI!

SeSaMI-SSD! SeSaMI-EMD! SeSaMI-EMD, ±12!

Figure 9: Effect of the bias on the dissimilarity metrics in the human brain
images. The similarity metrics are plotted by rigidly moving Im by a maximum
of ±6 pixels, except for the bottom right image where the displacement is ±12
pixels. Black color represents smaller dissimilarity. The self-similarities in the
last row are computed from the biased Im using SSD and EMD as noted. Please
refer to the text for details.

5. Experiments and Results

Our registration algorithm is implemented in Matlab mex
functions. We limit the self-similarity comparisons to local
neighborhoods of sizes 402 in 2D and 253 in 3D. To find kNN,
we use a Matlab wrapper for the approximate nearest neighbor
algorithm (Arya et al., 1998). To test the statistical significance
of different results, we perform the paired t-test using the MAT-
LAB 2012b software.

5.1. Visible human project
We test the new similarity metric on the red and green chan-

nels of brain data of the visible human project, which are intrin-
sically registered. The data is publicly available at www.nlm.
nih.gov/research/visible/visible_human.html. We
set the red image as Im and add bias to it (Figure 9 top). The
joint histogram for the aligned images is spread due to the bias.
We then displace Im rigidly in the x and y directions, and cal-
culate different similarity metrics at each displacement. The
images are aligned at 0 displacement, and therefore the dissimi-
larity value should be the smallest at the 0 displacement (i.e. the
center). The NMI, which is calculated from all 85 × 75 = 6375
image pixels, fails to indicate 0 as the correct alignment due to
the strong bias. The LMI is computed by dividing the image in
2 horizontal and 2 vertical pieces, creating a total of 4 neighbor-
hoods each with 21 × 19 pixels. It performs significantly better
and predicts 0 as a local minimum, but gives the global mini-
mum at (x, y) = (−6, 3) pixels displacement. α-MI and SeSaMI
metrics are obtained using 2 features of intensity and gradient.
α-MI gives an incorrect minimum cost. The self-similarities
of the SeSaMI-SSD and SeSaMI-EMD are calculated based on
the biased Im, respectively using SSD and the proposed EMD
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Figure 10: Effect of the optimization parameter a, the step size in Eq. 10, on
convergence.

method. Comparing SeSaMI-SSD and SeSaMI-EMD, we can
see that the EMD self-similarity descriptor outperforms SSD in
terms of generating the correct local minimum for the SeSaMI.
Note that the results of this figure show that even with a ±6 pixel
initialization, only SeSaMI can guide the transformation to the
ground truth. To see the extent of the capture range of SeSaMI,
we plot its cost function for a larger displacement range of ±12
pixels in the bottom right corner. This figure shows that (0,0) is
the global minimum for a relatively large displacement range.
This image, however, has incorrect local minima as well, which
can trap most common iterative optimization techniques. To
solve this problem, a common practice is to perform hierarchi-
cal multi-scale optimization, which is what we also adopt.

5.2. BrainWeb

In this section, we study the performance of SeSaMI us-
ing 3D simulated MRI images of the BrainWeb Collins et al.
(1998). All the images are with 3% noise. The intensity in-
homogeneity fields are from 0% to 40% as noted. The image
voxels are 1 mm in all directions. We use 4 features of intensity
and gradients at two scales for both α-MI and SeSaMI. The reg-
istrations are performed in 2 coarse and fine levels to increase
the speed and reduce the chance of getting trapped in local min-
ima.

In the first experiment, we test the effect of the only tune-
able optimization parameter of SeSaMI, i.e. the parameter a in
Eq. 10, in T1-T2 registration. We deform the T1 image with a
B-spline deformation field with spacing of 20 mm (or voxels)
between nodes in every dimension. We move every node in 3
dimensions by uniformly distributed random numbers between
±9 mm. We then register the T2 image to the T1 image using
a B-spline deformation field with 20 mm distance between the
nodes. The T1 and T2 images have respectively 0% and 40%
intensity inhomogeneities. We measure the warping index as
an estimate of registration error. The warping index is the root
mean square of the displacement error of all image voxels. Fig-
ure 10 shows the results. With the larger step size, the method
converges faster, but reaches the similar final result error of the
small step size. Therefore, an estimate value for this parameter
is sufficient to achieve optimal results. We always set it to 200
for both α-MI and SeSaMI.

In the second experiment, we perform pairwise registration
of T1, T2 and PD volumes. The ground truth deformation field
is similar to the previous experiment: the spacing between B-
spline nodes is 20 mm and every node is moved randomly by
numbers in the range of ±9 mm. We calculate a B-spline defor-
mation field with 20 mm distance between nodes using different
similarity metrics of MI, LMI, α-MI and SeSaMI. The results
are shown in Figure 11. In the top and bottom rows, the bias
fields of Im are respectively 0% and 40%. MI works well in
the top row where the intensity inhomogeneity is 0. However,
it gives large errors when we set the intensity inhomogeneity
to 40%. LMI works well for all the cases, as it significantly
reduces the effect of intensity bias. α-MI gives very good re-
sults for 0% bias, but its results slightly degrade with bias. One
reason that the results of LMI and α-MI in the second row, in
average, are comparable is that the image intensities relate well
in the BrainWeb simulation images, which can be seen from the
joint histograms. Therefore LMI, which is solely based on im-
age intensities, works well with these cases. SeSaMI gives the
best results with or without bias in all the cases.

In the final experiment, we test the effect of the degrees of
freedom of the deformation field on PD-T1 registration. The
ground truth simulated deformation is the same as the two pre-
vious examples: the distance between nodes is 20 mm. The
experiments are repeated for 20 random instances of deforma-
tion. The deformation that we optimize the cost function for is,
however, different: we perform three sets of experiments where
the distances between the nodes at the finest level are 10 mm,
20 mm and 40 mm. The results are shown in Figure 12. The
numbers 0 and 40 after each method indicate the percentage
of bias field in the moving image. The stars indicate that this
column’s results are significantly better than that of the previ-
ous column (p < 0.05 using pairwise t-test). Few observations
can be made. First, LMI40 is significantly better than MI40 in
(a) and (b). Also, α-MI40 and LMI40 perform relatively simi-
lar. SeSaMI is significantly outperforming all other methods for
biased or unbiased cases in (a) and (b). As we constraint the de-
formation by increasing the spacing between B-spline nodes to
40 in (c), all methods perform similar. Even the bias field does
not significantly change the results. This shows that for finer
non-rigid registration, the importance of the similarity metric
rises. Another interesting observation is that the results of (b)
are better than (a) because the ground truth deformation is also
generated by B-spline nodes at 20 mm spacings. This shows
the importance of choosing a deformation model that is most
similar to the unknown underlying deformation.

5.3. Phantom Data
We use US and MR volumes of an anthropomorphic

polyvinyl alcohol brain phantom (Chen et al., 2012) to plot dif-
ferent cost functions. The US and MR volumes in this database
are registered and there is no deformation between them. Three
perpendicular cross sections of the volumes are shown in Fig-
ure 13. We move the MR volume in the horizontal and vertical
directions by ±6 pixels (each pixel is 1 mm) and calculate dif-
ferent similarity metrics. For SeSaMI, the self-similarity is cal-
culated from the MR image. Figure 13 shows the results. We
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(b) I f=T2, Im=PD
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(c) I f=PD, Im=T1
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(d) I f=T1, Im=T2
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(e) I f=T2, Im=PD
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(f) I f=PD, Im=T1

Figure 11: The warping index for different pairwise registrations. I f has always 0% intensity bias. Im images in the top and bottom rows have respectively 0% and
40% intensity inhomogeneities. The joint histograms, before deforming any of the images, is also shown for biased images in the second row.

use N=5000 voxels to calculate NMI. For LMI, the volumes
are divided into 8 neighborhoods by having two segments in
each dimension, and use N=5000 voxels in each neighborhood.
We see that the LMI cost function is significantly better than
NMI, giving small cost values around the zero displacement.
α-MI and SeSaMI both predict the alignment around the same
location around 0. SeSaMI outperforms α-MI in terms of gen-
erating a consistently smooth cost function. Please note that we
perform this experiment to provide an intuition toward the ef-
fect of different parameters of the similarity metric, and not to
quantitatively compare different similarity metrics. To see the
improvement of α-MI with using more features, we repeat the
experiment by using the four features of intensity and gradient
at two different scales. Figure 14 shows the results with k = 10
and N = 4000 using 4 features. It can be seen that the results
of α-MI significantly improves compared to Figure 13, which
uses only 2 features.

5.4. US and MR registration of brain images

We apply our registration algorithm to the clinical data from
image guided neuro-surgery obtained from 13 patients2 with
gliomas in the Montreal Neurological Institute. The data is
available online at http://www.bic.mni.mcgill.ca/BITE.

2We originally collected data from 14 patients and had the corresponding
anatomical landmarks selected by three experts. In one of the datasets, however,
some of the landmarks do not match, which we think is due to a problem in a
transformation matrix. We therefore exclude this dataset from our analysis.

(a) α-MI (b) SeSaMI

Figure 14: The values of α-MI and SeSaMI for the experiment of Figure 13,
using four features z1, · · · z4 of intensities and gradients at two different scales.
The α-MI cost is significantly smoother compared to using two features as in
Figure 13. Both functions are normalized to the 0 to 1 range. Black represents
smaller dissimilarity.

The pre-operative MR images are gadolinium-enhanced T1
weighted and are acquired approximately 2 weeks before the
surgery. The intra-operative US images are obtained using an
HDI 5000 (Philips, Bothell, WA) with a P7-4 MHz phased array
transducer. Full description of the data is provided in Mercier
et al. (2012a). The ultrasound probe is tracked with a Polaris
camera (NDI, Waterloo, Canada), and 3D US volumes are re-
constructed using the tracking information. We reconstruct US
volumes with a pixel size of 1 mm in the x y z directions. Fig-
ure 15 shows the US images before and after 3D reconstruction.
This relatively large pixel size means that for every pixel, multi-
ple US measurements from different images and insonification
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Figure 12: The warping index for different spacing between the B-spline nodes. The stars indicate statistically significant improvement over the previous column.
Please see the text for details.

angles are available. Therefore, the effect of US speckle is min-
imized, since US speckles look different when imaged from dif-
ferent locations or angles (Rivaz et al., 2007, 2011, 2014). Each
volume has a different size because the depths and sweeping ar-
eas are different; the typical size is on the order of 1003.

The MRI volume has a pixel size of 0.5 mm in the imaging
plane and 1 mm slice thickness. We resample the volume to the
isotropic 1 mm pixel size, same as the reconstructed US pixel
size. We then use the tracking information to perform the initial
rigid registration of MR to US (a sample of this initial registra-
tion is shown in Figure 1) and crop the MR volume to the same
size as the US volume. The very top of the US image is the
acoustic coupling gel that is placed to prevent pressure to the
brain tissue. The very bottom is also very noisy due to acous-
tic wave attenuation. We crop these parts during an automatic
preprocessing step for all registration methods. Therefore, the
cropped MR volume is larger than the useful US volume and
always covers it during the registration.

To validate the results, three experts have selected corre-
sponding anatomical landmarks in US and MR images (Mercier
et al., 2012a). For this task, US and MR images are sampled
at 0.3 mm voxel size in all dimensions. The landmarks are se-
lected independently by all the three experts throughout the vol-
umes as shown in Figure 15. They are used to calculate mean
target registration error (mTRE). The mTRE of n correspond-
ing marks at locations x and x� in the two images is calculated
according to

mTRE =
1
n

n�

i

�T(xi) − x�i� (13)

where T is the transformation (see Eq. 1) and �v� is the Euclid-
ian length of the vector v.

Parameter Selection and Qualitative Analysis.
We perform hierarchical registration to minimize the number

of false local minima and increase the capture range, with two
spacing of 40 and 20 mm between the B-spline nodes. For LMI,
we found that three hierarchical levels with spacings of 80, 40
and 20 mm gives the best results. With a data of size 1003

pixels, we have 93 nodes at the fine 20-pixel level and therefore
µ has 3 × 93 = 2187 elements. We empirically found that N =

4000 random points give good results for α-MI and SeSaMI.
Out of the 13 patients, we use 6 (patients 1, 2, 3, 8, 12 and 13,

which have the highest initial mTRE) to set different parame-
ters of the NMI, LMI, α-MI and SeSaMI. In the supplementary
material, we perform four-fold cross validation for setting pa-
rameters, instead of using only 6 patients. These results show
that for different training sets, same parameters are selected for
SeSaMI, meaning that the same parameters should work well
for new sets of experiments. We found that the performance of
the global NMI is poor in the presence of the high level of bias
in the US volumes (see Figures 13 and 18 for example). There-
fore, we do not include it in our IGNS registration study. For
LMI, 32 bins gave the best results. For LMI, we tested three dif-
ferent neighborhood sizes of 133, 253 and 513 mm, and found
that the size of 253 mm gives the best results (for the size 133 we
selected all the 133 ≈ 2200 pixels in the neighborhood for MI
computation). We also found that the number of neighborhoods
N = 50 in Eq. 3 provides a good compromise between the run-
ning time and the performance. Figure 16 shows the mTRE
values for different k values of α-MI and SeSaMI ranging from
1 to 20. The reduction of the mTRE at each k compared to
its previous value is statistically significant in both α-MI and
SeSaMI with p-values of less than 0.05. However, we choose
k = 10 over k = 20 as a tradeoff between computational time
and small mTRE.

We then vary the number of features from 1 to 6: the inten-
sity and gradient values at three different scales of σ =0.5, 1.5
and 3 pixels. Figure 17 shows that increasing the number of fea-
tures from 1 to 4 decreases the mTRE by statistically significant
values (p < 0.05). We also point out the difference in perfor-
mance of α-MI and SeSaMI in this figure: At 2 and 4 features,
the improvement of SeSaMI over α-MI has p-values of 0.001
and 0.04 respectively, a significantly higher improvement with
fewer features. Similarly, the average reductions in the mTRE
in these 6 patients are 0.8 mm with 2 features (mTRE of α-MI
and SeSaMI are respectively 3.7 mm and 2.9 mm) and 0.2 mm
with 4 features (mTRE of α-MI and SeSaMI are respectively
2.5 mm and 2.3 mm). This shows that SeSaMI significantly out-
performs α-MI when few features are used. Another interesting
observation is that there is no statistically significant difference
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Figure 13: Qualitative comparison of different similarity metrics by rigidly translating the MR volume in the x y directions by ±6 pixels. The arrows in the mutually
perpendicular US and MR slices point to corresponding structures. The minimum cost should be at the center. Black represents smaller dissimilarity. Two features
z1, z2 are used for both α-MI and SeSaMI. The number of nearest neighbors k are 5 and 10 as marked, and N1 = 2000 and N2 = 4000.

between the results of α-MI with 4 features and SeSaMI with 2
features. This is due to the encoding of the structural informa-
tion as self-similarity weights in SeSaMI. Increasing the num-
ber of features from 4 to 6 has no statistically significant impact
on mTRE in either method. We therefore use 4 features for the
patient data. With these settings, the running times on one core
of a 3GHz processor are: 1 hour for LMI and 2 hours for αMI
and SeSaMI (all implemented in Matlab mex functions).

Figure 18 shows the US and MR images before and after
nonrigid registration. The initial alignment does not provide
enough guidance for avoiding blood vessels and critical brain
tissue. For example, three misaligned anatomical and patho-
logical structures of tumor boundary, choroid plexus and the
lateral ventricles are marked. Visual inspection of correspond-
ing structures shows that α-MI and SeSaMI significantly im-
prove the alignment.

Quantitative Results. Table 1 shows that multi-feature α-
MI and SeSaMI significantly reduce the mTRE by nonlinear
registration of MR to US in all the 13 cases. The α-MI and
SeSaMI mTRE results are significantly smaller than the initial
mTRE values with p-values of respectively 0.007 and 0.005.
Also, LMI gives good results in all patients except for P2; it
improves the initial mTRE by a p-value of 0.02 if we exclude

the outlier case of P2. The improvement of SeSaMI results over
α-MI is also statistically significant with a p-value of 0.009.
The most accurate results generated by SeSaMI are due to its
robust self-similarity measure incorporated into the powerful
multi-feature α-MI similarity metric. In Ou et al. (2012), dif-
ferent registration methods are compared by studying the Jaco-
bian of their deformations. We tested the standard deviation of
the deformation Jacobians in different patients and found them
to be similar (except for patient P2 where LMI gives very large
mTRE). This is due to the fact that we use the same regulariza-
tion and the same deformation model for all methods.

6. Discussion and Conclusions

We introduced SeSaMI, a similarity metric that incorpo-
rates contextual self-similarity measures into graph-based α-
MI. SeSaMI exploits self-similarity in a kNN α-MI registration
framework by penalizing clusters (i.e. the nearest neighbors)
that are not self-similar. The self-similarity measure that we
use is rotation invariant and is robust to small deformations and
to intensity bias.

We have also, for the first time, shown that multi-feature α-
MI and SeSaMI significantly increase the registration accuracy
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(a) Individual US images (b) Reconstructed 3D US (c) MRI

Figure 15: The original 2D US slices and the reconstructed 3D US MR images. In (b) and (c), the landmarks selected by 3 experts are shown. Each of the 3 colors
(blue, green and red) corresponds to an expert. The images are from patient 1 in Table 1.
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Figure 16: The effect of the number of nearest neighbors k.

of MR to US registration in our on-going IGNS project. The
large initial misalignment between US and MR images are due
to errors in the tracking system, US calibration and brain shift.
The misalignment is large enough to make the rigidly registered
MR image unreliable.

The entropy images of Wachinger and Navab (2012) also
generate rotationally invariant features using local histograms.
Similar to our work, these features are obtained in two steps:
first by constructing a histogram, and second, by inferring the
features from the histogram. Our approach is different in both
steps. Firstly, the entropy images only contain intensities3,
while our 2D histogram descriptor contains both intensity and
spatial information. Secondly and more importantly, the en-
tropy images directly map the histograms into scalar entropy
values, where different histograms can generate the same en-
tropy. Our approach however utilizes all the histogram bins and
performs pair-wise comparisons using EMD to map differences

3Wachinger and Navab (2012) proposed a weighting map to differentiate
different patches that have identical histograms. However, in order to com-
pletely discriminate different patches, the weight map should contain numbers
in a very large dynamic range. This leads to locations that become negligible
in the entropy calculation as discussed by Wachinger and Navab (2012).

between patches into a scalar value. Encoding the rich struc-
tural information into the pair-wise distances are performed of-
fline in SeSaMI. Since SeSaMI is graph-based, these pair-wise
differences readily relate to the edge weights.

SeSaMI can reduce the number of incorrect local minima as
Figures 9 and 13 appear to support. An intuitive explanation for
this was given in Figure 8: SeSaMI may penalize close neigh-
bors in the joint feature space that are not self-similar. There-
fore, accidental clusters in the joint feature space are less likely
to generate incorrect local minima.

The results of Figure 17 revealed that two is the minimum
number of features required; with one feature even the SeSaMI
results degrade considerably. This is due to the fact that the Γ f

and Γm terms in the denominator of Eq. 8 can become close
to zero, or even exactly zero depending on the precision of the
data, when the nearest neighbors are found in just one dimen-
sion. In fact, Kybic (2007) proposes a number of remedies for
“too close” nearest neighbors. In our experience, we found that
two or more features were enough to prevent having k very
close nearest neighbors.

We trained the parameters of α-MI and SeSaMI on 6 pa-
tients to achieve the best results for either method, and pre-
sented these best results in Table 1. Our goal was to show that
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Figure 17: The effect of the number of features.

Table 1: The mTRE (mm) in initial alignment (obtained by rigidly registering US and MR using tracking information) and after registration using 3 different
nonlinear registration methods. n is the number of landmarks in Eq. 13. The numbers inside brackets are minimum and maximum TRE values. Note: the highest
initial mTRE patients (1, 2, 3, 8, 12 & 13) were used to determine the registration parameters. See the supplementary material for a cross-validation analysis of the
results. The minimum value of each row is in bold font.

Patient n Initial LMI α-MI SeSaMI
P1 35 6.30 (1.9-9.1) 4.05 (2.0-9.1) 2.32 (1.7-6.9) 1.82 (1.5-6.0)
P2 40 9.38 (6.3-14.6) 3.74 (1.5-10.1) 3.14 (1.4-7.2) 2.54 (1.4-5.5)
P3 32 3.93 (1.0-6.1) 2.49 (0.8-5.8) 1.83(0.7-5.3) 1.96 (0.8-4.8)
P4 31 2.62 (0.5-6.9) 2.72 (0.6-5.3) 2.62 (0.6-3.7) 2.59 (0.7-3.4)
P5 37 2.30 (0.2-4.4) 2.23 (0.3-5.0) 1.97 (0.6-4.3) 1.73 (0.5-3.8)
P6 19 3.04 (0.3-6.3) 2.51 (0.9-5.2) 2.28 (1.0-5.0) 1.94 (0.8-4.4)
P7 23 3.75 (0.0-8.5) 2.56 (0.8-6.2) 3.05 (1.1-6.6) 2.91 (1.0-5.1)
P8 21 5.09 (2.5-7.6) 2.49 (1.6-7.0) 2.44 (1.6-5.4) 2.52 (1.7-5.4)
P9 25 3.00 (0.8-5.3) 2.84 (1.1-5.3) 2.83 (1.2-5.2) 2.74 (1.0-5.4)
P10 25 1.52 (0.6-3.5) 3.94 (0.4-5.1) 1.44 (0.2-4.4) 1.35 (0.7-3.4)
P11 21 3.70 (0.9-7.0) 2.29 (0.5-3.2) 2.81 (1.4-6.3)) 2.78 (1.1-5.5)
P12 23 5.15 (1.5-10.4) 2.67 (0.8-6.7) 3.37 (2.0-5.9) 2.91 (1.2-5.5)
P13 23 3.78 (1.2-5.7) 2.90 (2.0-6.0) 2.45 (1.8-5.5) 2.16 (1.6-4.9)

mean 27 4.12 (1.4-7.3) 2.88 (1.1-6.2) 2.50 (1.2-5.5) 2.29 (1.1-4.8)
std 6.9 2.03 (2.7-2.9) 0.62 (0.6-1.8) 0.55 (0.5-1.0) 0.52 (0.4-0.9)

multi-feature α-MI can be applied to US to MR registration.
While this table shows statistically significant improvement of
SeSaMI over α-MI, greater improvements can be seen when us-
ing non-optimized parameters. For example, Figure 13 shows
that with 2 features and fewer samples, SeSaMI generates sig-
nificantly smoother cost functions. Comparing these results to
Figure 14, we see that the improvement becomes less obvious
when using 4 features and more samples. A similar trend can be
seen in Figure 17 by comparing the results of α-MI and SeSaMI
at 2 and 4 features: the average reductions in mTRE are 0.8 mm
and 0.2 mm with respectively 2 and 4 features.

Graph-based α-MI estimators do not require the joint proba-
bility distribution unlike the plug-in MI estimators; they rather
estimate α-MI directly from the data. Therefore they have a
faster convergence rate especially in higher dimensional data
(Hero et al., 2002). However, even the graph based methods
can suffer from the so called “curse of dimensionality”. To see
this, consider N data points uniformly distributed in a 2d f di-
mensional unit ball. In the image registration paradigm, d f is
the number of features used from each of the fixed and mov-
ing images. It can be easily shown that the median distance

from the origin to the first nearest neighbor is (1 − 0.51/N)1/2d f

(Hastie and Tibshirani, 2009). For d f = 15, even for a large set
of N = 10, 000 sample points we have (1 − 0.51e−4)1/30 = 0.73,
about 3/4 away from the center and in the 1/4 boundary layer.
Hence, in high dimensions most data points are closer to the
boundary of the sample space where estimations are less accu-
rate.

In this work, we used self-similarity to weight α-MI.
These weights can also be incorporated into the quantitative-
qualitative MI approach of Luan et al. (2008) to weight the MI
formulation, which can be an area for future work.

For LMI results of Table 1, we used 3 hierarchical levels,
while for α-MI and SeSaMI we used 2 levels. The coarsest op-
timization level computes a better initial alignment for the sec-
ond level, and therefore the results improve. In the supplemen-
tary material, we also provide the LMI results for 2 hierarchical
levels, a setting that is consistent with α-MI and SeSaMI.

In the future, we will compare the histogram and EMD based
self-similarity estimation against NCC and SSD that are not ro-
tationally invariant. The use of the SeSaMI with the MST en-
tropy estimator is also a subject of future work. Since calcu-
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Figure 18: Corresponding intra-operative US and pre-operative MR images. The structures (1) to (3) are respectively the tumor boundary, choroid plexus and the
lateral ventricle. (a) and (b) are the same US image, without and with contours overlaid. (c) to (f) are the corresponding MR images, with the contour overlaid to
aid comparison. (c) initial alignment. (d) to (f): nonrigid registrations with respectively NMI, α-MI and SeSaMI. Note that all registrations are done in 3D.

lating the derivative of the MST graph is computationally more
efficient compared to the kNN graph, this can lead to shorter
running times. A problem here is that as the graph topology
changes, the gradient of the cost function can undergo very
large discontinuities. We also plan to generate elasticity im-
ages of the tumor using ultrasound elastography (Rivaz et al.,
2008) to allow better resection and to help registration. Finally,
we will investigate GPU implementations of SeSaMI to achieve
our goal of near-real time intra-operative US-MRI registration.
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