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Combining Total Variation Regularization with
Window-based Time Delay Estimation in

Ultrasound Elastography
M. Mirzaei, A. Asif and H. Rivaz

Abstract—A major challenge of free-hand palpation ultrasound
elastography (USE) is estimating displacement of RF samples
between pre- and post-compressed RF data. The problem of
displacement estimation is ill-posed since the displacement of
one sample by itself cannot be uniquely calculated. To resolve
this problem, two categories of methods have emerged. The first
category assumes that the displacement of samples within a small
window surrounding the reference sample is constant. The second
class imposes smoothness regularization and optimizes an energy
function. Herein, we propose a novel method that combines both
approaches, and as such, is more robust to noise. The second
contribution of this work is the introduction of the L1 norm as the
regularization term in our cost function, which is often referred to
as the total variation (TV) regularization. Compared to previous
work that used the L2 norm regularization, optimization of the
new cost function is more challenging. However, the advantages
of using the L1 norm are twofold. First, it leads to substantial
improvement in the sharpness of displacement estimates. Second,
to optimize the cost function with the L1 norm regularization,
we use an iterative method that further increases the robustness.
We name our proposed method OVERWIND (tOtal Variation
Regularization and WINDow-based time delay estimation) and
show that it is robust to signal decorrelation and generates
sharp displacement and strain maps for simulated, experimental
phantom and in-vivo data. In particular, OVERWIND improves
strain contrast to noise ratio (CNR) by 27.26%, 144.05% and
49.90% on average in simulation, phantom and in-vivo data,
respectively, compared to our recent Global Ultrasound Elas-
tography (GLUE) [1] method.

Index Terms—Ultrasound elastography, Time delay estimation
(TDE), Total variation regularization, Window-based TDE

I. INTRODUCTION

Ultrasound imaging is one of the most commonly used
imaging modalities since it is inexpensive, safe, convenient
and widely available including at the bedside. Elastography-
based ultrasound imaging techniques have received substantial
attention in recent years due to their ability in detecting
pathological tissue alterations non-invasively, which can sub-
stantially improve the capabilities of ultrasound imaging in
both diagnosis and image-guided interventions.

Ultrasound Elastography (USE) has been explored for sev-
eral clinical applications in recent years such as ablation guid-
ance and monitoring [2] and breast lesion characterization [3]–
[5]. USE is generally considered superior to ultrasound B-
mode imaging and equal or superior to mammography in
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differentiating benign lesions from the malignant ones in the
breast [6]–[9]. Surgical treatment of liver cancer [10]–[12],
assessment of fibrosis in chronic liver diseases (CLD) [13],
[14], differentiating benign thyroid nodules from malignant
ones [15]–[18], detecting Prostate cancer [19], [20], differen-
tiating abnormal lymph nodes in benign conditions [21] and
brain tumor surgery [22], [23] are other clinical applications
of USE.

The main idea behind USE techniques lies in monitoring
tissue motion (induced by external stimuluses or internal
forces often based on the pumping action of the heart), and
inferring mechanical properties of the tissue from the motion.
Estimation of tissue displacement is also referred to as time
delay estimation (TDE), and is often performed using raw
radio-frequency (RF) data. Different techniques of USE can
be broadly grouped into dynamic and quasi-static elastography.
Dynamic methods such as shear wave imaging (SWI) [24]–
[26] and acoustic radiation force imaging (ARFI) [27] use
Acoustic Radiation Force (ARF) to generate displacement in
the tissue and can provide quantitative mechanical proper-
ties of tissue. However for quasi-static elastography, external
excitation is performed by simply pressing ultrasound probe
against tissue [28], [29] which can be done using a robotic
arm [30], [31] or a hand-held probe (i.e. free-hand palpation)
[32], [33]. In this paper, we focus on quasi-static free-hand
palpation USE and compress the tissue in the axial direction,
which inevitably creates deformation in both lateral and out
of plane directions. While axial and lateral displacements can
be calculated from 2D ultrasound images, estimation of out-
of-plane movement requires 3D ultrasound images [34]–[36].
Displacement estimation is more accurate in the axial direction
because of the high resolution of ultrasound images in this
direction.

TDE methods can be broadly categorized into window-
based and regularized optimization-based approaches. The
problem of displacement estimation is ill-posed since the
displacement of one sample by itself cannot be uniquely cal-
culated [37]. In the window-based methods, a window is con-
sidered around the reference sample for which displacement
is being estimated to change TDE to a well-posed problem.
By assuming that all samples in the window have similar
displacements, a corresponding window with similar sample
values in the following image is located. Several similarity
metrics are used to locate corresponding window such as
maximization of the normalized cross correlation (NCC) of
windows [38]–[40], phase-correlation wherein zero crossing
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of phase determines displacement [41] and sum of absolute
difference of windows [42]. Optimizing a regularized cost
function is another approach for USE that impose smoothness
regularization to make the problem well-posed [43]–[49].
These methods were computationally complex, but real-time
USE based on regularized cost functions have recently been
developed by exploiting Dynamic Programming and Analytic
Minimization (DPAM) [50], [51] and GLobal Ultrasound
Elastography (GLUE) [1]. These methods result in dense
displacement and strain fields with the same size as the
RF data. The main disadvantage of these methods is that
utilizing quadratic regularization term leads to over-smoothed
displacement fields.

Inspired by [37], we combine window-based and regularized
optimization-based methods to increase robustness of the algo-
rithm against noise which is abundant in free-hand USE due to
out-of-plane movement, blood flow and other biological mo-
tions common in in-vivo data. The second major novelty of this
paper is that we use total variation regularization (also known
as the L1 norm regularization), which results in substantially
sharper displacement maps. An iterative method is utilized
for estimating the displacement, which further increases ac-
curacy and robustness of the estimation against noise. We
call our method tOtal Variation rEgulaRization and WINDow-
based time-delay estimation (OVERWIND) and show that
it outperforms both window-based and regularization-based
approaches.

II. METHODS

Let I1 and I2 be the two frames of RF data collected
as the tissue is undergoing some deformation. TDE entails
estimating the displacement field between these two images.
In this section, we first briefly describe the closely related
previous work (GLUE) [1] and then present OVERWIND and
derive equations to calculate TDE using this method.

A. GLUE: GLobal Ultrasound Elastography

In GLUE, the displacements are divided into integer and
subsample displacement estimates. The initial integer displace-
ment estimates come form Dynamic Programming (DP) [46].
The goal of GLUE is to calculate the subsample displacement
component by minimizing the following cost function:

C(∆a1,1, ∆l1,1, , . . . , ∆am,n, ∆lm,n) =
Σn
j=1Σ

m
i=1{D(i, ai,j , ∆ai,j , j, li,j , ∆li,j)

+R(i, ai,j , ∆ai,j , j, li,j , ∆li,j)}
(1)

where the data term D is:

D(i, ai,j , ∆ai,j , j, li,j , ∆li,j) = [I1(i, j)
−I2(i+ ai,j +∆ai,j , j + li,j +∆li,j)]
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and the regularization term R is:

R(i, ai,j , ∆ai,j , j, li,j , ∆li,j) =
α1(ai,j +∆ai,j − ai−1,j −∆ai−1,j)2
+α2(ai,j +∆ai,j − ai,j−1 −∆ai,j−1)2

+β1(li,j +∆li,j − li−1,j −∆li−1,j)2
+β2(li,j +∆li,j − li,j−1 −∆li,j−1)2.

In these equations, I1 and I2 are pre- and post- compressed RF
data of size m× n. Notation ai,j and lij are axial and lateral
integer displacements that are estimated by DP and ∆ai,j and
∆li,j are axial and lateral subsample displacements that should
be calculated. Finally, α1, α2, β1 and β2 are regularization
parameters.

GLUE calculates the displacement estimates of all samples
of the RF data simultaneously. As such, GLUE is relatively ro-
bust to local signal decorrelations since correlated areas guide
the decorrelated regions. However, its displacement maps are
very smooth, which leads to blurry strain images. In the next
subsection, we increase robustness and also tackle problem
of blurriness by introducing OVERWIND, which replaces
the data term with a window-based term, and substitutes the
regularization term with total variation regularization.

B. Utilizing Window-Based Data Terms

Inspired by [37], we combine window- and optimization-
based methods to increase robustness of elastogram against
noise by utilizing information available in the neighborhood of
the reference sample. Therefore, for pixel (i, j), we consider a
window of size (2wa+1)×(2wl+1) around sample (i, j) and
assume that all samples in this neighborhood have the same
displacement as sample (i, j), an assumption that is similar
to the one used in the window-based methods. Therefore, the
data term in Eq. (1) is replaced by

D(i, ai,j , ∆ai,j , j, li,j , ∆li,j) =
1

(2wa+1)(2wl+1)Σ
wa

k=−wa
Σwl
r=−wl

(
I1(i+ k, j + r)

−I2(i+ k + ai,j +∆ai,j , j + r + li,j +∆li,j)
)2

The unknown variables ∆a and ∆l are now inside the “non-
linear function”I2, which means that the cost function cannot
be optimized efficiently. To make the data term quadratic,
we replace I2(i + k + ai,j + ∆ai,j , j + r + li,j + ∆li,j)
with its first order Taylor series expansion around (i + k +
ai,j , j + r + li,j). Furthermore, to simplify the notation, we
denote 1

(2wa+1)(2wl+1)Σ
wa

k=−wa
Σwl
r=−wl

(.) as 1
LΣk,r(.) and

I2(i + k + ai,j , j + r + li,j) as I2(.), so the data term can
be rewritten as

D(i, ai,j , ∆ai,j , j, li,j , ∆li,j) =
1

L
Σk,r

(
I1(i+ k, j + r)

−I2(.)−∆ai,jI ′2a(.)−∆li,jI ′2l(.)
)2 (2)

where I ′2a(.) and I ′2l(.) are derivatives of I2 in axial and lateral
directions, respectively.

C. Using L1 Norm Regularization

The second issue of GLUE arises from the L2 norm
regularization, which penalizes high gradients of displacement,
and as such, prevents discontinuities in the displacement field.
To cope with this problem, a non-quadratic regularization term
should be utilized. The L1 norm regularization, which has a
form of δ(s) = |s| =

√
s2 has optimal characteristic in terms

of allowing sharp transitions. Although this regularization
is convex, it is not differentiable at s = 0, which means
that it cannot be efficiently optimized. A commonly used
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technique to address this problem is to slightly perturb the
regularization term around s = 0 [52]. In this paper, we
use δx(s) = 2λx

√
λ2x + s2 for regularization, where λx is

a scaling parameter.

An inherent feature of regularization is that it reduces
estimation variance at the cost of increased bias. In other
words, we penalize the difference between ai,j + ∆ai,j and
ai−1,j −∆ai−1,j , which leads to an underestimated displace-
ment estimation. To prevent this kind of underestimation bias,
εa and εl can be considered in the regularization term, where
εa is the average of integer axial displacement difference
between subsequent samples i and i− 1 and εl is the average
of integer lateral displacement difference between samples j
and j − 1 which are available from DP.

Inserting the proposed non-quadratic and unbiased regular-
ization term, we have:

R(i, ai,j , ∆ai,j , j, li,j , ∆li,j) =
α1δ1(ai,j +∆ai,j − ai−1,j −∆ai−1,j − εa)
+α2δ2(ai,j +∆ai,j − ai,j−1 −∆ai,j−1)
+β1δ3(li,j +∆li,j − li−1,j −∆li−1,j)
+β2δ4(li,j +∆li,j − li,j−1 −∆li,j−1 − εl).

(3)

Considering Eqs. (2) and (3), the final cost function can be
presented as

C(∆a1,1, . . . ,∆am,n) = Σn
j=1Σ

m
i=1

[
1
LΣk,r

(
I1(i+ k, j + r)

−I2(.)−∆ai,jI ′2a(.)−∆li,jI ′2l(.)
)2

+α1δ1(ai,j +∆ai,j − ai−1,j −∆ai−1,j − εa)
+α2δ2(ai,j +∆ai,j − ai,j−1 −∆ai,j−1)
+β1δ3(li,j +∆li,j − li−1,j −∆li−1,j)

+β2δ4(li,j +∆li,j − li,j−1 −∆li,j−1 − εl)
]
.

To find the optimal ∆ai,j and ∆li,j values, one needs to dif-
ferentiate C with respect to ∆ai,j and ∆li,j and set the deriva-
tives to zero, i.e. ∂C

∂∆ai,j
= 0, and ∂C

∂∆li,j
= 0. To cope with the

nonlinearity that δ′x(s) will introduce to equations, we can use

iterative methods wherein we assume ϑ =
1√

λ2x + s2
is fixed

and equations are linear in each iteration. After every iteration,
ϑ will use the updated value in the previous iteration. In this
case by stacking all 2mn unknown parameters in a vector as
∆d2m×n = [∆a1,1,∆l1,1∆a1,2,∆l1,2, · · · ,∆am,n,∆lm,n]T,
the following linear equation should be solved to obtain the
optimal subsample displacements

(H +D)∆d =
1

L
Σk,r(Pµ)−Dd− b1εa − b2εl (4)

where

H = diag{h(1, 1), · · · , h(1, n), · · · , h(m, 1), · · · , h(m,n)}

and h(i, j) is a 2× 2 matrix as

h(i, j) =

[
1
LΣk,r(I

′
2a(.))2 1

LΣk,r(I
′
2a(.)I ′2l(.))

1
LΣk,r(I

′
2a(.)I ′2l(.))

1
LΣk,r(I

′
2l(.))

2

]
.

P is a diagonal matrix as

P = diag{e(1, 1), · · · , e(1, n), · · · , e(m, 1), · · · , e(m,n)}

where e(i, j) is a 2× 2 matrix as

e(i, j) =

[
I ′2a(.) 0

0 I ′2l(.)

]
.

µ is a vector as

µ = [g1,1, g1,2, · · · , gm,n]T ⊗ [1, 1]T

where gi,j is subtraction of two images as

gi,j = I1(i+ k, j + r)− I2(.)

and ⊗ is Kronecker tensor product. The matrix D can be
organized as

D =



Q1 R1 0 0 . . . . . . 0
R1 S1 R2 0 0 . . . 0

0 R2 S2 R3 0
. . .

...
...

. . . . . . . . . . . . . . .
...

0 0 0 Rm−3 Sm−3 Rm−2 0

0 0 0
. . . Rm−2 Sm−2 Rm−1

0 . . . . . . 0 0 Rm−1 Q2


where Q1, Q2 and Sz, z ∈ {1, · · · ,m−2} are pentadiagonal
matrices with the following structure

∗ 0 ∗
0 ∗ 0 ∗ 0
∗ 0 ∗ 0 ∗

. . . . . . . . . . . . . . .
∗ 0 ∗ 0 ∗

0 ∗ 0 ∗ 0
∗ 0 ∗


with the main diagonals (md) given in Eqs. (8) and (9).
The first upper/lower diagonals are zero, while the second
upper/lower diagonals (sd) are

Q1sd = −
[
Θ2(1, 2),Γ2(1, 2), · · · ,Θ2(1, n),Γ2(1, n)

]T
,

Q2sd = −
[
Θ2(m, 2),Γ2(m, 2), · · · ,Θ2(m,n),Γ2(m,n)

]T
,

Szsd = −
[
Θ2(z + 1, 2),Γ2(z + 1, 2),

· · · ,Θ2(z + 1, n),Γ2(z + 1, n)
]T

where

Θ1(i, j) =
α1λ1√

λ21 + (ai,j +∆ai,j − ai−1,j −∆ai−1,j − ε)2
,

Θ2(i, j) =
α2λ2√

λ22 + (ai,j +∆ai,j − ai,j−1 −∆ai,j−1)2
,

Γ1(i, j) =
β1λ3√

λ23 + (li,j +∆li,j − li−1,j −∆li−1,j)2
,

Γ2(i, j) =
β2λ4√

λ24 + (li,j +∆li,j − li,j−1 −∆li,j−1)2
.

Rκ, κ ∈ {1, · · · ,m−1}, are diagonal matrices with the main
diagonal given by

−
[
Θ1(κ+ 1, 1),Γ1(κ+ 1, 1), · · · ,Θ1(κ+ 1, n),Γ1(κ+ 1, n)

]T
.

Finally vectors b1 and b2 are defined in Eq. (10).
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The OVERWIND code is currently implemented in Matlab
and takes 2.9 seconds on a 3.20 GHz i7 Intel CPU for an image
of size 1000× 100. By implementing OVERWIND in C and
using graphics cards, it can achieve real-time performance.

In the final step, the estimated displacement field is spatially
differentiated to calculate strain. In particular, a least squares
regression technique is used to limit the effect of noise on the
gradient operator.

III. RESULTS

OVERWIND combines window-based methods with regu-
larized optimization-based techniques. To illustrate its perfor-
mance, we compare it to NCC (a pure window-based method)
and GLUE (a pure regularized optimization-based method) on
data collected from simulations, phantom and in-vivo experi-
ments. For comparison to GLUE, the publicly available GLUE
code is used. NCC is straightforward to implement, but suffers
from sensitivity to signal de-correlation and false peaks which
occur when a secondary NCC peak or zero crossing of phase or
sum of absolute difference exceeds the true ones. To reduce the
chance of false peaks, time-domain cross correlation with prior
estimates (TDPE) is introduced in [40] which is also utilized in
this paper to complement NCC with windows of size (10×4)
λ and 86% overlap of windows. In addition, 3-point parabolic
interpolation is used to find the 2D sub-sample location of
the correlation peak. The results of NCC with a spline-
based interpolation method to find the subsample displacement
estimates are shown in the Supplementary Material, available
in the supplementary files/multimedia tab. In TPDE, only a
small part of post compressed RF data should be searched
for correlated window and the searching area is limited to
a neighborhood around the previous time-delay estimate. To
improve the results of NCC, we up-sample the RF data using
2D splines by a factor of 10 in both dimensions and down-
sample estimated displacement from NCC using 2D splines by
a factor of 1/10. This significantly improves the results at a
cost of increased computational complexity by a factor of more
than 100. The Signal to Noise Ratio (SNR) and Contrast to
Noise Ratio (CNR) are also considered to highlight differences
in the outputs of the two approaches quantitatively. The SNR
and CNR are computed according to [53]:

SNR =
s̄

σ
, CNR =

√
2(s̄b − s̄t)2

σ2
b + σ2

t

, (5)

where s̄t and s̄b are averages of strain in the target and
background windows, σ2

b and σ2
t are variances of the strain

in the target and background windows, and s̄ and σ are the
average and standard deviation of strain over small windows,
respectively. It is important to note that each window should
be large enough to ensure statistically meaningful values of
mean and variance, and should be located in a region where
the ground truth strain is uniform within the window.

A. Simulation Data

The first simulation experiment has a sharp change in
the displacement field to highlight the differences between
GLUE and OVERWIND. All samples of the image have a

displacement of zero, except for a rectangle in the middle
which is moved by two pixels as shown in Fig. 1(a).

In the next step, a homogeneous phantom with a cylindrical
inclusion with zero stiffness as shown in Fig. 2 is considered.
The inclusion simulates a vein which has little resistance
to compression. Ultrasound images are generated using the
Field II ultrasound simulation software [54] by considering
slightly more than 10 scatterers per mm3 to satisfy Rayleigh
scattering regime [55]. Deformations are computed using the
ABAQUS FEM software package (Providence, RI, USA). For
computing displacement of scatterers, the phantom is meshed
and compressed using finite element simulation to get the 3D
displacement of each node of the mesh. The displacement of
each scatterer is then calculated by interpolating the displace-
ment of its neighboring nodes.

Two additional phantoms are simulated for a more thorough
comparison between the proposed method and GLUE, and the
results are provided in the Supplementary Material, available
in the supplementary files/multimedia tab.

B. Simulation Results

For the first simple simulation experiment, the estimated
displacement fields obtained from GLUE and OVERWIND are
shown in Fig. 1(b) and (c), respectively. This example clearly
illustrate the limitation of the L2 norm in GLUE, which puts
very heavy penalty in sharp changes in the displacement field
because of the power 2. Whereas the L1 norm in OVERWIND
tolerates sharp changes in displacement, and as such, creates
a displacement field that is very sharp.

In the second simulation study, the simulated phantom is
compressed by 1% and the resulting strain images estimated
by NCC, GLUE and OVERWIND are shown in Fig. 3. The
OVERWIND strain image is the closest one to the ground-
truth strain, especially around the inclusion where its edges
are substantially sharper. To better compare the results, the
Edge Spread Functions (ESF) of the estimated strain fields
across two vertical and horizontal lines of Fig. 3 (a) are
depicted in Fig. 4. It is further clarified from these plots that
the ESF of OVERWIND is substantially closer to the ground
truth as compared to both NCC and GLUE. The ESF of all
horizontal and vertical lines which pass through the target
window are shown in the Supplementary Material, available
in the supplementary files/multimedia tab.

To compare the sensitivity of different methods against
noise, we add two levels of Gaussian noise with peak signal-
to-noise ratio (PSNR) values of 20 and 16.4 to the simulated
RF data. NCC fails to estimate strain given the large energy
of noise, and therefore, only the results of GLUE and OVER-
WIND are shown in Fig. 5. It is clear that the strain image of
OVERWIND substantially outperforms that of GLUE.

To quantitatively compare the results, the SNR and CNR
of strain images are shown in Table I. For calculating these
values, we ran a Monte Carlo simulation by estimating strains
1000 times with different random noise realizations. The mean
and standard deviation (std) of SNR and CNR for these 1000
experiments are reported for different levels of noise. As
seen from Figs. 3 and 5, and Table I not only OVERWIND
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Q1md =



Θ1(2, 1) + Θ2(1, 2)
Γ1(2, 1) + Γ2(1, 2)

Θ1(2, 2) + Θ2(1, 2) + Θ2(1, 3)
Γ1(2, 2) + Γ2(1, 2) + Γ2(1, 3)

...
Θ1(2, n− 1) + Θ2(1, n− 1) + Θ2(1, n)
Γ1(2, n− 1) + Γ2(1, n− 1) + Γ2(1, n)

Θ1(2, n) + Θ2(1, n)
Γ1(2, n) + Γ2(1, n)


, Q2md =



Θ1(m, 1) + Θ2(m, 2)
Γ1(m, 1) + Γ2(m, 2)

Θ1(m, 2) + Θ2(m, 2) + Θ2(m, 3)
Γ1(m, 2) + Γ2(m, 2) + Γ2(m, 3)

...
Θ1(m,n− 1) + Θ2(m,n− 1) + Θ2(m,n)
Γ1(m,n− 1) + Γ2(m,n− 1) + Γ2(m,n)

Θ1(m,n) + Θ2(m,n)
Γ1(m,n) + Γ2(m,n)


, (8)

Szmd =



Θ1(z + 1, 1) + Θ1(z + 2, 1) + Θ2(z + 1, 2)
Γ1(z + 1, 1) + Γ1(z + 2, 1) + Γ2(z + 1, 2)

Θ1(z + 1, 2) + Θ1(z + 2, 2) + Θ2(z + 1, 2) + Θ2(z + 1, 3)
Γ1(z + 1, 2) + Γ1(z + 2, 2) + Γ2(z + 1, 2) + Γ2(z + 1, 3)

...
Θ1(z + 1, n− 1) + Θ1(z + 2, n− 1) + Θ2(z + 1, n− 1) + Θ2(z + 1, n)
Γ1(z + 1, n− 1) + Γ1(z + 2, n− 1) + Γ2(z + 1, n− 1) + Γ2(z + 1, n)

Θ1(z + 1, n) + Θ1(z + 2, n) + Θ2(z + 1, n)
Γ1(z + 1, n) + Γ2(z + 2, n) + Γ2(z + 1, n)


, (9)

b1 = [Θ1(2, 1), 0, · · · ,Θ1(2, n), 0,Θ1(3, 1)−Θ1(2, 1), 0, · · · ,Θ1(3, n)−Θ1(2, n), 0, · · · ,Θ1(m, 1)−Θ1(m− 1, 1), 0, · · · ,
Θ1(m,n)−Θ1(m− 1, n), 0,−Θ1(m, 1), 0, · · · ,−Θ1(m,n), 0]

b2 = [0,Γ2(2, 1), · · · , 0,Γ2(2, n), 0,Γ2(3, 1)− Γ2(2, 1), · · · , 0,Γ2(3, n)− Γ2(2, n), · · · , 0,Γ2(m, 1)− Γ2(m− 1, 1), · · ·
, 0,Γ2(m,n)− Γ2(m− 1, n), 0,−Γ2(m, 1), · · · , 0,−Γ2(m,n)]

(10)

TABLE I: Mean and standard deviation of SNR and CNR
for 1000 strain images of the simulated phantom for different
methods and noise levels. Windows that are considered for
calculating CNR are shown in white and black lines in Fig. 3.
The white window is considered for calculation of SNR. The
mean improvement of OVERWIND compared to GLUE is also
reported for each level of noise.

PSNR SNR CNR
mean (std) mean (std)

∞

NCC 2.05 (-) 17.07 (-)
GLUE 2.61 (-) 23.51 (-)
OVERWIND 3.09 (-) 28.51 (-)

(No noise) Improvement 18.39% 21.26%

20

NCC fails fails
GLUE 2.14 (0.72) 18.79 (2.89)
OVERWIND 2.92 (0.52) 25.51 (3.30)
Improvement 31.77% 33.26%

16.4

NCC fails fails
GLUE fails fails
OVERWIND 1.59 (0.97) 18.37 (5.06)
Improvement - -

outperforms GLUE for each level of noise, but also has more
robust performance against increasing the amplitude of noise.

C. Experimental Data
The phantom experiment is carried out at PERFORM centre,

Concordia University. RF data is acquired from a model 059
tissue mimicking breast phantom (CIRS, Norfolk, VA, USA)
using an E-Cube R12 ultrasound machine (Alpinion, Bothell,
WA, USA) with a L3-12H probe operating at the center
frequency of 7.27 MHz and sampling frequency of 40 MHz.

For the clinical study, we analyze data from three patients
with liver cancer. The data was collected at the Johns Hop-
kins hospital with an Antares ultrasound machine (Siemens,
Issaquah, WA, USA) using a VF10-5 linear probe with a center
frequency of 6.6 MHz and sampling frequency of 40 MHz.
The study was approved by the ethics institutional review
board at Johns Hopkins University.

D. Phantom Results
For the phantom data, strain images estimated by NCC,

GLUE and OVERWIND are shown in Fig. 6. The estimated
strain by GLUE suffers from artifacts and regularization
weights should be increased to remove these artifacts. How-
ever, by increasing the regularization weights, more blurriness
especially on the edges of the inclusion is generated. OVER-
WIND produces a much smoother image than other methods
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Fig. 1: Comparison of GLUE and OVERWIND in a simulation experiment. In comparison to the ground-truth displacement
in (a), the displacement field estimated by GLUE in (b) is not sharp and also underestimates the magnitude of displacement.
In contrast, the result of OVERWIND is sharp and also more similar to the ground truth.

Fig. 2: Schematic of the simulated phantom by Field II
with the simulated vein in the middle with zero stiffness
(reproduced from [51]).

while preserving the sharpness of edges. For comparing the
ESF plots, we consider two perpendicular lines in the strain
profile of NCC, GLUE and OVERWIND shown as black lines
in Fig. 6 (c) and illustrate the calculated strain profiles across
these lines. The results presented in Fig. 7, demonstrate that
OVERWIND is less noisy and sharper around the edges. The
ESF of all horizontal and vertical lines that pass through
the target window are shown in the Supplementary Material,
available in the supplementary files/multimedia tab. It can be
seen from Fig. 6 that the strain values at the right and left side
of the phantom are not equal. This is caused by applying a
compression that is not purely axial and likely contains some
in-plane rotation, which is possible in hand-held compressions.

For a comprehensive CNR and SNR comparison, the results
of histogram analysis are shown in Fig. 7. The target and back-
ground windows considered for CNR and SNR calculation are
shown in Fig. 6 (a). We have moved the small red window
within the large red window to take 9 target windows. At
the same time, the small blue window is swiped within the
large blue window to consider 24 background windows. CNR
is calculated for every combination of target and background
windows, resulting in 216 values. SNR is calculated for all
24 background windows. Fig. 7 shows the distribution of
the aforementioned CNR and SNR values. It is clear from

these histograms that OVERWIND produces strain images
with higher SNR and CNR. The mean of 216 CNR values
are 15.40, 6.31 and 6.28 for OVERWIND, GLUE and NCC,
respectively. Moreover, the mean of 24 SNRs are 42.7, 12.77
and 16.72 for OVERWIND, GLUE and NCC, respectively.

E. In-vivo Results

NCC fails in estimating strains for this in-vivo data and
therefore only the results of GLUE and OVERWIND are
presented in Figs. 8, 9 and 10. While the strain images clearly
show the tumor in these three patients, the B-mode image
hardly shows the tumor especially in patients 1 and 3.

The OVERWIND strain images are much smoother than
GLUE while preserving the sharp edges of the tumors and the
veins. For quantitative comparison of two methods, the CNR
and SNR of the strains are calculated and the results are pre-
sented in Table II, which also corroborate better performance
of OVERWIND.

In the last experiment, data collected from patient 3 shows
the left anterior branch of portal vein. This vein is marked
by the symbol ‘A’ in Fig. 10-(a) and has low pressure.
Therefore, it compresses easily during free-hand palpation,
which results in high strain values. The boundaries of the veins
are substantially sharper in the OVERWIND strain image.

In the Supplementary Material (available in the supplemen-
tary files/multimedia tab), we compare the results of GLUE
and OVERWIND for different regularization weights. These
results show that both methods generate smoother strain im-
ages with higher regularization weights as expected. However,
OVERWIND generates substantially sharper strain estimates at
the boundaries of different types of tissue, and smoother strain
estimates in homogenous regions.

IV. DISCUSSION

In this paper, a method named OVERWIND is proposed for
ultrasound elastography. OVERWIND generates displacement
estimation fields that are smooth in uniform regions and sharp
at boundaries of two mediums, which was not possible with
previous techniques such as GLUE or NCC.
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Fig. 3: Strain estimated by three methods in the FEM simulated phantom. The black and white boxes in (a) are used as the
foreground and background windows respectively for calculating CNR. The dashed-dotted horizontal and vertical lines in (a)
are used for plotting the edge spread function of Fig. 4.
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Fig. 4: Edge spread function of NCC, GLUE and OVERWIND
for the FEM simulated phantom across two perpendicular lines
shown in Fig. 3 (c).

TABLE II: SNR and CNR values in calculated strain fields
of two patients. Windows that are considered for calculating
CNR are shown in Figs. 8, 9 and 10 and only black windows
are considered for SNR.

SNR CNR
OVERWIND GLUE OVERWIND GLUE

P1 11.54 10.31 8.97 7.67
P2 13.90 7.69 10.48 5.92
P3 8.37 4.46 4.81 2.59
Average 11.27 7.48 8.08 5.39
Improv-
ement 50.66% 49.90%
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Fig. 5: Estimated strain images in the FEM simulation exper-
iment by adding Gaussian noise to pre- and post-compressed
RF data.

In OVERWIND, a cost function containing two parts is
introduced for optimal displacement estimation. In the first part
of the proposed cost function, the difference of two images as
pre- and post- compressed RF data are penalized. By assuming
that neighboring samples have the same displacement, small
windows are considered around each sample and all samples
in these windows are forced to have the same displacement in
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Fig. 6: B-mode and strain images of the CIRS phantom.
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Fig. 7: Edge spread function of estimated strains by NCC, GLUE and OVERWIND in the CIRS phantom experiment across two
perpendicular lines specified in Fig. 6 (c) are shown in (a) and (b). Histograms of CNR (c) and SNR (d) for estimated strains
by NCC, GLUE and OVERWIND for all 216 combination of target and background windows that are shown in Fig. 6 (a).

the pre- and post-compression RF data. Therefore, this method
increases robustness against noise by utilizing information
from neighboring samples. Noise is a significant detrimental
factor in free-hand palpation elastography. An example that
increases noise is the out-of-plane motion in the images
especially when the probe has to be held at difficult angles
in the in-vivo experiments. Other sources of noise are blood
flow and biological motions and heat generated in the ablation
procedures. Therefore, robust methods play an important role
in wider adoption of ultrasound elastography. The proposed
OVERWIND method successfully estimated strains for sim-
ulation data with added noise and phantom data as well as
in-vivo data that are intrinsically noisy.

The background in the phantom experiment does not show
uniform strain for three main reasons. First, there is an
important distinction between strain and elasticity modulus.
Even in a simulation experiment with perfectly uniform back-
ground and uniform axial compression, the strain values vary
significantly. Second, the compression is applied by hand
and therefore the right and left hand side of the image may
experience different compression levels. And third, the breast
phantom is not cubic and due to its curved surface, different

compression levels are applied at different locations.
The second term of cost function deals with regularization

which penalizes displacement of neighbor samples. In the
previous methods like GLUE, a quadratic term of displace-
ment differences is utilized which causes over-smoothing.
An intuitive reason for over-smoothing is that a change in
displacement, for example, of 3 samples will result in a large
penalty of 32 = 9. Therefore, the L2 norm regularization tries
to break down this large transition to 3 changes, each at 1
sample to incur a smaller penalty of 1+1+1 = 3, which leads
to blurry edges. Herein, we changed the regularization term to
the L1 norm which assigns a smaller penalty to discontinuities.
This modification added nonlinear terms to the cost function,
and therefore, we used iterative methods to optimize the
cost function. Results that are presented in this paper are
obtained in 5 iterations. Utilizing the L1 norm also introduces
a scaling parameter that strikes a balance between sharpness
and robustness to noise. As is shown in the Results Section,
GLUE suffers from artifacts that can be reduced by increasing
regularization weights, which has a negative impact of losing
information especially in edges. However, in OVERWIND,
there is a tradeoff between regularization weights and scaling
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Fig. 8: B-mode and strain images of patient 1 (P1).
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Fig. 9: B-mode and strain images of patient 2 (P2).
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Fig. 10: B-mode and strain images of patient 3 (P3).

parameters which can remove artifacts much more than GLUE
by increasing regularization weights while preserving useful
information in edges by properly tuning the scaling parameter.

OVERWIND provides denser estimation for all samples of
RF data, in contrast to window-based methods that provide dis-
placement estimates for larger windows. Therefore, it is more
suitable for imaging small targets. In addition, OVERWIND
does not blur the boundaries, which reduces the detectability
of small targets.

A concern regarding OVERWIND is the size of equations
and memory amount that is required to store parameters
because it deals with large matrices of size 2mn× 2mn. For
a typical RF frame of size 1000× 100, this matrix will be of

size 200000×200000 needing 298 GB of memory for storage
in double precision floating point format. Fortunately, most
elements of these matrices are zero, and as such, they can
be stored as sparse matrices to reduce memory load. As an
example, left hand side of Eq. (4) for a typical RF frame of
size 1000×100 needs only 19.73 MB and the right hand side
uses 1.52 MB of memory, if they are stored as sparse matrices.

For differentiation of each sample, a window of size
(2ρ+1)×1 has been considered around the reference sample.
Utilizing the least square method, a line is fitted to these
samples and its slope is regarded as the strain value of that
sample. Moving the center of the window one step forward,
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strain of the next sample will be calculated. It is clear that
a large value for ρ makes the image smoother at the cost
losing information, while a small ρ may increase noise in strain
estimation. We used windows of length 53, 63 and 83 (i.e.
ρ = 26, ρ = 31 and ρ = 41 ) for simulation, phantom and in-
vivo results, respectively. In our previous method DPAM [51],
we proposed a Kalman filter for estimating a strain image
that is sharp at boundaries of different tissues and smooth
in homogenous regions. OVERWIND also has the same final
goal, but it achieves this goal by estimating a high-quality
displacement image. In other words, Kalman filter is a post-
processing technique applied on noisy displacement estimates
to estimate sharp strain estimates. To show that OVERWIND
is superior to DPAM and Kalman filtering, we show the
results of simulation, phantom and in-vivo experiments in
the Supplementary Material, available in the supplementary
files/multimedia tab.

V. CONCLUSION

In this paper we proposed a novel method for real time
ultrasound elastography. We coupled the two well-known
window-based and regularized optimization-based methods to
increase robustness against noise. Another advantage of the
proposed method was utilizing the total variation L1 norm
regularization instead of the L2 norm regularization, which
results in sharper strain images. We compared the performance
of our approach with GLUE and NCC on data collected from
simulations, phantom set-ups, and in-vivo experiments.
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