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Abstract—This paper introduces two real-time elastography
techniques based on analytic minimization (AM) of regularized
cost functions. The first method (1D AM) produces axial strain
and integer lateral displacement, while the second method (2D
AM) produces both axial and lateral strains. The cost functions
incorporate similarity of RF data intensity and displacement
continuity, making both AM methods robust to small decorrela-
tions present throughout the image. We also exploit techniques
from robust statistics to make the methods resistant to large
local decorrelations. We further introduce Kalman filtering for
calculating the strain field from the displacement field given by
the AM methods. Simulation and phantom experiments show
that both methods generate strain images with high SNR, CNR
and resolution. Both methods work for strains as high as 10%
and run in real-time. We also present in-vivo patient trials of
ablation monitoring. An implementation of the 2D AM method
as well as phantom and clinical RF-data can be downloaded from
http://www.cs.jhu.edu/∼rivaz/Ultrasound Elastography/.

Index Terms—Real-time ultrasound elastography, 2D strain,
regulariation, robust estimation, Kalman filter, RF ablation.

I. INTRODUCTION

ELASTOGRAPHY involves imaging the mechanical prop-
erties of tissue and has numerous clinical applications.

Among many variations of ultrasound elastography [1], [2],
[3], [4], our work focuses on real-time static elastography, a
well-known technique that applies quasi-static compression of
tissue and simultaneously images it with ultrasound. Within
many techniques proposed for static elastography, we focus
on freehand palpation elasticity imaging which involves de-
forming the tissue by simply pressing the ultrasound probe
against it. It requires no extra hardware, provides ease of use
and has attracted increasing interest in recent years [5], [6],
[7], [8], [9], [10]. Real-time elastography is of key importance
in many diagnosis applications [11], [6], [12], [8], [13] and in
guidance/monitoring of surgical operations [14], [15], [16].

Global and local decorrelation between the pre- and post-
compression ultrasound images compromises the quality of the
elasticity images. The main sources of global decorrelation
in freehand palpation elastography are change of speckle
appearance due to scatterer motion and out-of-plane motion
of the probe (axial, lateral and out-of-plane directions are
specified in Figure 1). Examples of local decorrelation are: (1)
a decrease in the ultrasonic signal to noise ratio with depth, (2)
low correlation close to arteries due to complex motion and
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inside blood vessels due to blood motion, (3) extremely low
correlation in lesions that contain liquid due to the incoherent
fluid motion [17], [8], and (4) out-of-plane motion of movable
structures within the image [17].

Most elastography techniques estimate local displacements
of tissue based on amplitude correlation [18], [2] or phase
correlation of the radio-frequency (RF) echoes [19], [20],
[21]. Assuming a stationary signal model for the RF data,
the use of large correlation windows helps to reduce jitter
errors (variance) for all motion field estimation techniques
studied in [18], [22]. This is intuitive as larger windows
contain more information. However, in practice RF data is
not stationary and, for large deformations, the decorrelation
increases with window size. Therefore, in addition to reducing
the spatial resolution [23], larger windows result in significant
signal decorrelation [24], [23], [18]. Coarse-to-fine hierarchi-
cal search is used in [23] to combine the accuracy of large
windows with the good spatial resolution of small window.
However, the issue of signal decorrelation within the window
remains unresolved in this approach and can cause the highest
level of the hierarchical search to fail.

All of the aforementioned methods either do not calculate
the lateral displacement or they just calculate an approximate
integer lateral displacement. A 2D displacement field is re-
quired to calculate the thermal expansion, lateral and shear
strain fields [25] (i.e. reconstruct the strain tensor), Poisson’s
ratio and Young’s modulus [26], [27]. The axial resolutions of
ultrasound is determined by the pulse length, and the lateral
resolutions is dictated by the center frequency of the excitation
and the transducer pitch. Therefore, the lateral resolution is of
order of magnitude lower than axial resolution. As a result,
few 2D elastography techniques have been proposed to date.
Initially, 2D motion estimation started in the field of blood flow
estimation using speckle tracking [28]. Designed for blood
flow estimation, these techniques are not immediately suitable
for elastography which involves tissue deformation.

Attaching a coordinate system to the ultrasound probe as
in Figure 1, z, x and y in the ultrasound image are generally
defined as axial, lateral and elevational directions. Assume that
the applied compression to the tissue is the Z direction, and
attach a coordinate system X,Y, Z to the applied force. Letting
dZ and dN be the displacements in the Z and N directions
where N⊥Z, axial and transverse strains are ∂dZ/∂Z and
∂dN/∂N . In most experimental setups (including freehand
palpation elastography), z and Z are parallel and N will
be either lateral or out-of-plane, and therefore dN cannot be
estimated accurately. To calculate an accurate transverse strain,
Z and z are perpendicular in [29] by applying the compression
force perpendicular to the ultrasound imaging axis. Therefore,
transverse strain is in the z direction of the ultrasound probe
and hence can be measured with high accuracy. However,
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such an experimental setup is not possible in many medical
applications. Beam steering has been used to solve this issue
[30]. In freehand palpation elastography, beam steering causes
z and Z to be unparallel, so that a component of the dX is
in the z direction. The steering angle determines the angle
between z and Z. Unfortunately, large steering angles are
required to obtain accurate estimates of lateral strain, which
is possible in phased arrays and not in linear arrays.

Lateral strain1 estimation is obtained in [31] by iteratively
calculating axial strain, companding RF data and interpolating
in the lateral direction. In another work [32], tissue defor-
mation is modeled by locally affine transformations to obtain
both lateral and axial strains. Change of speckle appearance is
taken into account by proposing a Lagrangian speckle model
[33]. Although they provide high quality lateral strain, these
techniques are computationally expensive and are not suitable
for real-time implementation.

Axial strain is used in [34] to enhance the quality of lateral
displacement estimation. Tissue is assumed to be incompress-
ible and isotropic and therefore axial, lateral and out-of-plane
strains should add to zero. However, many tissues cannot be
considered incompressible. In fact, some research has even
focused on imaging the ratio of the axial and lateral strain
(i.e. the Poisson’s ratio ν) [31].

While most previously mentioned methods use tissue mo-
tion continuity to confine the search range for the neighboring
windows, the displacement of each window is calculated
independently and hence is sensitive to signal decorrelation.
Since data alone can be insufficient due to signal decorrelation,
Pellot-Barakat et al. [35] proposed minimizing a regularized
energy function that combines constraints of conservation of
echo amplitude and displacement continuity. In another work
[36], both signal shift and scale are found through minimiza-
tion of a regularized cost function. The computation time of
these methods is reported to be few minutes and therefore
are not immediately suitable for real time elastography. In
[37], [38], few phase-based methods are regularized and strain
and elasticity modulus images are obtained. The regulariza-
tion term is the Laplacian (second derivative) of the motion
field and is spatially variant based on the peak-value of the
correlation coefficient. The regularization makes the method
significantly more robust to signal decorrelation. However, it is
still prone to decorrelation within each window especially for
large strain rates. In a recent work [39], a displacement field is
first calculated by minimizing phase differences in correlation
windows [21]. The strain image is then estimated from the
displacement field by optimizing a regularized cost function.
The regularization assures smooth strain image calculation
from the noisy displacement estimates.

We have proposed optimizing a recursive regularized cost
function using Dynamic Programming (DP) [40]. DP is used
to speed the optimization procedure, but it only gives in-
teger displacements. Subsample displacement estimation is
possible [40], but it is computationally expensive, particularly
if subsample accuracy is needed in both axial and lateral

1We hereafter assume the applied force is in the z direction (i.e. Z and z
are parallel) and therefore we use the term lateral strain instead of the term
transverse strain.

directions. Therefore, only axial subsample displacement is
calculated [40]. In addition, a fixed regularization weight is
applied throughout the image. To prevent regions with high
local decorrelation from introducing errors in the displacement
estimation one should use large weights for the regularization
term, resulting in over-smoothing.

In this paper, we present two novel real-time elastogra-
phy methods based on analytic minimization (AM) of cost
functions that incorporate similarity of echo amplitudes and
displacement continuity. Similar to DP, the first method gives
subsample axial and integer lateral displacements. The second
method gives subsample 2D displacement fields and 2D strain
fields. The size of both displacement and strain fields is the
same size as the RF-data (i.e. the methods are not window
based and the displacement and strain fields are calculated
for all individual samples of RF-data). We introduce a novel
regularization term and demonstrate that it minimizes displace-
ment underestimation caused by smoothness constraint. We
also introduce the use of robust statistics implemented via
iterated reweighted least squares (IRLS) to treat uncorrelated
ultrasound data as outliers. Finally, for the first time to the best
of our knowledge we introduce the use of Kalman filtering
[41] for calculating strain image from the displacement field.
Simulation and experimental results are provided for quan-
titative validation. The paper concludes with a clinical pilot
study utilizing this system for monitoring thermal ablation in
patients with liver tumors.

II. METHODS

Assume that the tissue undergoes a deformation and let I1
and I2 be two images acquired from the tissue before and after
the deformation. Letting I1 and I2 be of size m × n (Figure
1), our goal is to find two matrices A and L where the (i, j)th

component of A (ai,j) and L (li,j) are the axial and lateral
motion of the pixel (i, j) of I1 (we are not calculating the
out-of-plane motion). The axial and lateral strains are easily
calculated by spatially differentiating A in the axial direction
(resulting in Aa) and L in the lateral direction (resulting in
Ll). The shear strains (not calculated in this work) can also
be easily calculated by spatially differentiating A in the lateral
direction (resulting in Al) or L in the axial direction (resulting
in La).

In this section, we first give a brief overview of a previous
work (DP) that calculates integer values for A and L. We then
propose 1D Analytic Minimization (AM) as a method that
takes the integer displacement field from DP and refines the
axial displacement component. We then introduce 2D Analytic
Minimization (AM) that takes the integer displacement of a
single RF-line from DP and gives the subsample axial and
lateral displacement fields for the entire image. We conclude
this section by presenting a technique for calculating smooth
strain field from the displacement field using Kalman filtering.

A. Dynamic Programming (DP)

In order to present the general DP formulation, we consider
a single column j (an RF-line) in I1 (the image before
deformation) in Figure 1. Let m and n be the length of the
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Fig. 1. Axial, lateral and out-of-plane directions. The coordinate system is attached to the ultrasound probe. The sample (i,j) marked by x moved by
(ai,j , li,j ). ai,j and li,j are respectively axial and lateral displacements and initially are integer in DP.

RF-lines and the number of RF-lines in the images (Figure 1).
Let ai and li denote the axial and lateral displacements of the
ith sample of the RF-line in column j. In DP elastography
[40], a regularized cost function is generated by adding the
prior of displacement continuity (the regularization term) to
an amplitude similarity term. The displacement continuity term
for column j is

Rj(ai, li, ai−1, li−1) = αa(ai − ai−1)2 + αl(li − li−1)2 (1)

which forces the displacements of the sample i (i.e. ai and li)
be similar to the displacements of the previous sample i−1 (i.e.
ai−1 and li−1). αa and αl are axial and lateral regularization
weights respectively. We write Rj(ai, li, ai−1, li−1) to indicate
the dependency of ai and li on j. The regularized cost function
for column j is then generated as following

Cj(ai, li, i) = [I1(i, j)− I2(i+ ai, j + li)]
2 + min

da,dl{
Cj(da, dl, i− 1) + Cj−1(da, dl, i)

2
+Rj(ai, li, da, dl)

}
(2)

where da and dl are temporary displacements in the axial and
lateral directions that are varied to minimize the term in the
bracket. After calculating Cj for i = 2 · · ·m, Cj is minimized
at i = m giving am and lm. The ai and li values that have
minimized the cost function at i = m are then traced back
to i = 1, giving integer ai and li for all samples of jth line.
The process is performed for the next line j + 1 until the
displacement of the whole image is calculated. The 2D DP
method gives integer axial and lateral displacement maps. In
[40], we performed hierarchical search to obtain subsample
axial displacement (the lateral displacement was not refined to
subsample). DP is an efficient method for global optimization
and has been used extensively in many applications in com-
puter vision including solving for optimal deformable models
[42]. In the next section, we propose an alternative method for
calculating subsample axial displacement which is both faster
and more robust than hierarchical DP.

B. 1D Analytic Minimization (AM)
Tissue deformations in ultrasound elastography are usually

very small and therefore a subsample displacement estima-

tion is required. We now develop a method that analytically
minimizes a regularized cost function and gives the refined
displacement field following the work presented in [16]. We
first consider a specialization of Equation 2 in which we only
consider refining axial displacements to subsample level.

Having the integer displacements ai and li from DP, it
is desired to find ∆ai values such that ai + ∆ai gives the
value of the displacement at the sample i for i = 1 · · ·m
(li, ai and ∆ai correspond to line j. Hereafter, wherever
the displacements correspond to the jth line, j is omitted to
prevent notation clutter). Such ∆ai values will minimize the
following regularized cost function

Cj(∆a1, · · · ,∆am) = Σm
i=1{

[I1(i, j)− I2(i+ ai + ∆ai, j + li)]
2 +

αa(ai + ∆ai − ai−1 −∆ai−1)2 +
αl(ai + ∆ai − ai,j−1 −∆ai,j−1)2]} (3)

where αa > 0 and αl > 0 are tunable axial and lateral
regularization weights and subscript j−1 refers to the previous
RF-line (adjacent RF-line in the lateral direction). Substituting
I2(i+ di + ∆di) with its first order Taylor expansion approx-
imation around di, we have

Cj(∆a1, · · · ,∆am) = Σm
i=1{

[I1(i, j)− I2(i+ ai, j + li)− I ′2(i+ ai, j + li)∆ai)]
2 +

αa(ai + ∆ai − ai−1 −∆ai−1)2 +
αl(ai + ∆ai − ai,j−1 −∆ai,j−1)2]} (4)

where I ′2 is the derivative of the I2 in the axial direction. The
optimal ∆ai values occur when the partial derivative of Cj

with respect to ∆ai is zero. Setting ∂Cj

∂∆ai
= 0 for i = 1 · · ·m

we have

(I′2
2+αaD+αlÎ)∆aj = I′2e−(αaD+αlÎ)aj +αlaj−1, (5)
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D =


1 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

. . .
0 0 · · · 0 −1 1

 (6)

where I′2 = diag(I ′2(1 + d1, j + li) · · · I ′2(m + dm, j + li)),
∆aj = [∆a1,j · · ·∆am,j ]T , e = [e1 · · · em]T , ei = I1(i, j) −
I2(i+di, j+ li), aj = [a1,j · · · am,j ]T , Î is the identity matrix
and aj−1 is the total displacement of the previous line (i.e.
when the displacement of the j−1th line was being calculated,
aj−1 was updated with aj−1 + ∆aj−1). I′2, D and Î are
matrices of size m×m and ∆a, e and a are vectors of size
m.

Comparing 1D AM (as formulated in Equation 5) and 2D
DP, they both optimize the same cost function. Therefore, they
give the same displacement fields (up to the refinement level of
the DP). In the next two subsections, we will further improve
1D AM.

1) Biasing the Regularization: The regularization term
αa(ai + ∆ai − ai−1 − ∆ai−1)2 penalizes the difference
between ai + ∆ai and ai−1 + ∆ai−1, and therefore can
result in underestimation of the displacement field. Such
underestimation can be prevented by biasing the regulariza-
tion by ε to αa(ai + ∆ai − ai−1 − ∆ai−1 − ε)2, where
ε = (am−a1)/(m−1) is the average displacement difference
(i.e. average strain) between samples i and i− 1. An accurate
enough estimate of dm − d1 is known from the previous
line. With the bias term, the R.H.S. of Equation 5 becomes
I′2e− (αaD+αlÎ)aj +αl(aj−1 +∆aj−1)+b where the bias
term is b = αa[−ε 0 · · · 0 ε]T (only the first and the last
terms are nonzero) and all other terms are as before. In the
other words, except for the first and the last equations in this
system, all other m− 2 equations are same as Equation 5.

Equation 5 can be solved for ∆aj in 4m operations since
the coefficient matrix I′2

2 +αaD+αlÎ is tridiagonal. Utilizing
its symmetry, the number of operations can be reduced to 2m.
The number of operations required for solving a system with
a full coefficient matrix is more than m3/3, significantly more
than 2m.

2) Making Elastography Resistant to Outliers: Even with
pure axial compression, some regions of the image may move
out of the imaging plane and decrease the decorrelation. In
such parts the weight of the data term in the cost function
should be reduced. The data from these parts can be regarded
as outliers and therefore a robust estimation technique can
limit their effect. Before deriving a robust estimator for ∆a,
we rewrite Equation 4 as

C(∆a) = Σm
i=1ρ(ri) +R(∆a) (7)

where ri = I1(i)− I2(i+ ai)− I ′2(i+ ai)∆ai is the residual,
ρ(ri) = r2

i and R is the regularization term.The M-estimate
of ∆a is ∆â = arg min∆a {Σm

i=1ρ(ri) +R(∆a)} where ρ(ri)
is a robust loss function [43]. The minimization is solved by
setting ∂C

∂∆ai
= 0:

ρ′(ri)
∂r

∂∆ai
+
∂R(∆a)
∂∆ai

= 0 (8)

A common next step [44] is to introduce a weight function
w, where w(ri).ri = ρ′(ri). This leads to a process known
as “iteratively reweighted least squares” (IRLS) [45], which
alternates steps of calculating weights w(ri) for ri = 1 · · ·m
using the current estimate of ∆a and solving Equation 8 to
estimate a new ∆a with the weights fixed. Among many
proposed shapes for w(·), we compared the performance of
Huber [44], [43]

w(ri) =
{

1 |ri| < T
T
|ri| |ri| > T

(9)

and Cauchy [45]

w(ri) =
1

1 + (ri/T )2
(10)

functions and discovered that the more strict Cauchy function
(which decreases with inverse of the square of the residual)
is more suitable in our application. To better discriminate
outliers, we calculate the residuals ri at linear interpolation
of the integer sample displacements provided by DP. With the
addition of the weight function, Equation 8 becomes

(wI′2
2+αaD+αlÎ)∆aj = wI′2e−(αaD+αlÎ)aj+αlaj−1+b

(11)
where w = diag(w(r1) · · ·w(rm)). This equation will con-
verge to a unique local minimum after few iterations [45].
The convergence speed however depends on the choice of
T , which in this work is defined manually. Since the Taylor
approximation gives a local quadratic approximation of the
original non-quadratic cost function, the effect of higher orders
terms increase if ∆aj is large. Assuming that DP gives the
correct displacements, ‖∆aj‖∞ ≤ ε where ‖·‖∞ is the infinity
norm and ε ≤ 0.5. In practice, however, ε << 0.5 because the
linear interpolation of the DP displacements (which is very
close to the correct displacement) is used to calculate the
residuals ri. Therefore, a small value can be assigned to T
in 1D AM provided that DP results are trusted.

The coefficient matrix Q = wI′2
2 +αaD+αlÎ in Equation

11 is the Hessian of the cost function C whose minimum
is sought. This matrix is strictly diagonally dominant (i.e.
|qii| > Σj 6=i |qij | for all i where qij is the i, jth element of
Q), symmetric and all diagonal entries are positive. Therefore,
it is positive definite, which means that setting the gradient
of C to zero results in the global minimum of C (not in a
saddle point, a local maximum or a local minimum). All of
the 1D AM results presented in this work are obtained with
one iteration of the above equation.

1D AM takes the integer axial and lateral displacement
fields from DP and gives refined axial displacement. It inherits
the robustness of DP and adds more robustness when calculat-
ing the fine axial displacements via IRLS. However, there are
redundant calculations in this method which are eliminated in
2D AM as described next.

C. 2D Analytic Minimization (AM)

In 2D AM, we modify Equation 2 to calculate subsample
axial and lateral displacement fields simultaneously. The
outline of our proposed algorithm is as follows
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1) Calculate the integer axial and lateral displacements of
one or more seed RF-lines (preferably in the middle of
the image) using DP (Equation 2). Calculate the linear
interpolation of the integer displacements as an initial
subsample estimate.

2) Calculate subsample axial and lateral displacements of
the seed RF-line using 2D AM, as explained below.
Add the subsample axial and lateral displacements to
the initial estimate to get the displacement of the seed
line.

3) Propagate the solution to the right and left of the seed
RF-line using the 2D AM method, taking the displace-
ment of the previous line as the initial displacement
estimate.

Benefits of 2D AM are two-fold. First it computes subsam-
ple displacements in both axial and lateral directions. Lateral
strain contains important information from tissue structure that
is not available from axial strain [31], [46], [47]. Second, it
is only required to calculate the displacement of a single line
using DP (the seed), eliminating the need to have the integer
displacement map for the entire image. This is significant as in
the 1D AM method, the initial step to calculate the 2D integer
displacements using DP takes about 10 times more than the
1D AM.

Assume that initial displacement estimates in the axial
direction, ai, and in the lateral direction, li, are known for
all i = 1 · · ·m samples of an RF-line. Note that ai and li are
not integer; for the seed line they are the linear interpolation
of the integer DP displacements and for the rest of the lines
are the displacement of the previous line. It is desired to find
∆ai and ∆li values such that the duple (ai + ∆ai, li + ∆li)
gives the axial and lateral displacements at the sample i. Such
(∆di,∆ai) values will minimize the following regularized cost
function

Cj(∆a1, · · · ,∆am , ∆l1, · · · ,∆lm) =

Σm
i=1{[I1(i, j)− I2(i+ ai + ∆ai, j + li + ∆li)]

2 +
α(ai + ∆ai − ai−1 −∆ai−1)2 +

βa(li + ∆li − li−1 −∆li−1)2 + β′l(li + ∆li − li,j−1)2} (12)

where I(i, j) is the ith sample on the jth RF-line. Since we
perform the calculations for one RF-line at a time, we dropped
the index j to simplify the notations: ai, li, ∆ai and ∆li are
ai,j , li,j , ∆ai,j and ∆li,j . li,j−1 is the lateral displacement
of the previous RF-line (note that li,j−1 is the total lateral
displacement of the previous line, i.e. when the displacement
of the j − 1th line was being calculated, li,j−1 was updated
with li,j−1 +∆li,j−1). Since in the first iteration ai and li (the
initial displacement estimates) are in fact the displacements of
the previous RF-line, for the first iteration we have li,j−1 = li.
This simplifies the last term in the R.H.S. to β′l∆l

2
i . The

regularization terms are α, βa and β′l: α determines how
close the axial displacement of each sample should be to
its neighbor on the top and βa and β′l determine how close
lateral displacement of each sample should be to its neighbors
on the top and left (or right if propagating to the left).
If the displacement of the previous line is not accurate, it
will affect the displacement of the next line through the last

term in the R.H.S. of Equation 12. Although its effect will
decrease exponentially with j, it will propagate for few RF-
lines. Therefore we set

β′l =
βl

1 + |ri,j−1|
(13)

to prevent such propagation where ri,j−1 is the residual
associated with the displacement of the ith sample of the
previous line. A large residual indicates that the displacement
is not accurate and therefore its influence on the next line
should be small, which is realized via the small weight β′l . This
is, in principle, similar to guiding the displacement estimation
based on a data quality indicator [48]. The effect of the tunable
parameters α, βa and βl is studied in the Results section.
Writing the 2D Taylor expansion of the data term in Equation
12 around (i+ ai, j + li):

I2(i+ ai + ∆ai, j + li + ∆li) ≈
I2(i+ ai, j + li) + ∆aiI

′
2,a + ∆liI ′2,l (14)

where I ′2,a and I ′2,l are the derivatives of the I2 at point
(i+ ai, j + li) in the axial and lateral directions respectively.
Note that since the point (i + ai, j + li) is not on the
grid (ai and li are not integer), interpolation is required to
calculate I ′2,a and I ′2,l. We propose a method in Section II-C1
that eliminates the need for interpolation. The optimal (∆ai,
∆li) values occur when the partial derivatives of Cj with
respect to both ∆ai and ∆li are zero. Setting ∂Cj

∂∆ai
= 0 and

∂Cj

∂∆li
= 0 for i = 1 · · ·m and stacking the 2m unknowns in

∆d = [∆a1 ∆l1 ∆a2 ∆l2 · · ·∆am ∆lm]T and the 2m initial
estimates in d = [a1 l1 a2 l2 · · · am lm]T we have

(I ′22 +D1 +D2)∆d = I2
′e−D1d, (15)

D1 =



α 0 −α 0 0 0 · · · 0
0 βa 0 −βa 0 0 · · · 0
−α 0 2α 0 −α 0 · · · 0
0 −βa 0 2βa 0 −βa · · · 0
0 0 −α 0 2α 0 · · · 0
...

. . .
0 0 0 · · · −α 0 α 0
0 0 0 · · · 0 −βa 0 βa


where D2 = diag(0, β′l, 0, β

′
l, · · · , 0, β′l) is a diagonal matrix

of size 2m × 2m , I ′22 = diag(I′2(1) · · · I′2(m)) is a
symmetric tridiagonal matrix of size 2m× 2m with

I′2(i) =

[
I ′2,a

2
I ′2,aI

′
2,l

I ′2,aI
′
2,l I ′2,l

2

]
(16)

blocks on its diagonal entries where I ′2,a and I ′2,l are the
derivatives of the I2 at point (i + ai, j + li) in the axial and
lateral directions,

I ′2 = diag(I ′2,a(1), I ′2,l(1), I ′2,a(2), I ′2,l(2) · · · I ′2,a(m), I ′2,l(m))
(17)

where I ′2,a(i) and I2,l(i)′ are calculated at point (i+ai, j+li),
and e = [e1 e1 e2 e2 · · · em]T , ei = I1(i, j)−I2(i+ai, j+ li).

We make four modifications to Equation 15: First, we take
into account the attenuation of the ultrasound signal with
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depth. As the signal gets weaker with depth, the first term
in the R.H.S. of Equation 15 (I2

′e) gets smaller. This results
in increasing the share of the regularization term in the cost
Cj and therefore over-smoothing the bottom of the image.
The attenuation of the ultrasound signal [49] reflected from the
depth d is ζ(d) = e−2 log(10)atf0d/20 where at is the frequency
dependent attenuation coefficient of tissue and is equal to 0.63
dB/cm/MHz for fat [49], f0 is the center frequency of the wave
(in MHz) and d is in cm. Having the exponential attenuation
equation, the attenuation level at sample i will be

ζi = x−i, x = e
1540×102atf0 log(10)

20fs×106 , i = 1 · · ·m (18)

where 1540× 102 is the speed of sound in tissue (in cm/sec)
and fs is the sampling rate of the ultrasound system (in
MHz). This is assuming that the TGC (time gain control) is
turned off. Otherwise, the TGC values should be taken into
account in this equation. Let the 2m × 2m diagonal matrix
Z be Z = diag(ζ1, ζ1, ζ2, ζ2 · · · ζm, ζm). To compensate for
the attenuation, we multiply the D1 and D2 matrices in
Equation 15 by Z, and therefore reduce the regularization
weight with depth. As we will show in Sections III and
IV, the regularization weight can vary substantially with no
performance degradation. Therefore approximate values of the
speed of sound and attenuation coefficient will suffice. Second,
we add a bias term in the regularization similar to the 1D
case. Here we only bias the axial displacement since the
difference between the lateral displacements of the points on
a RF-line is very small, usually less than 4 RF-lines. Third,
we exploit the fact that, because the tissue is in contact with
the ultrasound probe, the axial displacement of the top of the
image is zero relative to the probe (the lateral displacement of
the top of the image is not zero as tissue might slip under the
probe). Therefore, we enforce the axial displacement of the
first sample to be zero by changing the first row of D1, I ′22
and I2

′. Fourth, we make the displacement estimation robust
via IRLS using the Cauchy function (Equation 10). Similar
to 1D AM, T is selected manually. For the first (seed) RF-
line, a small value can be selected for T if DP results are
trusted. For the next lines, the value of ∆d determines the
accuracy of the Taylor expansion 14: for a small ∆d, the
residuals of the inliers are small and therefore a small T can
be chosen, while for a large ∆d the inliers might give large
residuals and therefore a large value for T is required. Since
the tissue motion is mostly continuous, ∆d mostly depends
on the lateral sampling of the image (i.e. the number of A-line
per cm). Therefore if many A-lines are given per cm of the
image width, a small value of T will give the optimum results.
Since the amplitude of signal is decreasing due to attenuation,
we decrease the IRLS parameter T with depth by multiplying
it with ζi at each sample i. With these modifications, Equation
15 becomes

(WI ′22 + ZD1 + ZD2)∆d =WI2
′e− ZD1d + s (19)

where W = diag(0, w(r1), w(r2), w(r2) · · ·w(rm), w(rm))
(i.e. W2i,2i =W2i−1,2i−1 = w(ri) for i = 1 · · ·m except for
W1,1 = 0 which guarantees the displacement of the first sam-
ple to be zero) is the weight function determined by the resid-
uals ri = I1(i, j)−

[
I2(i+ di, j + ai) + ∆diI

′
2,z + ∆aiI

′
2,x

]
,

w is as before (Equation 10), the bias term s is a vector of
length 2m whose all elements are zero except the 2m − 1th

element:s2m−1 = αε, and ε = (dm − d1)/(m − 1) is
as before. Similar to Equation 11, the coefficient matrix
Q = WI ′22 + ZD1 + ZD2 is strictly diagonally dominant,
symmetric and all the diagonal entries are positive. Therefore
Q is positive definite which means that solving Equation 19
results in the global minimum of the cost function C. The
updated displacement field (axial and lateral) will be d+ ∆d.

Equation 19 can be solved for ∆d in 9m operations since
the coefficient matrix WI ′22 + ZD1 + ZD2 is pentadiagonal
and symmetric. This number is again significantly less than
(2m)3/3, the number of operations required to solve a full
system.

1) Inverse Gradient Estimation: With the subsample initial
displacement field, the Taylor expansion should be written
around off-grid points, which requires calculation of image
gradient at these points (matrices I ′22 and I ′2 in Equation 19).
In Figure 2 (a), this is equivalent to calculating gradient of I2
on the off-grid marks. There are two disadvantages associated
with this: 1) it requires interpolation of the gradients, and 2)
the image gradient should be recalculated after each iteration.
As proposed by [44], [50], image gradient can be instead
calculated at on-grid locations on image 1 in the following
way.

Consider two problems: (1) to find the matches for grid
points on I1 having the initial off-grid estimates on I2, and
(2) to find the matches for the off-grid points on I2 having the
initial grid estimates on I1. For both problems, I2 values must
be interpolated on the off-grid values. However, the second
problem does not require interpolation of the image gradient
since the Taylor expansion is written around grid points of
I1 (Figure 2 (b)). It is shown in [51] that the two techniques
converge to the same results. Therefore, on one hand inverse
gradient calculation is both faster and easier to implement,
and on the other hand it causes no performance degradation.
Exploiting this, Equation 19 becomes

(WI ′21 + ZD1 + ZD2)∆d =WI1
′e− ZD1d + s (20)

where I ′21 and I ′1 are now calculated on the grid points of
image 1.

All the 2D AM results presented in this work are obtained
using Equation 20. For the seed line where the initial estimate
might be inaccurate, this equation is iterated multiple times
(about 10 times). For all other lines this equation is iterated
only once.

D. Strain Estimation Using Kalman Filter

Strain estimation requires spatial derivation of the displace-
ment field. Since differentiation amplifies the signal noise,
least squares regression techniques are commonly used to
obtain the strain field. Adjacent RF-lines are usually processed
independently in strain calculation. However, the strain value
of each pixel is not independent from the strain value of its
neighboring pixels. The only exception is the boundary of two
tissue types with different mechanical properties where the
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Fig. 2. Schematic plot of subsample tissue motion. (a) In I2 the initial estimates (in black) are updated by the arrows (three components of ∆d) to new
estimates (in red) after an iteration of 2D AM. To find ∆d using Equation 19, it is required to calculate image gradient at the off-grid initial estimate locations
(in black) on I2. (b) Schematic plot of two RF-data I1 and I2, each sampled at three locations (black dots). The black dashed-dotted arrow shows ∆a of
the sample on I1 (ignoring the regularization term) which requires calculating the gradient on I2 at an off-grid location. The blue dashed arrow shows ∆a
of an off-grid sample on I2 (ignoring the regularization term) which requires calculating the gradient on I1 at an on-grid location. Ignoring second order
derivatives, the length of the two arrows is equal.

strain field is discontinuous. We use the prior of piecewise
strain continuity via a Kalman filter to improve the quality
of strain estimation. Although locations with strain disconti-
nuity are limited, we will develop a technique to take such
discontinuities into account.

We first calculate the strain using least squares regression.
Each RF-line is first differentiated independently: for each
sample i, a line is fitted to the displacement estimates in a
window of length 2k + 1 around i, i.e. to the samples i − k
to i + k. The slope of the line, zi,j , is calculated as the
strain measurement at i. The center of the window is then
moved to i + 1 and the strain value zi+1,j is calculated. We
reuse overlapping terms in calculation of zi,j and zi+1,j , and
therefore the running time is independent of the window length
2k+1. Having zi,j for i = 1 · · ·m and j = 1 · · ·n, we propose
the following algorithm based on Kalman filter to take into
account the prior of strain continuity.
zi,j are the noisy measurements of the underlying strain field

εi,j . Since the zi,j values are calculated using axial windows,
we apply the Kalman filter in the lateral direction. Let rj be the
Gaussian process noise and sj be the Gaussian measurement
noise to be removed. We have [52], [41]

εi,j = εi,j−1 + ri,j (21)
zi,j = εi,j + si,j (22)

Let ε̂−i,j (note the super minus) be our a priori strain estimate
from the process prior to step j (i.e. from the Equation 21)
and ε̂i,j be our a posteriori strain estimate at step j given
measurement zj . Let also the variances of ε̂−i,j and ε̂i,j be
respectively p− and p. The time update (i.e. prior estimation)
equations will be [41]

ε̂−i,j = ε̂i,j−1 (23)

p−i,j = pi,j−1 + σ2
r (24)

where σ2
r is the variance of the process noise r. pi,j−1 is

initialized to zero for the first sample j = 1. The measurement
update equations will be [41]

ε̂i,j = ε̂−i,j +
p−i,j

p−i,j + σ2
s

(zi,j − ε̂−i,j) (25)

pi,j = (1−
p−i,j

p−i,j + σ2
s

)p−i,j (26)

where σ2
s is the variance of the measurement noise s. Note

that since both the state εi,j and measurement zi,j are scalars,
all the update equations only require scalar operations. We
estimate σ2

r and σ2
s as following. Let the mean (calculated

using a Gaussian kernel of standard deviation of σG = 0.6
sample) of the strain values in 3 × 3 blocks around samples
(i, j − 1) and (i, j) be µj−1 and µj respectively. Then σ2

r is
[52]

σ2
r = (µj−1 − µj)2. (27)

This is a reasonable estimate of σ2
r as it tries to capture the

difference between pixel values at adjacent RF-lines. If the
difference between the mean strain values is high, less weight
is given to the a priori estimate. This space-variant estimation
of the model noise provides a better match to local variations
in the underlying tissue leading to a greater noise reduction.
σ2

s is the variance of zi,j measurements in the entire image
and is constant throughout the image.

The strain estimation algorithm can be summarized as
following:

1) Perform least squares regression in the axial direction for
each RF-line. Generate a (noisy) strain image Z whose
pixel i, j is zi,j . This step ensures continuity in the axial
direction.
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(d) Calculated displacements at 6% strain
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Fig. 3. Axial strain estimation in the first simulated phantom. (a) The SNR values corresponding to the unbiased regularization calculated in the entire image.
(b) Schematic plot showing the underestimation of the displacement (Data + reg. curve) with unbiased regularization (refer to the text). (c)-(d) The calculated
displacements at the bottom of a RF-line at 2% strain and 6% strain levels respectively with biased and unbiased regularization terms. The ground truth
matches the displacement given by the biased regularization almost perfectly, and therefore is not shown in (c) and (d) not to block the biased regularization
results. The length of the RF-line is 2560 (49.3 mm). (e) The SNR values corresponding to the unbiased regularization calculated by omitting the bottom 300
samples of the image. (f) The SNR values corresponding to the biased regularization calculated in the entire image. Note that the scale of the SNR in graph
(a) is much smaller than that of graphs (e) and (f).

2) Apply the Kalman filter to the noisy strain image Z in
the lateral direction. Generate a (denoised) strain image
whose pixel i, j is ε̂i,j . This step ensures continuity in
the lateral direction.

Both steps are applied once and are not iterated. We show in
the experimental results how the Kalman filter removes the
noise from the strain image with minimal blurring, owing to
the model noise update Equation 27.

III. SIMULATION RESULTS

Field II [53] and ABAQUS (Providence, RI) software are
used for ultrasound simulation and for finite element simu-
lation. Many scatterers are distributed in a volume and an
ultrasound image is created by convolving all scatterers with
the point spread function of the ultrasound and adding the
results using superposition. The phantom is then meshed and
compressed using finite element simulation, giving the 3D
displacement of each node of the mesh. The displacement
of each scatterer is then calculated by interpolating the dis-
placement of its neighboring nodes. Scatterers are then moved
accordingly and the second ultrasound image is generated. The
displacement and strain fields are then calculated using the AM
methods and are compared with the ground truth. The unitless
metric signal to noise ratio (SNR) and contrast to noise ratio
(CNR) are also calculated to assess the performance of the

AM method according to

CNR =
C

N
=

√
2(s̄b − s̄t)2

σ2
b + σ2

t

, SNR =
s̄

σ
(28)

where s̄t and s̄b are the spatial strain average of the target and
background, σ2

t and σ2
b are the spatial strain variance of the

target and background, and s̄ and σ are the spatial average
and variance of a window in the strain image respectively.

The parameters of the ultrasound probe are set to mimic
commercial probes. The probe frequency is 7.27 MHz, the
sampling rate is 40 MHz and the fractional bandwidth is 60%.
A Hanning window is used for apodization, the single transmit
focus is at 22.5 mm, equi-distance receive foci are from 5 mm
to 45 mm at each 5 mm, the transmit is sequential, and the
number of active elements is 64.

Two simulated phantoms are generated. The first phantom
is 50× 10× 55 mm and the second one is 36× 10× 25mm.
Respectively 5 × 105 and 1.4 × 105 scatterers with Gaussian
scattering strengths [54] are uniformly distributed in the first
and second phantom, ensuring more than 10 scatterers [55]
exist in a resolution cell.

The mechanical properties of both phantoms, required for
finite element simulation, is assumed to be isotropic and
homogeneous. The first phantom is uniform while the second
phantom contains a circular hole filled with blood that can
move out-of-plane, simulating a blood vessel in tissue (Figure
7 (a)). The scatterers are distributed in the vessel, also with the
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Fig. 4. Lateral strain estimation using the 2D AM method in the first
simulated phantom.

same intensity and distribution as the surrounding material. A
uniform compression in the z direction is applied and the 3D
displacement field of phantoms is calculated using ABAQUS.
The Poisson’s ratio is set to ν = 0.49 in both phantoms to
mimic real tissue [56], [57], which causes the phantoms to
deform in x & y directions as a result of the compression in
the z direction.

The first phantom undergoes compressions in the z direction
to achieve strain levels of 1% to 10%. Figure 3 shows the SNR
of the axial strain of the 1D AM and 2D AM methods (the
window for SNR calculation covers the entire strain image in
(a) & (f)). The sharp drop of the SNR with strain in graph
(a) is mainly due to the strain underestimation in the bottom
part of the image. It can be explained as following. The un-
biased regularization term tries to force constant displacement
(dashed-dotted red line in (b)). Assuming an ideal noiseless
case where the data term gives a smooth ramp displacement
(dashed black line in (b)), minimizing the cost function (which
is the summation of the data and the regularization terms) will
underestimate the displacement at the two ends (solid blue
line in (b)). This underestimation decays exponentially moving
towards the center of the image. This artifact is shown in the
simulation experiment at 2% and 6% strain levels in (c) and
(d). Since we exploit the fact that the axial displacement of the
first sample is zero (Section II-C), the underestimation does
not happen in the top of the image. Biasing the regularization
prevents this artifact, as is shown in (c) and (d). The AM
method with or without the bias term gives the same result
away from the bottom of the image: part (e) shows that if we
ignore 300 (5.8 mm) samples at the bottom of the image, the
SNR will not drop sharply unlike in part (a). Part (f) shows the
SNR of the AM methods with biased regularization calculated
in the entire image. The SNR at 1% strain in parts (e) and (f)
is the same. At higher strain levels, the strain underestimation
propagates more into the middle of the image, and therefore
the SNR decreases at higher strain levels in graph (e). Part (e)
shows 2D AM gives slightly better axial strain compared to
1D AM. IRLS slightly increases the SNR. However, we will
see in the simulation results of the second phantom that in
the presence of outliers significant improvement in SNR and
CNR is achieved using IRLS.

The SNR of the lateral strain field is much lower than that of
the axial strain field (Figure 4). Unbiased regularization gives
the lowest SNR, mainly due to artifacts in the bottom of the
image. Similar to the axial strain, the SNR improves as 300
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Fig. 5. Bias and Variance of the axial strain as a function of the axial
regularization weight α. The ground truth axial and lateral strain fields are
respectively uniform 2% and 2ν% fields (ν = 0.49 is the Poisson’s ratio). The
solid blue and dashed black curves both correspond to unbiased regularization
and the solid black curve corresponds to the biased regularization. In the solid
blue and solid black curves, the entire image is included in the calculation of
the bias and noise. In the dashed black curve the bottom part of the strain field
which suffers from high bias (Figure 3 (b)) is excluded from the calculation of
the bias and noise. 1D AM and 2D AM have very similar bias and variance.
The curves with and without IRLS are also very close. Therefore each curve
corresponds to 1D AM or 2D AM with or without IRLS.

samples from the bottom of image are omitted from the SNR
calculation (results not shown).

The effect of the regularization weights on bias and variance
of the axial strain image at 2% ground truth axial strain
is shown in Figure 5. The blue curves show the bias and
variance of the entire strain image obtained with unbiased
regularization. It shows the tradeoff between the bias and
variance: increasing the regularization weight increases the
bias and decreases the variance. The variance starts to increase
at α ≈ 12 which is caused by the underestimation of the strain
at the bottom of the image (the artifact in Figure 3 (c)). If we
exclude the bottom 300 samples of the strain image from the
bias and variance calculation (the black dashed curve), we see
a consistent drop of variance as α is increased. The black
curves show the bias and variance of the entire strain image
obtained with biased regularization. Biasing the regularization
causes the bias to decrease as the regularization weight α is
increased which is a nonstandard behavior. It can be explained
by the simple ground truth strain field which is uniform,
exactly what the regularization term is trying to achieve. Even
in the unbiased case, only the bias of the bottom part of the
strain field increases as α is increased (i.e. in the bias plot, the
blue curve increases while the black dashed curve decreases).
Therefore, one cannot conclude from this experiment that
higher α is beneficial to both bias and variance. To prove this,
we designed a simulation study where the underlying axial
strain field continuously varied with depth and the lateral and
elevational strains were zero (such strain field is not physically
realizable). We observed that the absolute value of the bias
monotonically increases with α with both unbiased and biased
regularizations. To save space, we do not present the full
results here. Similar curves for the lateral strain field is shown
in Figure 6.

The second simulation experiment is designed to show the
effect of smoothness weight and IRLS threshold CNR when
the correlation is lower in parts of the image due to fluid
motion. The phantom contains a vein oriented perpendicular
to the image plane (Figure 7). The background window for
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Fig. 6. Bias and Variance of the lateral strain as a function of the axial
regularization weight α. The ground truth axial and lateral strain fields are
respectively uniform 2% and 2ν% fields (ν = 0.49 is the Poisson’s ratio).
The solid blue curve corresponds to unbiased regularization and the dashed
and solid black curves correspond to the biased regularization. IRLS is not
used in the solid blue and dashed black curves.

CNR calculation is located close to the target window to show
how fast the strain is allowed to vary, a property related to
the spatial resolution. The maximum CNR with IRLS is 5.3
generated at T = 0.005 and αa = 38, and without IRLS is
4.8 at αa = 338. Such high αa value makes the share of the
data term in the cost function very small and causes over-
smoothing.

A. Displacement Simulation

To study the performance of the Kalman filter, we simulate
a displacement field of size 100 x 100 samples whose strain
image (calculated using least squares regression) is as shown
in Figure 8 (a). 100 samples in the axial direction corresponds
to approximately 1.9 mm (assuming 40 MHz sampling rate),
and 100 samples in the lateral direction corresponds to 10
mm to 25 mm depending on the probe. To be consistent with
the notations of Section II-D, let εi,j denote the strain values
of the uncontaminated image in (a). We then contaminate
the displacement field with a Gaussian noise with standard
deviation of 1.5 samples, and perform least squares regression
to calculate the noisy estimates zi,j (Figure 8 (b)). We then
apply the Kalman filter as described in Section II-D to the

noisy estimates zi,j in the lateral direction (i.e. row-by-row).
The posterior estimates of the strain values, ε̂i,j are shown in
(c). The strain values of the shown line in (a) - (c) (at i = 50
samples) is shown in (d) and (e) (The plot in (d) around the
step in magnified in (e)). The Kalman filter formulation is
eliminating the noise without over-smoothing the strain image.
This is due to the model variance update Equation 27. We note
that although displacement is generally continuous in tissue, its
spatial derivation (strain) is not: at the boundary of two tissues
with different elasticity moduli, strain field is discontinuous.

IV. EXPERIMENTAL RESULTS

For experimental evaluation, RF data is acquired from
an Antares Siemens system (Issaquah, WA) at the center
frequency of 6.67 MHz with a VF10-5 linear array at a
sampling rate of 40 MHz. Only the 2D AM method is used
in the experimental results. Phantom results and patient trials
are presented in this section. The tunable parameters of the
2D AM algorithm are set to α = 5, βa = 10, βl = 0.005 and
T = 0.2 (Equations 12 & 20), and the tunable parameters of
the DP (run for the seed RF-line in the 2D AM algorithm)
are αa = αl = 0.15 (Equation 1) in all the phantom results
(except if specified otherwise). In the patient results, all the
parameters are the same except for βa which is increased to
βa = 20 because the data is noisier. The strain images in all
the patient trials are obtained using the least squares regression
and Kalman filtering as described in Section II-D.

A. Phantom Results

1) Effect of Regularization on Residuals: The cost function
of the AM method (Equation 7) is composed of residuals (i.e.
the data term) and the regularization terms. The AM method
minimizes this summation. Therefore the AM method will not
necessarily minimize the residuals. We now show that the
data term alone is non-convex and has many local minima.
Adding the regularization term will eliminate many of the local
minima and makes optimization of the data term easier. This
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Fig. 8. Performance of the least squares regression and the Kalman filter on simulated motion data. (a) shows the strain field calculated using least squares
regression of the uncontaminated displacement field. (b) depicts the strain field calculated using least squares regression of the contaminated displacement
field. (c) shows the strain field calculated from the noisy measurements of (b) using the proposed Kalman filter (KF in (b) and (c) refers to Kalman filter).
The pixels of images in (a) to (c) are respectively the ground truth (unavailable) strain values εi,j , the noisy measurements zi,j , and posterior strain values
ε̂i,j . The brightness scale in (a) to (c) is the same. (d)-(e) are the strain estimation at the horizontal line shown in (a) to (c). (d) is magnified in (e) around
the step. The Kalman filter removes the noise while keeping the image sharp, due to the variable model noise of Equation 27.

is in addition to the effect of regularization that makes the
displacement field smooth, a generally desired attribute.

The effect of regularization on the residuals is studied
using experimental data. An elastography phantom (CIRS
elastography phantom, Norfolk, VA) is compressed 0.2 in
axially using a linear stage, resulting in an average strain of
6%. Two RF frames are acquired corresponding to before and
after the compression. The Young’s elasticity modulus of the
background and the lesion under compression are respectively
33 kPa and 56 kPa. The displacement map is calculated using
the 2D AM method and the residuals corresponding to the
displacement map are obtained. Figure 9 (a)-(c) shows the
axial and lateral strains at such a high strain rate (minimum
of 2% and maximum of 11%). The mean and median of
the residuals ρ(ri) in the entire image is shown in (d).
One could expect the graph to monotonically increase as
the regularization weight α increases, since the difference
between the objective function C and the residuals Σm

i=1ρ(ri)
is increased as α is increased. However, the residual values are
very high at very low α. Therefore, numerical minimization
of Σm

i=1ρ(ri) + R(∆d) gives a smaller value for Σm
i=1ρ(ri)

compared to trying to directly minimize Σm
i=1ρ(ri). This

indicates that the nonregularized cost function is not quasi-
convex and is very hard to minimize.

2) Resolution of the Strain Images Generated with AM: The
effect of the regularization on spatial resolution is evaluated
experimentally using the experimental setup of the previous
experiment. The compression is set to 0.1 in in this experiment.

Figure 10 (a) shows the strain image obtained by compression
the lesion with the Young’s modulus of 56 kPa. Spatial reso-
lution is evaluated using modulation transfer function (MTF),
an established method for estimating the spatial resolution of
medical imaging systems that was relatively recently extended
to elastography [58]. The spatial resolution of the recon-
structed images is determined with a three-step approach [59],
[60]; first, the edge spread function is computed by averaging
the pixel values across the background-inclusion interface (the
line in Figure 10 (a)); second, the line spread function (LSF)
is computed by differentiating the edge spread function; third,
the MTF is determined by computing the Fourier transform of
the LSF and normalizing the resulting function to zero spatial
frequency:

MTF(k) =
Ξ(k)
Ξ(0)

(29)

Figure 10 (c) shows the MTF for five different normalization
coefficients respectively. Strain results are obtained with a
regression window of length 2k + 1 = 65 (Section II-D).
Increasing the regularization weight is adversely affecting
spatial resolution. Spatial resolution is defined as the spatial
frequency when the value of MTF is 0.1. At α = 1, α = 2
and α = 4 this value is respectively 2 cycles/mm, 1 cycles/mm
and 0.5 cycles/mm. In addition to α, this value also depends
on the length of the regression window 2k + 1.

3) Image Quality Versus Axial and Lateral Sampling Rates
of the RF-Data: Sampling rate of the RF-data usually ranges
from 20 MHz to 50 MHz depending on the hardware of the
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Fig. 9. Phantom experimental results. The top row shows axial displacement and axial strains as labeled (KF in (c) refers to Kalman filter). Average axial
strain and maximum strain are approximately 6.6% and 11%. (d) and (e) show lateral displacement and lateral strain respectively. (f) shows residuals as the
regularization weight varies.
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(b) The strain across the edge (vertical line in (a)) for the five shown regularization values. (c) The MTF calculated across the vertical line in (a). Spatial
resolution is defined as the spatial frequency when the value of MTF is 0.1.

device. The number of the A-lines provided in an image also
varies significantly. In addition, bandwidth limitations of the
data transfer can impose limits on the size of the image for
real-time operations. In this study, we downsample the RF-
data by a factor of 2 to 4 in the axial direction and by a
factor of 2 to 8 in the lateral direction. Figure 11 (a)-(g)
shows axial and lateral displacement and strain images of the
CIRS elastography phantom undergoing maximum axial strain
of 5%. Axial sampling rate can be reduced by a factor of 2
without significant impact on the strain image quality (part
(h)). Downsampling the images in the lateral direction by a
factor of 4 results the CNR of the axial and lateral strain
images to drop respectively 12% (from 16.3 to 14.3) and 56%
(from 2.55 to 1.13) as shown in (i). While the axial strain is
robust to the number of A-line in the image even at a high

strain level of 5%, the lateral strain is sensitive to it (i). Similar
study with lower axial strain levels shows that as the axial
strain decreases, higher downsampling rates in both axial and
lateral directions are possible without a large impact on the
results.

4) Kalman Filter: The performance of the Kalman filter
is studied using the RF-data used in Figure 9. The linear
least squares differentiation technique is applied to the axial
displacement field calculated with 2D AM, resulting in zi,j

(Figure 12 (a)). The Kalman filter is then applied to zi,j

measurements of (a), giving the posterior ε̂i,j measurements
of (b). Comparing the strain values at a horizontal line of
(a) and (b), the noisy zi,j measurements are smoothed in
the lateral direction using the proposed Kalman filter, with
minimal blurring of the edge.
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Fig. 11. Results of the CIRS elastography phantom at 5% maximum strain at different axial and lateral sampling rates. The hard lesion is spherical and has
a diameter of 1 cm. Downsampling is performed by simply skipping samples in the axial or (and) lateral directions. In (c) & (f), a downsampling ratio of 2
is applied in both axial and lateral directions. The lateral displacement is shown in number of samples in (d) to (f). (h) and (i) show the CNR between the
target and background windows in the strain images as the axial or lateral downsampling rates change. The target and background windows are shown in the
axial strain images (a) to (c) and the lateral strain image (g). In (i), the lateral strain curve is not calculated for downsampling ratios of 6 and higher because
the background window moves out of the image. The black dashed curve with the highest CNR is the strain obtained with the Kalman filter (KF).

B. Clinical Study

Seven patients undergoing open surgical radiofrequency
(RF) thermal ablation for primary or secondary liver cancer
were enrolled between February 06, 2008 and July 28, 2009.
All patients enrolled in the study had unresectable disease
and were candidates for RF ablation following review at
our institutional multidisciplinary conference. Patients with
cirrhosis or suboptimal tumor location were excluded from
the study. All patients provided informed consent as part of
the protocol, which was approved by the institutional review
board. RF ablation was administered using the RITA Model
1500 XRF generator (Rita Medical Systems, Fremont, CA).
Strain images are generated offline. Some preliminary results
are published in [15].

We show the results from only 4 patients due to space
limitations. Figure 13 shows the B-mode scan, the strain

images and CT scans performed after RF ablation. Tissue is
simply compressed freehand at a frequency of approximately
1 compression per 2 sec with the ultrasound probe without
any attachment. The shadow in Figure 13 (a) at 20 mm depth
is produced by the thermal lesion. Note that it is not possible
to ascertain the size and position of the thermal lesions from
B-mode images. In addition, the thermal lesion has different
appearances in the three B-scans. However, the thermal lesions
show very well as hard lesions in the strain images. After
gross correlation of the post ablation CT scan and the thermal
lesion in the strain images, the size of the lesion seems to
correspond well. However, a more rigorous validation of the
size and shape of the ablated lesion in the elastography image
is underway using nonrigid registration of CT and ultrasound
images. To the best of our knowledge, this is also the first
demonstration of the success of elastography in imaging the
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Fig. 12. Performance of the least squares regression and the Kalman filter in experimental data. (a) shows the axial strain field calculated by least squares
regression of the noisy displacement field. (b) depicts the strain field calculated from the noisy measurements of (a) using the proposed Kalman filter (KF in
(a) and (b) refers to Kalman filter). The pixels of images in (a) and (b) are respectively the least squares measurements zi,j , and posterior strain values ε̂i,j .
(c) shows the strain estimation at the 17 mm deep horizontal line shown in (a) to (b). The Kalman filter removes the noise while keeping the image sharp,
due to the variable model noise of Equation 27.

thermal lesion in an in-vivo human experiment.
We have also acquired patient RF data of liver ablation

prior and after ablation in one of the patient trials. Figure
14 shows the B-mode, strain and venous and arterial phase 2

CT images obtained before ablation, and Figure 15 shows the
B-mode, strain and lateral displacement images after ablation.
In Figure 14, the tumor (marked in the CT images (f) and (g))
is not visible in the B-mode image (a), but is clearly visible
in the strain images (b) and (c). While the tissue is getting
compressed with the ultrasound probe, the middle hepatic vein
(marked as 5) which is only 4-8 cm from vena cava inferior
pulsates at high amplitude. The graph in (e) schematically
shows the probe motion and variations in the diameter of the
vein. Therefore, the vein can look soft as in (c) or hard as in
(b) depending on whether its diameter variation is in the same
(marked by ellipse 1 in (e)) or opposite (marked by ellipse 2
in (e)) direction as the probe motion. The effect of pulsation
of vessels, a well-known cause of signal decorrelation, is
minimized via IRLS resulting in a low noise strain image.
In addition, since the 2D AM method gives a dense motion
field (same size as RF data), the small artery at the diameter
of less than 2 mm (marked as 4 in (a)) is discernible in (b)
from the low pressure portal vein. The ablated lesion is also
discernible in the strain images of Figure 15 (b) and (c). We
believe the soft region in the middle of the two hard ablation
lesions in (b) and (c) (at the depth of 25-30 mm and width of
10-25mm) is not close to any of the 10 tines of the ablation
probe. Therefore because of its proximity to veins and vessels
its temperature has remained low.

V. DISCUSSION

The resolution of the method is formally studied in Section
IV-A using the phantom experiment. Future work will include
more intuitive measures for resolution in terms of the smallest
detectable target as a function of its elasticity difference with
the background.

2CT scans are performed at different phases after intravenous injection of
a contrast agent. In the arterial phase (directly after injection of a contrast
agent) arteries will enhance, where as in the venous phase (30-60 sec after
injection) the hepatic parenchyma and veins will enhance.

The cost function is a regularized function of all dis-
placements on an A-line. This makes the methods robust to
noise which exist throughout the image. Besides, the AM
methods are not window-based and therefore they don’t suffer
from decorrelation within the window. As a result, both AM
methods work for strains as high as 10%. In addition, the IRLS
outlier rejection technique makes the AM methods robust to
local sources of decorrelation such as out-of-plane motion of
movable structures or blood flow.

Global stretching assumes a constant strain across the depth
and stretches one of the RF-limes accordingly. It is shown
that it enhances the quality of correlation based elastography
methods. The reason is that the strain of each point can be
assumed to be the global strain (fixed for each RF-line) plus
some perturbation, i.e. constant strain is a better approximation
than zero strain. Biasing the regularization is motivated by the
same reason and involves almost no additional computational
cost.

Improvement in the SNR and CNR achieved with Kalman
filtering differentiation is due to utilizing the (piecewise)
continuity of the strain field. One could think of a unified
framework which includes both the 2D AM and the Kalman
filtering and directly calculates the strain field. We made an
effort to formulate Equation 15 in terms of strain values.
Unfortunately, the coefficient matrix in the L.H.S. became
a full matrix for our desired regularization. Such large full
system cannot be solved in real-time.

The least squares differentiation of Section II-D can be
incorporated in the Kalman filter. This can be simply done
by defining the state at each point to be the displacement
and the strain of that point. The observed variables are the
noisy displacement measurements from 2D AM. Solving for
the state gives a strain estimate at each point. However, we
preferred to follow the common approach of first finding the
strain by solving least squares. In addition, the axial and
lateral displacements can be considered as two channels of
a measurement and a Kalman filter that takes into account
both intra-channel (spatial) and inter-channel variations can
be developed. This is a subject of future work.

Lateral displacement estimation with 2D AM is of order of
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Fig. 13. In-vivo images of the thermal lesion produced by RF ablation therapy of liver cancer. All images acquired after ablation. 1st, 2nd and 3rd rows
correspond to the 1st, 2nd and 3rd patients respectively. The thermal lesion shows in (b), (f) & (j) as dark, surrounded by normal tissue in white. The lateral
displacement images are shown in number of samples (they do not immediately carry anatomical information). In (b), (d), (f), (h), (j) &(l) the delineated
thermal lesions is shown. The non-unity aspect ratio in the axes of the B-mode and strain images should be considered when comparing them to the CT scans.

magnitude less accurate than the axial displacement estimates.
We tested the following algorithm for calculating the lateral
displacement field based on 1D AM: run 1D AM to find
the axial displacement field A, then transpose both ultrasound
images I1 and I2 and run 1D AM again using A calculated in
the previous step. The axial displacement field calculated for
the transposed images is in fact the lateral displacement of the
original images. Although considerably more computationally
expensive than 2D AM, this algorithm did not improve the
lateral displacement estimation. Therefore only images of
lateral displacement are provided for the patient trials because
the lateral strain did not show the ablation lesion. This is
in accordance with recent work [36] which only shows the
lateral displacement. A 2D displacement field can be utilized
to calculate the thermal expansion and to reconstruct the strain
tensor. Incorporation of the synthetic lateral phase [61], [62],
[63] into 2D AM to further improve the accuracy of the lateral
displacement measurement is also a subject of future work.

In cases where the two ultrasound frames correlate very
poorly throughout the image, 1D AM outperforms 2D AM
because DP is run for the entire image in 1D AM. However,

in those cases the strain images are of very low quality even
with 1D AM. In cases where the images correlate reasonably,
the 2D AM algorithm slightly outperforms 1D AM in terms
of the SNR of the axial strain as shown in Figure 3 (e) and
(f). Also, 1D AM and 2D AM are very similar in terms of
bias and variance as mentioned in the caption of the Figure
5. And finally, 2D AM is more than 10 times faster than
1D AM because it eliminates the redundant calculations in
the DP step of 1D AM. This is important considering that
there are combinatorial many ways of choosing two frames
for elastography from a sequence of images. Having a fast
algorithm, like 2D AM, makes it plausible to invest time to
perform real-time frame selection, an area that we are currently
working on [16], [64].

Recent work [65] has attempted to reconstruct elasticity
from the displacement field for monitoring thermal ablation. It
has also shown that [66] compared to strain images, elasticity
images have both higher correlation with the ablation zone and
give higher CNR. Another work [67] has utilized the solution
of the elasticity reconstruction to improve motion estimation in
an iterative framework. Calculation of the elasticity modulus
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Fig. 14. In-vivo images of the fourth patient before RF ablation. In (a), the left anterior branch of portal vein is marked as 1 and 2 and has low pressure and
therefore compresses easily. Arteries (marked as 3 and 4) and the middle hepatic vein (marked as 5) however pulsate with the heart beat and may have low
or high pressure. (b) and (c) both show the axial strain from the same location before ablation. They are calculated at two different phases of the heart beat.
The cancer tumor is discernible in (b) and (c) (regardless of the systolic or diastolic blood pressure), and its boundary is shown. 1 and 2 (as marked in (a))
correspond to the high strain area in both (b) and (c). Since 3, 4 and 5 (as marked in (a)) pulsate, they may look hard (as in (b)) or soft (as in (c)). (d) shows
the lateral displacement. The tumors is not visible in this image. (e) shows the motion of the probe and the variation in the diameter of the arteries due to
the heart beat (refer to the text). (f) is the arterial phase and (g) is the venous phase contrast CT images. The numbers 1-5 mark the same anatomy as (a).
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Fig. 15. In-vivo images of the fourth patient after RF ablation. Similar to Figure 14, the hepatic vein (marked as 5) can have low strain (as in (b)) or high
strain (as in (c)) values.

in our ablation monitoring trials is an area of future work.
Statistical analysis of the residuals is a subject of future

work. The sum of squared differences used as the similarity
metric in our cost function is suitable if ultrasound noise can
be modeled as additive Gaussian noise. However, ultrasound
noise is not simply additive Gaussian and it has been shown
that similarity metrics that model the noise process consid-
ering physics of ultrasound give more accurate results [68].
Performance of the 2D AM method for images that are not
fully developed speckles (i.e have few scatterers per resolution
cell) is also a subject of future work.

Current implementations of the 1D AM and 2D AM take
respectively 0.4 sec and 0.04 sec to generate strain images
(axial for 1D AM and axial and lateral for 2D AM) of size
1000 × 100 on a 3.8 GHz P4 CPU. DP contributes to more
than 90% of the running time of the 1D AM, and that’s why

it is slower than 2D AM where DP is only run for a single
A-line. The running time of both methods changes linearly
with the size of the image.

VI. CONCLUSION

Two regularized elastography methods, 1D AM and 2D AM,
are introduced for calculating the motion field between two
ultrasound images. They both give dense subsample motion
fields (1D AM gives subsample axial and integer sample lateral
and 2D AM gives subsample axial and lateral) in real-time.
The size of the motion fields is the same as the size of the
RF-data (except for few samples from the boundary whose
displacements are not calculated). Such dense motion fields
lead to dense strain fields which are critical in detecting small
lesions. The prior of tissue motion continuity is exploited in
the AM methods to minimize the effect of signal decorrelation.
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The regularization term is biased with the average strain in the
image to minimize underestimation of the strain values. Parts
of the image that have very low correlation are treated as out-
liers and their effect is minimized via IRLS. The strain image
is calculated by differentiating the motion fields using least
squares regression and Kalman filtering. The performance of
the proposed elastography algorithms is analyzed using Field
II and finite element simulations, and phantom experiments.
Clinical trials of monitoring RF ablation therapy for liver
cancer in four patients are also presented. An implementation
of the 2D AM method, the least squares regression and the
Kalman filter in MATLAB mex functions, as well as some
of the phantom and patient RF data used in this work are
available for academic research and can be downloaded from
http://www.cs.jhu.edu/∼rivaz/Ultrasound Elastography/.
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