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ABSTRACT

Out-of-plane motion in freehand 3D ultrasound can be estimated using the correlation of corresponding patches,
leading to sensorless freehand 3D ultrasound systems. The correlation between two images is related to their
distance by calibrating the ultrasound probe: the probe is moved with an accurate stage (or with a robot in
this work) and images of a phantom are collected, such that the position of each image is known. Since parts
of the calibration curve with higher derivative gives lower displacement estimation error, previous work limits
displacement estimation to parts with maximum derivative. In this paper, we first propose a novel method for
exploiting the entire calibration curve by using a maximum likelihood estimator (MLE). We then propose for
the first time using constrains inside the image to enhance the accuracy of out-of-plane motion estimation. We
specifically use continuity constraint of a needle to reduce the variance of the estimated out-of-plane motion.
Simulation and real tissue experimental results are presented.
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1. INTRODUCTION

Most common techniques for acquiring 3D ultrasound data are oscillating head probes and freehand 3D ultra-
sound. In oscillating head probes, a 1D ultrasound transducer is automatically swept inside the probe, enabling
3D image acquisition. In freehand 3D ultrasound, a position sensor is attached to an ordinary probe which is
swept over the desire region by the clinician.

Freehand 3D ultrasound is inexpensive, works with the existing 2D probes, and allows arbitrary 3D volume
acquisition. However, the need for the additional sensor makes it difficult to use. Sensorless volume reconstruction
of freehand 3D ultrasound is possible using the information in the images themselves: out of plane motion
estimation can be obtained from image correlation,1 which is the focus of this work, while in plane motion can
be estimated through image registration2–4 or by using techniques similar to elastography.5–7

The granular appearance of ultrasound images is the key factor in out-of-plane motion estimation (Figure 1).
Each pixel in an ultrasound image is formed by the back-scattered echoes from an approximately ellipsoidal region
called the resolution cell.8 The interference of scatterers in a resolution cell creates the granular appearance of
the ultrasound image, called speckle. Although of random appearance, speckle pattern is identical if the same
object is scanned from the same direction and under the same focusing and frequency. Speckle characterization
is essential in many areas of quantitative ultrasound. In this work, it is a prerequisite for speckle-based distance
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estimation. We use low order moments to discriminate fully developed speckle (FDS) patches versus coherent
speckle patches.9

R = SNR =
〈Avr 〉√

〈A2vr 〉 − 〈Avr 〉2
(1)

S = skewness =

〈
(Avs − 〈Avs〉)3

〉
(〈A2vs〉 − 〈Avs〉2)

3
2

(2)

where A is the amplitude of the ultrasound RF envelope in the analysis patch, vr and vs are the signal powers
and 〈· · ·〉 denotes the mean. Here we use10 vr = 2vs = 1. An elliptical discrimination function is calculated in
the R-S plane by performing principal component analysis (PCA) on the data from simulated FDS patches.10

A patch is then classified as FDS if its R-S duple falls inside this ellipse.

Having found FDS patches in two ultrasound images, the correlation between them is used for estimating the
distance between the two images.11 The R-S metric requires approximately 3500 pixels per patch (depending
on the correlation of data12), but such large patches (which are rectangles) of FDS are unlikely to be found in
real tissue because of its inhomogeneity.11 Gee et al.13 proposed a heuristic technique that is robust to the
lack of FDS patches in the ultrasound image. This method allows the calculation of the elevational distance for
all patches of the image, regardless of their level of coherency, by measuring the axial and lateral correlation
of each patch. Since the behavior of coherent reflectors in the elevational direction can be different from their
behavior in the axial and lateral directions, the performance of the method can decline depending on the level
of anisotropy of the tissue.

In,14 we proposed a fast algorithm to find irregularly shaped FDS patches and showed that this algorithm
finds significantly more FDS patches. Here, we use beam steering as another technique to increase the number
of FDS patches found in the image.15 This is achieved by obtaining more data from a certain region of tissue,
hence reducing the size of the analysis patch. Having found such small FDS patches, we further use the steered
images for better out-of-plane (elevational) motion estimation.

Coherent scattering causes the elevational distance measurement from the conventional correlation algorithms
to be underestimated.11 Thus, distance measurement is limited to the patches of the ultrasound image that con-
tain only FDS.11 To completely determine the out-of-plane degrees of freedom between two planes, at least three
non-collinear pairs of such patches are required.4

Since FDS patches are extremely rare in real tissue, these methods usually have a low accuracy and are only
relevant in limited tissue types. Gee et al.13 proposed a heuristic technique that is robust to the lack of FDS
patches in the ultrasound image. This method allows the calculation of the elevational distance for all patches
of the image, regardless of their level of coherency, by measuring the axial and lateral correlation of each patch.
Since the behavior of coherent reflectors in the elevational direction can be different from their behavior in the
axial and lateral directions, the performance of the method can decline depending on the level of anisotropy of
the tissue. The purpose of this work is to devise a method applicable to a various tissue types that accurately
reconstructs 3D volumes from ultrasound images.

Recently, Laporte and Arbel16,17 have proposed probabilistic fusion of noisy out-of-plane motion estimation.
This work is most similar to these works, in that it calculates the maximum likelihood estimate (MLE) of the
out-of-plane motion. We also use beam steering to obtain more data and increase the accuracy of the out of
plane motion estimation similar to.15

2. METHODS

2.1. Combining Steered Images

We are looking for rectangular FDS patches using images acquired from the same location at different steering
angles. The key idea is to combine data acquired from a certain region at different steering angles and therefore
reducing the size of the analysis patch. Figure 2 shows two images acquired at 0 and θ steering angles. A
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Figure 1. (a) shows the three directions relative to the ultrasound probe. Out-of-plane direction and elevational direction
are used interchangably in this work. (b) shows aquisition of two ultrasound images at a distance of ∆z. Ultrasound
beam is in order of a millimeter wide. This wideness affects the resolution of ultrasound image in the lateral, y, and
elevational, z, directions, as well as creating a granular pattern, called speckle. The size of the resolution cell in the axial
direction, x, is determined by the wavelength of the ultrasound wave and is magnified in this image.

rectangle patch in the left image is warped into a parallelogram and is shifted in the steered right image. The
position of the parallelogram can be simply found as a function of θ, x and y. Therefore, samples nX and nY
from the steered image correspond to samples nx and ny from the non-steered image and

nX = nx −
vUS
2ν
· n
w
· sin(θ) · ny

nY =
ny

cos(θ)
(3)

where vUS = 1540000mm/s is the speed of ultrasound in tissue, ν is the sampling frequency of the ultrasound
machine, n is the total number of the A-lines and w is the width of image in mm. To find the correspondence
of a patch, the correspondent of its four corners are found using these equations and applying nearest neighbor
interpolation. The parallelogram connecting these four corners is the correspondent of the patch.

2.2. Maximum Likelihood Motion Estimation

Assume we have two parallel ultrasound images with ground truth out-of-plane distance z (Figure 1), and that
we have measured correlation coefficients ρi for i = 1 · · ·n patches between the two images (Figure 3). The goal
is to find µz which is maximum likelihood estimate of z given all the ρi measurements. Let ρi = fi(zi) be the
calibration function that relates the out-of-plane motion zi to correlation coefficient ρi for patch i (each patch
has a different calibration function depending on its depth, see Figure 6). Assuming that ρi is drawn from a
Gaussian distribution with mean f(µz) and variance σi, the conditional probability of ρi is

Pr(ρi | µz, σ2
i ) =

1

(2πσ2
i )1/2

e
− (ρi−fi(µz))

2

2σ2
i (4)
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Figure 2. Corresponding patches in images acquired with different steering angles. In the left, a patch is shown in the
not-steered image. In the middle, the patch which corresponds to the same tissue is shown in the scan-converted steered
image. In the right, the patch is shown in the raw steered image (not scan-converted).
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Figure 3. The correlation coefficient ρi is calculated between n patches of the two images.

We assume that ρi measurements are independent. Therefore, the conditional probability of observing all the
ρi values will be simply their multiplication. Looking at the product as a function of µ and σi and taking its
logarithm to convert multiplication to summation, we have the familiar log-likelihood equation

L(
→
ρ | µz,

→
σ2) = −Σni=1

[
1

2
log σ2

i +
(ρi − fi(µz))2

σ2
i

]
+
n

2
log(2π) (5)

where
→
ρ and

→
σ2 are two vectors containing all the ρi and σ2

i measurements. In the above equation, ρi is the
correlation of two corresponding patches and is known. σ2

i is also known: it is the variance of the correlation
and is calculated in the calibration process (Figure 6). To find the ML estimate of the µz, we differentiate this
equation with respect to µz and set it to zero, arriving at

Σni=1

f ′i(µz)(ρi − fi(µz))
σ2
i

= 0 (6)

where f ′ denotes derivative of f . Unfortunately this equation is not easy to solve for µz. Instead, lets transform
ρi to zi and write the log-likelihood functions in terms of zi’s. Equation 5 becomes

L(
→
z | µz,

→
σ2
z) = −Σni=1

[
1

2
log σ2

zi +
(zi − µz)2

σ2
zi

]
+
n

2
log(2π) (7)

where σ2
zi =

σ2
i

f ′(ρi)2
is the transformed variance in the ρ domain (σi) to the z domain (σzi). Differentiating with

respect to µz and setting it to zero gives

Σni=1

zi − µz
σ2
zi

= 0 (8)



which can be easily solved to give

µz =
Σni=1

zi
σ2
zi

Σni=1
1
σ2
zi

(9)

Finally, we utilize constraints in the images to enhance out-of-plane motion estimation. Many surgical
procedures such as biopsy, drug delivery and brachytherapy involve inserting a needle into the tissue. The
prior of needle continuity can be used to decrease the variance of the measured out of plane motion (we are
assuming that the needle crosses US image plane and is not parallel to the image). Assume that the tip

of the needle can be measured at each image with a variance of [σ∗needle]
2
, and that the angle of the needle

with the normal of the ultrasound image (i.e the angle between the needle and the axes y in Figure 1) is
α. Also, let σ2

cor. denote the variance of the out-of-plane motion estimation using the correlation method and
σneedle = σ∗needle/ tan(α). Assuming both noises are Gaussian, variance of the final estimate which combines

the two estimates is
σ2
needleσ

2
cor.

σ2
needle

+σ2
cor.

. It can be easily shown that this quantity is less than both σ2
needle and σ2

cor.,

meaning that the resulting variance is less than both initial variances.

2.3. Calibration and Data Acquisition

The system operates in two distinct modes - calibration mode and image-based 3DUS reconstruction mode
(Figure 4). Both will be described from a process flow perspective. In the calibration mode, information necessary
to calibrate the distance estimations is collected (Figure 4). To this end, the robot control component steps the
robot through a series of precisely defined positions and triggers the acquisition of a single US frame (RF data)
at each position from a homogeneous fully developed speckle (FDS) phantom. These frames are associated with
their respective coordinates and stored for offline use. Then, the software system reads the batch of frames and
positions and subdivides the frames into distinct subpatches. Pairs of patches from the same location originating
from frames at different distances are correlated, thus creating a set of (strictly monotonous) calibration (or
decorrelation) curves x,y(d). These curves depend on the characteristics of the selected probe, the imaging
frequency, and the image location x, y (in particular the depth y) of the respective patches. Currently, the offline
calibration process takes 2-3 minutes including scan time to generate the needed calibration curves (decorrelation
curves). Before this recent development, manual data collection and offline processing using MATLAB scripts
used to take many hours of effort.

Figure 4. The data acquisition and calibration system (some of the blocks are the subject of future work).



(a) Calibration experiment (b) Out-of-plane motion estimation
using real tissue

Figure 5. The experimental setup for moving the probe out-of-plane and acquiring ultrasound images. In (a), the robot
moves the probe in the out-of-plane direction while the ultrasound is imaging a FDS phantom to generate the calibration
curves. In (b), the robot is moving the probe while the ultrasound is imaging real tissue, so that the speckle correlation
results can be compared to ground truth (i.e. robot readings).

3. EXPERIMENTAL SETUP

The ultrasound RF data was sampled with a robot-based system in order to achieve reliable, high-accuracy
ground truth readings for the displacements. This will give us the images we need for calibration and also the
gives us the ground truth when we reconstruct the volume. This process yielded a series of planar-parallel RF
slices through the respective phantom, in a fashion somewhat comparable to a freehand sweep. The phantoms
were positioned within the workspace of a high-precision three degrees-of-freedom (DoF ) cartesian robot stage
(DMC-21x3 with three servo motor stages, by Galil Motion Control; relative accuracy better 0.005 mm). For
calibration, the stage translated the probe to new positions every ∆x = 0.05 mm apart, then triggered RF
slice acquisition via a TTL signal connected to the ultrasound machine’s ECG trigger port, where the data was
written to file. For calibration data acquisition, a FDS phantom is imaged. For volume reconstruction, real
tissue (beef steak) is used. Figure 5 shows the experimental setup.

An Ultrasonix ultrasound machine (Burnaby, BC) with a sampling frequency of ν = 20MHz is used to acquire
RF data. To calibrate the rate of image decorrelation with out-of-plane motion, RF data of 5x80 parallel frames
were acquired from a FDS phantom at an elevational distance of 0.05 mm between consecutive images: five
frames at each location with steering angles of -5, -2.5, 0, 2.5 and 5.5 degrees. The experimental setup is shown
in Figure 5: the probe is moved with a micrometer with the accuracy of .005 mm. Calibration results showed
that the decorrelation rate is not affected by beam steering.

Out-of-plane motion estimation was performed on ex-vivo beef steak tissue. 4x80 RF frames at an elevational
distance of 0.05 mm between consecutive frames were acquired using the setup shown in Figure 5: four images
at each location with −5◦, −2.5◦, 0◦, 2.5◦ and 5◦ steering angles.
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Figure 6. Two calibration curves at depths of 10 mm and 20 mm and their variances. Note that the calibration curve
at the deeper location drop slower with the out-of-plane motion.
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Figure 7. Subdivision of an image of the FDS phantom into patches is shown.

4. OUT-OF-PLANE MOTION ESTIMATION

The correlations are calculated using Pearsons linear correlation coefficient ρ

ρ(W,Z) =
Σwizi −Nµwµz√

(Σw2
i −Nµ2

w) (Σz2i −Nµ2
z)

(10)

where wi and zi, i = 1 · · ·N , are the intensity values of each pixel in patches W and Z, N is the total number
of pixels and µw and µy are the means of the intensity values of patches W and Z respectively.

Patches that are closest to being FDS are selected as described in.15 Figure 8 shows the results of recon-
structing out-of-plane motion using the correlation values. (a) and (b) are obtained by combining the two images
with ±2.5◦ steering angle at each location, while (c) and (d) are obtained by combining the two images with
±5◦ steering angle at each location. The results show that using the MLE method slightly reduces both the
underestimation error and the variance of the out-of-plane measurements. IN addition, it can be seen from (b)
and (d) that the needle constraint reduces the variance in the measurements.

5. DISCUSSION AND CONCLUSION

Out-of-plane motion estimation is only studied here for a fixed distance between two frames, 0.4mm. A study
of accuracy as the distance varies gives insight for optimum frame selection.18,19 In freehand experiments the
images are not parallel as they are in our experiments, and therefore the rotations between the images need
to be found.11,13,20 We showed before15 that performing beam steering significantly increases the accuracy of
out-of-plane motion estimation. In this work, we showed that MLE can also be used to enhance the out-of-plane
motion estimation.



8.5 9 9.5 10 10.5
15

14

13

12

11

10

9

average no. of patches

re
la

tiv
e 

er
ro

r %

without MLE
with MLE

(a) relative error, ±2.5◦ steering angle

8.8 9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6
0.066

0.068

0.07

0.072

0.074

0.076

0.078

0.08

0.082

0.084

average no. of patches

st
an

da
rd

 d
ev

ia
tio

n W/O MLE, W/O constraint
W MLE, W/O constraint
W/O MLE, W constraint
W MLE, W constraint

(b) standard deviation, ±2.5◦ steering angle

8.5 9 9.5 10 10.5
15

14

13

12

11

10

9

average no. of patches

re
la

tiv
e 

er
ro

r %

without MLE
with MLE

(c) relative error, ±5◦ steering angle

8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8 10
0.065

0.07

0.075

0.08

0.085

0.09

average no. of patches

st
an

da
rd

 d
ev

ia
tio

n

W/O MLE, W/O constraint
W MLE, W/O constraint
W/O MLE, W constraint
W MLE, W constraint

(d) standard deviation, ±5◦ steering angle

Figure 8. relative error and standard deviation of the sensorless measurements. (a) The relative error. Reconstruction
is performed using two steered images at ±2.5◦. (b) The standard deviation of the measurements. W/O MLE refers to
without MLE, W/O constraint refers to without utilizing the needle continuity constraint, and W MLE refers to with
MLE. (c) and (d) are corresponding errors and variances with two steered images at ±5◦.



Acknowledgment

H. Rivaz is supported by the DoD Predoctoral Traineeship Award and by the Advanced Simulation Fellowship
from the Link Foundation.

REFERENCES

1. J. Chen, B. Fowlkes, P. Carson, and J. Rubin, “Determination of scan-plane motion using speckle decorre-
lation: theoretical considerations and initial test,” Imag. Sys. and Tech. 8, pp. 38–44, 1997.

2. G. Treece, R. Prager, A. Gee, C. Cash, and L. Berman, “Correction of probe pressure artifacts in freehand
3D ultrasound,” Medical Image Analysis 6, pp. 199–215, 2002.

3. B. Geiman, L. Bohs, M. Anderson, S. Breit, and G. Trahey, “A novel interpolation strategy for estimating
subsample speckle motion,” Pattern Recog. Letters 45, pp. 1541–1552, 2000.

4. R. Prager, A. Gee, G. Treece, C. Cash, and L. Berman, “Sensorless freehand 3-d ultrasound using regression
of the echo intensity,” Ultrasound Med. Biol. 29, pp. 437–446, 2003.

5. H. Rivaz, E. Boctor, P. Foroughi, G. Fichtinger, and G. Hager, “Ultrasound elastography: a dynamic
programming approach,” IEEE Trans Med Imaging 27, pp. 1373–1377, Oct. 2008.

6. H. Rivaz, I. Fleming, L. Assumpcao, G. Fichtinger, U. Hamper, M. Choti, G. Hager, and E. Boctor,
“Ablation monitoring with elastography: 2d in-vivo and 3d ex-vivo studies,” Medical Image Computing &
Computer Assisted Interventions, MICCAI, New York, NY , pp. 458–466, Sept. 2008.

7. H. Rivaz, P. Foroughi, I. Fleming, R. Zellars, E. Boctor, and G. Hager, “Tracked regularized ultrasound elas-
tography for targeting breast radiotherapy,” Medical Image Computing & Computer Assisted Interventions,
MICCAI, London, UK , pp. 507–515, Sept. 2009.

8. R. Wagner, S. Smith, J. Sandrik, and H. Lopez, “Statistics of Speckle in Ultrasound B-Scans,” IEEE Trans.
Sonics and Ultrasonics 17(3), pp. 251–268, 1983.

9. R. Prager, A. Gee, G. Treece, and L. Berman, “Analysis of speckle in ultrasound images using fractional
order statistics and the homodyned k-distribution,” Ultrasonics 40, pp. 133–137, 2002.

10. H. Rivaz, E. Boctor, and G. Fichtinger, “Ultrasound speckle detection using low order moments,” IEEE
Int. Ultrasonics Symp. , pp. 2092–2095, Oct. 2006.

11. P. Hassenpflug, R. Prager, G. Treece, and A. Gee, “Speckle classification for sensorless freehand 3-d ultra-
sound,” Ultrasound Med. Biol. 31, pp. 1499–1508, Nov. 2005.

12. V. Dutt and J. Greanleaf, “Speckle analysis using signal to noise ratios based on fractional order moments,”
Ultrasonic Imag. 17, pp. 251–268, 1995.

13. A. Gee, R. Houdson, P. Hassenpflug, G. Treece, and R. Prager, “Sensorless freehand 3d ultrasound in
real tissue: Speckle decorrelation without fully developed speckle,” Medical Image Analysis 10, p. 137:149,
Apr. 2006.

14. H. Rivaz, E. Boctor, and G. Fichtinger, “A robust meshing and calibration approach for sensorless freehand
3d ultrasound,” Proc. SPIE Medical Imaging 6583, pp. 181–188, Feb. 2007.

15. H. Rivaz, R. Zellars, G. Hager, G. Fichtinger, and E. Boctor, “Beam steering approach for speckle charac-
terization and out-of-plane motion estimation in real tissue,” IEEE Int. Ultrasonics Symp. , pp. 781–784,
Oct. 2007.

16. C. Laporte and T. Arbel, “Combinatorial and probabilistic fusion of noisy correlation measurements for
untracked freehand 3-d ultrasound,” IEEE Trans Med Imaging 27, pp. 984–994, Jul. 2008.

17. C. Laporte, J. Clark, and T. Arbel, “Generalized poisson 3-d scatterer distributions,” IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 56, pp. 410–414, Feb. 2009.

18. W. Smith and A. Fenster, “Optimum scan spacing for three-dimensional ultrasound by speckle statistics,”
Ultrasound Med. Biol. 26, pp. 551–562, May 2000.

19. W. Smith and A. Fenster, “Analysis of an image-based transducer tracking system for 3d ultrasound,”
Proceedings of SPIE - The International Society for Optical Engineering 5035, pp. 154–165, 2003.

20. J. Housden, A. Gee, R. Prager, and G. Treece, “Rotational motion in sensorless freehand 3D ultrasound,”
Univ. of Cambridge Tech. Rep. , Oct. 2007.


