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Abstract—We propose a conditional random field (CRF) based
classifier for segmentation of small enhanced pathologies. Specif-
ically, we develop a temporal hierarchical adaptive texture CRF
(THAT-CRF) and apply it to the challenging problem of gad
enhancing lesion segmentation in brain MRI of patients with
multiple sclerosis. In this context, the presence of many nonlesion
enhancements (such as blood vessels) renders the problem more
difficult. In addition to voxel-wise features, the framework exploits
multiple higher order textures to discriminate the true lesional
enhancements from the pool of other enhancements. Since lesional
enhancements show more variation over time as compared to
the nonlesional ones, we incorporate temporal texture analysis in
order to study the textures of enhanced candidates over time. The
parameters of the THAT-CRF model are learned based on 2380
scans from a multi-center clinical trial. The effect of different
components of the model is extensively evaluated on 120 scans
from a separate multi-center clinical trial. The incorporation of
the temporal textures results in a general decrease of the false
discovery rate. Specifically, THAT-CRF achieves overall sensi-
tivity of 95% along with false discovery rate of 20% and average
false positive count of 0.5 lesions per scan. The sensitivity of the
temporal method to the trained time interval is further investi-
gated on five different intervals of 69 patients. Moreover, superior
performance is achieved by the reviewed labelings of our model
compared to the fully manual labeling when applied to the context
of separating different treatment arms in a real clinical trial.

Index Terms—Automatic segmentation, magnetic resonance
imaging (MRI), multiple sclerosis (MS), probabilistic graphical
models.
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I. INTRODUCTION

M ULTIPLE SCLEROSIS (MS) is a chronic inflammatory
disease of the central nervous system that is common

among young adults and is characterized by demyelinating
lesions varying widely over time and spatial position. At the
moment, there is no cure for MS. Magnetic resonance imaging
(MRI) is widely used to diagnose and monitor the activity of
this disease. Newly formed lesions are associated with enhance-
ment after the administration of contrast agents containing
gadolinium (hence called gadolinium-enhanced lesions or gad
lesions in short). Disease activity in MS is generally quantified
on MRI based on the frequency of these lesions. In fact, quan-
tifying the frequency of gad lesions has led to new insights
into the natural history of MS and, perhaps more importantly,
has provided an objective measure of the disease activity for
new anti-inflammatory MS therapies. As a result, gad lesion
frequency is routinely used in clinical trials to provide biolog-
ical evidence of drug efficacy [1]. These trials usually involve
the assessment of thousands of scans at different timepoints
from hundreds of patients, and so the effort required to detect
the lesions is not trivial. However, at the moment, these lesions
are often fully manually segmented by several raters. A task
that is both time consuming and prone to intra and inter reader
variability which hinders further robust statistical analysis of
the results. Hence, robust automatic detection and segmentation
of these lesions is highly desirable.
Automatic segmentation of pathologies is generally more dif-

ficult than segmentation of healthy structures due, in part, to
the shortage of available shape, size, and location priors, and to
the difficulty in modeling intensities and texture patterns over
a population because of their large variability. In the context
of gad lesion segmentation, the problem is further complicated
because of their general small sizes and the huge variability in
their appearance and location within the white matter. Some gad
lesions are large and easy to detect while others are as small
as three voxels. Some lack enough contrast to be identified on
the contrast image alone without comparison to the pre-con-
trast image. Some are in the deep white matter while others
are very close to the cortex. Furthermore, the presence of many
nonlesional enhancements in the contrast image associated with
normal structures such as blood vessels or noise in MRI makes
the problem more challenging. Examples of lesional and nonle-
sional enhancements are shown in Fig. 1. Here, only the green
rectangles correspond to true gad lesions.
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Fig. 1. Examples of brain MRI of patients with gad enhancing MS lesions. Top and bottom rows show two timepoints of the same patient months apart ( is 6
here). First and second columns show axial slices of T1w images pre-contrast (T1p) and post-contrast (T1c). Third column shows the normalized enhancement map
for all voxels computed as . Brighter regions correspond to the stronger enhancements. Fourth column shows the enhancement map thresholded
to only show voxels with required amount of enhancements (i.e., respectively more than 20% in our work) for gad lesions. Green and red rectangles correspond to
lesional and nonlesional enhancements. Last column shows gad lesions as per the “ground truth” segmentation shown in green (there is no gad lesion in the second
row image). In (e), arrows point to small and low contrast lesions that are hardly visible considering only the contrast image in (b).

Intensity alone is therefore insufficient in order to correctly
distinguish the gad lesions from the pool of other enhancements
[2], [3], therefore the inclusion of larger scale information from
the surrounding neighborhood at different scales should im-
prove the results. In addition, as MS is a chronic disease, there
often exist multiple scans of the same patient over time in a clin-
ical trial to monitor the disease activity over time and to eval-
uate the efficacy of a new drug. Specifically, there are several
clinical studies investigating the enhancement duration of gad
lesions [4], [5], which indicate that typically enhancements last
less than six months. It is important to note that the enhance-
ment indicates new lesion activity. If the interval between the
two scan is around six months, the enhancement pattern of al-
most all lesions (even the small ones) changes, as old activi-
ties cease or new ones begin. In fact, two of the gad lesions
shown in Fig. 1(e) have only three voxels. Comparison between
Fig. 1(d) and (i) shows that these lesions have, indeed, changed
over time. Therefore, leveraging the temporal data can provide
an additional source of information increasing the discrimina-
tion power of the classifier.
In this work, we show how to combine this spatio-temporal

information at different scales within a probabilistic graphical
model. A probabilistic graphical model represents a struc-
tured probability distribution over a set of random variables
following a graphical structure with its associated parameter-
ization. Markov random field (MRF) and its discriminative
variant, conditional random fields (CRF), are two widely used
examples of probabilistic graphical models [6]–[13]. Accord-
ingly, we present a temporal hierarchical adaptive texture CRF
(THAT-CRF) where spatio-temporal patch-based features are
incorporated to express more complex patterns. As considering

patch textures are computationally prohibitive for the entire
MR volume at different scales, we use these descriptors within
a hierarchical approach, where candidate lesions are first spec-
ified by a voxel-wise CRF. The extensive texture analysis is
then only performed on these selected candidates in the second
level.
An overview of our proposed model is shown in Fig. 2. We

first perform a CRF-based classifier to detect candidate lesions
(step I). Here, unlike most of the CRF-based approaches where
interactions are modeled only up to pairs, we incorporate higher
order cliques of size three which can capture more complex
interactions in the image. Once the candidate lesions are de-
tected, stationary and temporal higher order features are cal-
culated for the patches that contain the candidates (step II).
Stationary features model the texture at the current timepoint,
while temporal features model the textural profile across two
timepoints. In modeling these features, we extensively explore
the effect of robust descriptors (independently and combined)
such as local intensity histogram description (spin image) [14],
rotationally invariant feature transform (RIFT) [14], and local
binary pattern (LBP) [15]. These descriptors encode intensity
patterns and gradient orientation around a reference point and
are invariant to rotation and local intensity distortion. A higher
order CRFmodel is designed by combining the higher order tex-
tures and voxel-wise interactions and is applied to the candidate
lesions to remove falsely detected regions (step III). This level
is also adaptive in that the size and shape of candidate lesions
are continuously refined. This is due to the more comprehen-
sive patch-based information used in this level, in addition to
the voxel-wise features used in the first level.
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Fig. 2. Proposed THAT-CRF classifier. Lesion candidates are inferred as the result of the voxel-wise CRF (step I). Stationary and temporal higher order features
are computed for the patches containing the detected candidats (step II). These higher order features are then combined with the voxel-wise interactions to remove
the remaining false detections and also to further refine the boundaries of the correct detections (step III).

The proposed model is trained on 2380 relapsing remitting
(RRMS) scans from a clinical trial and the effect of different
proposed spatio-temporal textures is extensively evaluated on
120 RRMS scans from a separate clinical trial to evaluate the
model robustness against different trials. Our analysis show that
the incorporation of the spatio-temporal features at different
scales results in a general decrease of the false discovery rate
while maintaining a high sensitivity. The sensitivity of the tem-
poral model to the time interval trained on is further investigated
by testing on five different intervals of 69 patients. We also eval-
uated the performance of our model in separating different treat-
ment arms (patients on the drug and those on placebos) as this is
one of the primary goals of the clinical trials evaluating the effi-
cacy of new drugs. Better separation is achieved by the reviewed
labelings of our model (corrected only for the false detections)
compared to the fully manual labeling. Therefore, the automatic
framework is more sensitive at locating the gad lesions.
After describing previous work, we present our approach and

then detail the experiments and results in the following sections.

A. Previous Work

In computer vision and medical imaging, many segmentation
algorithms have been proposed for the context of segmenting
a central object (e.g., a building or a healthy structure such as
hippocampus) in an image or in a region of interest from a clut-
tered background [6]–[9], [16]. In these contexts, often rich fea-
tures can be extracted from the objects to be segmented, based
on color, intensity, or texture patterns, that render the object
distinctive from the surrounding background. Moreover, loca-
tion, size, and shape models can be learned and exploited in
order to further improve the segmentation results. In the con-
text of pathology segmentation, where the pathology of interest
is large and there is only one in the image (e.g., brain tumors),
techniques have exploited prior knowledge and texture informa-
tion to delineate the pathology, particularly if one can leverage
texture homogeneity within sub-regions [10], [11], [13], [12].
However, due to the aforementioned challenges associated to
small pathologies, none of these methods are directly applicable
to our problem. The most similar to our approach is the work of
[12] where they include different hypothesis based on all image

cues to train a single CRF framework. However, their frame-
work highly relies on texture homogeneity within sub-regions
and the performance is only shown on relatively large breast le-
sions. Hence, the efficacy of their approach in detecting small
lesions is not clear.
The form of the higher order cliques defined in our model is

very similar to the work of [9] and [7] in computer vision for
the problems of object (such as a building, tree, or car) detec-
tion and scene understanding in natural images. However, their
model focuses on the problem of multi-class segmentation and
the type of the higher order cliques they exploit requires com-
plex learning and inference algorithms. The higher order term
proposed in this work is specifically tailored for binary classifi-
cation problems and it can be easily decomposed to pairwise
interactions. As a result, conventional learning and inference
methods are readily applicable.
Most of the existing methods for gad lesion segmentation de-

scribed in the literature are either not fully automatic [17], or
depend on nonconventional MRI acquisition sequences [18],
or require prior segmentation of T2 lesions in order to remove
the falsely detected regions [19], [20]. In our previous work
[2], [3] a single timepoint CRF-based classifier for detection
of small pathology was developed and showed superior perfor-
mance over several state-of-the-art classifications such as sup-
port vector machine (SVM) and traditional MRF when applied
to the problem of gad lesion classification. However, only voxel-
based features were used. We proposed a single timepoint hier-
archical CRF based approach in [21] where simple patch-based
statistics such as mean and standard deviation of a given neigh-
borhood were used. However, false positive detections still re-
mained. Preliminary work [22] showed some promise in lever-
aging temporal information into the model and we now further
develop and explore this premise in the following section.

II. METHODOLOGY

A. Background
Let and respectively represent a set of input variables

(e.g., image intensities) and a set of output variables (e.g.,
labels in the task of image segmentation). A CRF models the
conditional posterior probability distribution over a
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predefined graph whose nodes and edges represent the voxels
and their inter-dependencies. The conditional probability of the
label given an image can be written as a product of factors
(also called potentials)

(1)

where is a factor function mapping its input variables to a
non-negative real value. is the output variables associated
to the nodes in clique and is the parameter associated
with a configuration . is the partition function and is the
set of all possible cliques in the graph. It is generally assumed
that each of the factors is a member of the exponential families

, where
represents the energy of a configuration . Hence (1) can be
written as

(2)

where and are shortly written as and .
In the following section we elaborate on different steps of the

THAT-CRF model outlined in Fig. 2.

B. Voxel-Wise CRF
Following the general CRF model [(2)], we can formulate the

problem of gad lesion classification by defining several cliques
that capture different characteristics of lesions. At this level, we
model voxel-wise interactions up to triplet cliques to obtain a
set of candidate regions that are further explored at the next
level through the incorporation of more complex terms. Let
and , respectively, denote the images of two timepoints
of the same patient coregistered using [23]. In this paper, we
focus on the context where the temporal interval, , is large
enough such that, if a gad lesion is enhanced in , it is most
likely not enhanced in (i.e., in this study). We
incorporate the voxel-wise temporal information by using the
voxel intensities of both and for all cliques. Hence,
the probability of the configuration at time given and

is

(3)

where , , and represent the voxel-wise potentials for the
unary, pairwise, and triplet cliques, respectively. Superscript
denotes voxel-wise analysis. represents the first-order neigh-
borhood of voxel (i.e., four in-plane and two out-of-plane
neighbors). The voxel-level weights , modulate the effect of

each term in the final decision and are learned at training. It
should be noted that a separate weight is assigned to different
configurations of cliques. In a binary classification, each clique
has different configurations where is the size of the clique.
For instance, for the unary clique and for the pairwise
and triplet cliques and , respectively. As such,
there are , , and 's associated to the unary, pairwise and
triplet cliques. However, to prevent clutter, the dependency of
to the labeling configuration is not explicitly shown in (3). The
clique energies can be modeled as

(4)

Essentially any classifier can be used to model the probabil-
ities in (4). In this work, we choose to use random forest [24].
A random forest is a discriminative classifier that consists of an
ensemble of decision tree classifiers, where the final classifica-
tion is determined by summing the votes cast by each individual
tree. Due to random selection of subset of training data and fea-
tures, contrary to traditional decision trees, random forest is less
prone to overfitting. Also it is computationally efficient both at
the training and test and provides probabilistic outputs.

C. Candidate Region Detection
After the voxel-wise inference is completed, each voxel is

assigned a probability of being gad lesion. These probabilities
are then thresholded to obtain a binary result at each voxel (0
or 1). The goal at this stage is to capture all of the lesions (i.e.,
high sensitivity) at the expense of additional FPs. Therefore, the
threshold is selected such that the highest sensitivity is achieved
on the training data. Then candidate lesions are determined as
neighboring set of voxels (defined by 26-connectedness in three
dimensions) labeled as 1. A patch whose size is proportional
to the size of the detected region is considered around each can-
didate. The rational behind this is as follows: the selected patch
should be large enough to include sufficient surrounding tissue
to capture the contextual information, at the same time, it should
not be too large to suppress the lesion related textures. Specifi-
cally, if shows the size of a given side of the detected region's
bounding box, the size of the corresponding side of the patch,

is set as
pixels

o.w.
(5)

In fact, we examined a few different sizes and the aforemen-
tioned patch size consistently yielded the best performance on
the training data. Fig. 3(b) illustrates the patch selection for a
given detected region. The region inside this patch is forwarded
to the next level.

D. Higher Order Stationary and Temporal Textures
At this level, patches are examined more closely by con-

sidering higher order features besides voxel-wise interactions.
Three types of higher order features are extracted for each patch:
1) spin image, 2) RIFT, and 3) LBP. These features are chosen
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Fig. 3. (a) Post-contrast T1w image with the detected candidates of the first
level. (b) Zoomed view of the detected region. The selected patch is shown in
red. Size of the patch is twice that of the bounding box (in green). (c) Schematic
view of our higher order clique defined over the voxels inside the patch. A new
variable, , is defined over all the variables inside the patch and its value is
propagated to them.

due to their popularity and superior performance in computer vi-
sion applications [14], [25]. They lead to histograms encoding
the appearance pattern inside each patch, based on the intensity
content and both magnitude and orientation of gradients.
Spin image is a 2-D histogram encoding spatial and intensity

information in a neighborhood of a particular reference point
[14]. The neighborhood is a circular region divided into con-
centric rings (making the result rotation invariant) centred on
the reference. The two dimensions of the histogram are distance
from the center, and the normalized intensity [Fig. 4(a)]. To gen-
erate the spin image, the intensity values inside the patch are first
normalized to the [0 1] range, resulting in invariance to spatial
intensity changes (e.g., as a result of bias fields in MRI). Every
pixel in the patch contributes to all histogram bins according
to its location and normalized intensity using a Parzen window
weighting.
RIFT is a 2-D histogram descriptor that encodes spatial

information and gradient orientations weighted by the gradient
magnitude [14]. Its main difference with respect to SIFT is
that it considers the gradient orientations relative to the radial
direction, and therefore is rotation invariant [Fig. 4(b)]. Each
pixel inside the patch contributes to all histogram bins using a
Parzen window weight. The Parzen window makes RIFT and
spin image less sensitive to small deformations and intensity
distortions.

LBP encodes local patterns at circular neighborhoods of a
point. A label is assigned to every point in the image by thresh-
olding its neighborhood points with its value and considering
the result as a binary number [Fig. 4(c)]. The descriptor is the
histogram of the labels of all the points inside the patch [15].
Specifically, we used the rotational invariant version of LBP that
assigns a unique identifier to all possible rotations of the same
pattern [15].
It should be noted that the three proposed textures are rota-

tion invariant which is a desired property in our context since
lesions can have different orientations. The spin image is com-
plementary to RIFT as it encodes the pattern of the
given patch while RIFT is based on the orientation of the gra-
dients inside the patch. Contrary to the spin image and RIFT
which encode information relative to a reference point, the LBP
encodes the pattern around voxel inside the patch by as-
signing a code to it based on its eight neighbors. As such, it
captures more local patterns compared to other two making it
more sensitive to the pattern of small patches. Furthermore, all
three features are scale invariant and also invariant to affine in-
tensity distortions. The former is desired since lesions can have
different sizes. The latter makes the results robust to intensity
distortions happening due to bias field in homogeneities.
Fig. 5 shows examples of the above textures derived for a

lesional and a nonlesional enhancement. Specifically, there are
two types of higher order features: 1) stationary textures that
correspond to the textures extracted at the given patch at time ,
2) temporal textures that correspond to the differences between
the textures derived at time and . Accordingly, two sepa-
rate classifiers based on the stationary and temporal features are
learned in order to discriminate between the lesional and nonle-
sional enhancements.
Prior to defining these classifiers, we first define a new vari-

able, , that is connected to all voxels inside the patch under
study through pairwise edges [Fig. 3(c)]. is 1 if the region
contains a lesion and 0 otherwise. We now elaborate on the
aforementioned texture classifiers.
1) Stationary Texture Classifier: The goal of this classifier

is to model , where is the higher order textural
pattern derived from the patch at time . In other words, we
wish to determine whether is more similar to the texture of a
lesional enhancement or to that of a nonlesional enhancement.
Our analysis showed that in order to distinguish between the
stationary textures, it is more efficient to use a histogram-based
distance metric, such as the earth movers distance (EMD) [26]
as opposed to comparing their attributes one by one (as it is done
by methods such as random forest). For this reason, we have
adapted a kernel-based classifier such as the relevance vector
machine (RVM) where the kernel matrix is computed based on
the EMD distances between the stationary textures. RVM [27]
is a Bayesian discriminant classifier and its main difference to
SVM is that it provides a probabilistic output and usually results
in a more sparse solution than SVM. This means it tends to
generalize better and also needs less computations [27]. RVM
models the probability distribution of the labels as

(6)
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Fig. 4. Images (a), (b), and (c) illustrate computation of the spin image, RIFT and LBP textures for a lesional enhancement. In all three cases, the image on the
left is the zoomed view of the region under the analysis and the image on the right is its associated texture. Contribution of a point inside the patch (marked with
an orange circle) to each texture is shown.

Fig. 5. Spin image, RIFT, and LBP features for a lesional and a nonlesional enhancement. All features are shown for both and - ( ).

where the decision boundary is determined by the function as
follows:

(7)

is the total number of stationary textures used for
training and is the set of weights.

is the kernel matrix comprised of
basis functions. More implementation details are given

in Section III-E. Three types of stationary textures are used
and hence three different stationary classifiers are learned:

where .
2) Temporal Texture Classifier: Here, we wish to compare

the texture of the selected candidate at time and . The
idea is that lesional enhancements change over time whereas
nonlesional enhancements do not change as much. Therefore,
we expect their associated textures to follow the same trend as
well. An example is shown in Fig. 5. Here, the spin image tex-
tures derived at and for a nonlesional enhancement [i.e.,
(e) and (f)] are more similar than that of a lesional enhancement
[i.e., (g) and (h)]. A similar trend is seen for the RIFT and LBP
features as well.
Therefore, the goal is to evaluate where
and are the textures derived from the same location

at and and is a function that finds the distance between

and . It should be noted that here the feature vector
is the between the two temporal textures and not the
textures themselves (more details are given in Section III-E).
Hence, we can directly compare the attributes of the fea-
ture vector. Therefore, similar to the voxel-wise potentials, a
random forest classifier is used to evaluate this probability. As
before, for each texture type, a random forest models is learned
resulting in three different classifiers:
where .

E. IV- Adaptive Voxel, Texture, and Temporal CRF
For the voxels inside the patch, we now consider a second

CRF model that includes both voxel-wise interactions and
higher order stationary and temporal features

(8)

where denotes the total number of voxels inside the patch
and denotes patch level analysis. and indicate the ob-
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servations and labels inside the patch at and indicates
the observation for the patch at . denotes unary, pair-
wise and triplet cliques inside the patch and is their corre-
sponding energy terms. These terms are similar to those used at
the voxel-wise CRF [(3)]. The only difference is the usage of
separate parameters ( ) that are learned together with the pa-
rameters of the higher order terms ( and ). and

represent the higher order cliques reflecting the stationary
and temporal texture classifiers. Essentially, like any pairwise
energy, they encourage voxels inside the patch to have similar
labels as by assigning a lower energy to label agreements
and a higher one to label disagreements. To that end, we define

as

o.w.
(9)

where

(10)

So, for example, if is high, then voxels are encour-
aged to have similar label to because has a lower value
than .

is defined similar to (9) where

(11)

It should be noted that in the CRF model used in [22] the
higher order potentials are added in the form of unary terms
[i.e., and ] whereas in this
work we use a more complete graphical model by introducing
pairwise edges between the image labels and higher order vari-
ables. More modulating parameters are associated to pairwise
potentials as opposed to unary terms. Hence, the resultingmodel
better represents the interactions between the variables.
Finding the parameters of (11) results in a new set of voxel-

level parameters (different from those learned when considering
the voxel-level cliques alone). As a result, the boundaries of
the detected regions may change. Intuitively, if the higher order
features show the presence of a gad lesion in the patch under
study, voxel-level parameters become more relax and let more
of the boundary voxels to be included.

F. Parameter Learning and Inference
1) Learning: We now consider the problem of learning

the parameters of our model given a set of labeled training
instances. We learned the parameters of the voxel-level CRF
and patch level CRF independently. The standard maximum
log-likelihood approach to find the optimum parameters at each
level from training cases is

(12)

where is the set of model parameters and the log-likelihood of
the th example is (the subscript is removed to avoid clutter)

(13)

The partition function is modeled as

(14)

where is the set of all possible image configurations with car-
dinality of ( : the number of classes, : the total number of
image voxels). Hence, computation of the partition function re-
quires summation over an exponential number of terms making
exact parameter learning intractable.
As a result, different approximation methods have been

proposed to address this problem. In this work, we investigate
pseudo log-likelihood parameter learning to obtain optimal
parameters of the THAT-CRF model. Pseudo log-likelihood is
a widely used approach to approximate the log-likelihood by
factorizing it over the individual nodes of the graph. Hence
(12) is written as

(15)

where

(16)

and

(17)

Here, indicates the pseudo likelihood term and is the local
partition function. Intuitively, instead of computing the partition
function for an exponential number of label configurations, at
each time we only allow the label of one voxel to change. This
reduces the exponential complexity to a linear one.
2) Inference: Considering the CRF model at each level and

its learned parameters, we now seek the most probable labeling
that maximizes the conditional probability of (3) and (8). Here,
we use iterated conditional mode (ICM). This yields proba-
bilistic outputs and also makes our learning and inference con-
sistent since both ICM and pseudo-likelihood consider local
marginals to approximate the original intractable problem.

III. EXPERIMENTS AND RESULTS

A. Data
Two different multi-center clinical data sets were used for

training and testing. They contain subjects with relapsing-re-
mitting MS (RRMS) with varying numbers of Gad-lesions lo-
cated in different areas of the brain white matter. The training
data set, data set A, is comprised of 2380 scans from 1190 sub-
jects from 247 different centers. Each subject has two time-
points taken at six months intervals. Each timepoint has various
multi-channel MRI data: pre-contrast (T1p) and post-contrast
(T1c) T1-weighted images, T2-weighted (T2), proton density
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weighted (PD), and fluid attenuated inversion recovery (FLR).
As is typical of data used clinically in most centers, all scans
were acquired axially with in-slice resolution of 1 mm and slice
thickness of 3 mm. The test data set, data set B, comprised of
two subsets, and . Data set contains 120 pairs of scans
at time and (all time intervals are in months) from 24 cen-
ters. Data set contains 69 patients from 27 centers all having
the baseline scan and four other scans at months one, three, four,
five, and six.
The same type of MRI sequences were available as for data

set A. Different data sets from different clinical trials were used
for training and testing in order to demonstrate the robustness
of our model.

B. Preprocessing
Prior to analysis, several preprocessing steps are applied on

MR data to remove nonbrain portions of the image, correct for
nonuniformity effects and bring MR images into a common
spatial and intensity space. All inter-subject modalities and
timepoints are coregistered using a normalized cross correla-
tion-based technique [23]. After coregistration, a deformable
model-based skull-stripping algorithm called Brain Extraction
Tool (BET) [28] is used to generate an initial brain tissue mask
use for skull stripping. Finally, for each image volume intensity
nonuniformity (NU) correction is done using N3 [29]. Intensity
normalization is also performed within and across different
subjects by a histogram matching technique to map each patient
into a global intensity space. This allows us to learn classifiers
based on the intensity across many subjects. This normalization
was done using the method of [30], using intensity deciles as
control timepoints.

C. Ground Truth
Gad-lesions in both data set A and B were available as a

ground truth reference for training and evaluating the perfor-
mance of our classifier. Specifically, these manual labels were
determined using a protocol where two trained experts sepa-
rately labeled the gad lesions using a software that displays
coronal, transverse and sagittal slices all together. The silver
standard ground truth was then generated by consensus agree-
ment among them. If the two could not reach an agreement, the
case was then reviewed by a third highly trained expert who
made the final decision. These precisely controlled labels have
been used for several real clinical trials of MS treatments. All
MRI modalities (T1p, T1c, T2, PD, FLR) were consulted during
the manual segmentation, as were timepoints from the same pa-
tient other than the one being considered (including, prior and
subsequent scans).

D. Training Setup
In order to verify the robustness of our model to different

training sets, three models were learned by selecting two thirds
of the whole training data at random and repeating this three
times. This allowed us to analyze the sensitivity of our clas-
sification results to different training sets. For learning each of
these three models, the available training data itself was divided
into four subsets: , , , and to avoid over learning. First,
the parameters of the potential functions of the voxel-level CRF

[i.e., the random forest classifiers used to evaluate the proba-
bilities in (4)] were learned with . Learning the voxel-wise
classifier was then completed by learning the mod-
ulating parameters using . was then run on to gen-
erate candidate lesions. Both stationary and temporal higher
order texture features were inferred for the candidates. Given
these features, the RVM and random forest classifiers used to
evaluate probabilities in (10) and (11) were learned. Finally,
was used to learn the modulating parameters of the second level,
. Learning different parts of the model with separate data de-

creased the chance of over fitting.

E. Implementation Details
The voxel-wise feature vector for the unary, pairwise and

triplet interactions comprised of the voxel's intensity in all five
MRI modalities1 at and , the , , location of the
voxel and the value of three tissue priors: the white matter, par-
tial volume, and T2 MS lesion priors. The white matter prior
is estimated by registering the icbm152 (MNI) average brain
atlas [31] to the patient images. The partial volume prior models
mixtures of Cerebrospinal fluid and gray matter priors from the
icbm152. The T2MS lesion prior was available from [32] where
manual T2MS lesion segmentations for a series of clinical trials
(totaling 3714 RRMS scans) were all nonlinearly registered to
icbm152 space to provide a probabilistic lesion atlas. All regis-
trations were performed using the method of [23].
All of the random forest classifiers used in (4) and (11) con-

tain 100 decision trees. The number of variables to sample are
half of the total available training data and the number of used
features are half of the available features.
The stationary texture feature vector for the multi-modal

RVM classifier in (10) comprised of the textures of
the candidate location in all five MRI modalities, i.e.,

[Fig. 6(a)]. For simplicity, we
denote as from now on. Gaussian kernels are used for
the basis function in (7). Hence for a given texture , the th
basis is written as

(18)

where is the th stationary texture feature vector from the
training set. The distance between any two feature vectors is
defined as the sum of the distances between their individual
components

(19)

where is one of the five MRI sequences:
. We use the EMD [26]

to evaluate the distance between two textures in each MR
modality. EMD finds the minimum cost required to transform
one histogram into another. The cost is the histogram mass
moved times a weight associated with the distance between
the two bins. We use EMD-L1 [33] in this work where the
weight between two bins is their L1 distance. EMD avoids

1It should be noted that the intensities of different MR modalities are all used
together resulting in multi-modal classifiers.
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Fig. 6. Higher order feature vectors for a lesional (green) and a nonlesional (red) enhancement in all fiveMRI sequences computed for the RIFT texture. (a) and (b)
Stationary and temporal features respectively. Note that in (b), the distance between features at different timepoint are significantly larger for lesional enhancements
as compared to nonlesional enhancements. This is due to the temporal change of MS lesion activity in that time interval ( ). .
(a) Stationary higher order feature vector. (b) Temporal higher order feature vector.

quantization and binning problems associated with histograms,
and has been shown [33] to outperform other histogram
comparison techniques.
The temporal texture feature vector for the multi-modal

random forest classifier in (11) comprised of the distance
between the individual components of and

(20)

where . This feature vector
is shown for a lesional and a nonlesional enhancement in
Fig. 6(b).
Due to the larger spatial resolution of our data set in the

transverse direction, all higher order textures are computed
on 2-D axial slices. The final value of and

for a detected region is obtained by
a weighted sum of the probabilities in the individual slices it
spans over. The weights are the ratio of the area in that slice to
the over all volume of the detected area.

F. Experimental Validation
Fig. 7 shows three qualitative examples of gad lesion clas-

sification results of the proposed THAT-CRF method. There
exists one gad lesion in each shown example that is success-
fully captured by the THAT-CRF model. Figs. 8 and 9 present
two different examples illustrating the adaptive aspect of the
THAT-CRF model in refining the boundaries of the detected re-
gions. It should be noted that if at the second level (similar to
commonly used hierarchical methods) we had only accepted or
rejected the detected regions based on their textures, we would
have obtained the labeling shown in Fig. 8(c) as the final re-
sults. Since this labeling consists of only two voxels, it would
have been removed according to a clinical protocol, which stip-
ulates that MS lesions must have at least three voxels. Hence,
the lesion would have been missed. However, by considering
the higher order textures together with the voxel-level cliques,
we permit more of the boundary voxels to be included if the tex-
tures show the presence of a lesion.

Fig. 7. Qualitative results of the performance of our proposed classifier. Each
row shows an example image from a different patient. First column shows
the post-contrast T1w images. Second column shows the enhancement map
with the enhanced regions corresponding to the lesion detected in the last
column marked with green rectangles. Third column shows the classification
result of the THAT-CRF where arrows point to the gad lesions shown with
green labels.
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Fig. 8. Illustrating the adaptive aspect of the model. Images are the zoomed
view of the example shown in the first row of Fig. 7. Output of the classifier at
different stage of the THAT-CRF model is shown in green. (unary) is
when only the unary term is used. (unary, pairwise, triplet) is the final
result of the voxel-level analysis with inclusion of unary, pairwise and triplet
cliques. Finally, THAT-CRF shows the final output of the model. (a) Enhance-
ment. (b) (unary). (c) (unary, pairwise, triplet). (d) THAT-CRF.

Fig. 9. Illustrating the adaptive aspect of the model. Output of the classifier at
different stage of the THAT-CRF model is shown in green. (unary) is
when only the unary term is used. (unary, pairwise, triplet) is the final
result of the voxel-level analysis with inclusion of unary, pairwise and triplet
cliques. Finally, THAT-CRF shows the final output of the model. (a) Post-con-
trast T1. (b) Enhancement. (c) Zoomed view. (d) (unary). (e)
(unary, pairwise, triplet). (f) THAT-CRF.

We perform different experiments to measure the effect of
different aspects of our model. All performances are evaluated
by comparing to our ground truth reference. Voxel-wise metrics
such as Kappa or Dice coefficient have been previously used
to measure the performance of lesion segmentation algorithms
[34]–[36]. However, these metrics have a strong bias toward
larger lesions as small lesions contribute little to an overall vol-
umetric measure [32], [37]. Moreover, due to the pathological
nature of the lesions, their exact boundaries are often ambiguous
and even an expert has been shown to label the boundaries dif-
ferently if asked to perform the task twice. In addition, the over

all gad lesion is the outcome measure typically used in
clinical trails. As such the primary focus of our work is to detect
the individual lesions. As a result, voxel-wise metrics are not di-
rectly applicable to our problem, so we use lesion-wise metrics
(such as counts) to evaluate our classifier.
In order to measure the performance of the output of a classi-

fier at any step, gad lesions are determined as a neighboring set
of voxels defined by 26-connectedness in three dimensions.
Prior to computing the metrics, regions with size 1 or 2 voxels

are removed to comply with the aforementioned protocol that
lesions should have at least size 3 (the same criteria was used
for the manual labeling). Since our primary focus is to all
the gad lesions, we consider a detected region as a true positive
(TP) if it has at least one voxel overlapping with our ground
truth, otherwise it is counted as a false positive (FP). Any la-
beling in the “ground truth” that is not detected by our method
is defined as a false negative (FN). Overall sensitivity and false
discovery rate (FDR) are evaluated as: and

. By varying the acceptance threshold on the
final probability at each voxel, we present our results in the form
of a ROC-like curve by plotting the sensitivity versus FDR. It
should be noted that our FDR definition is different from what is
commonly used in the conventional ROC curves, where it is de-
fines as the proportion of the false discoverys over all negative
counts (i.e., where TN is the true negative
counts). As computing TN counts is not feasible in this context,
the definition is modified here.
We compare our proposed temporal model, THAT-CRF,

against 1) its single timepoint variant i.e., hierarchical adaptive
texture CRF (HAT-CRF) and 2) its semi temporal variant (semi
THAT-CRF). HAT-CRF is a single timepoint classifier that
does not consider any temporal data when classifying the scan
at time . That means the voxel-wise feature vector consists of
the intensity information only at time , and the lesion-level
higher order features consists of only the stationary features,
i.e., no term in (8). We previously proposed a simpler version
of the HAT-CRF model in [21]. However, the HAT-CRF model
used in this work for comparison is more complete as it uses
up to triplet clique potentials at the voxel-level (as opposed to
pairwise interactions used in [21]) and it includes robust higher
order textures (as opposed to simple patch-based statistics
used in [21]). Moreover, the parameters of the HAT-CRF
model are learned using a substantially larger training data set
than the one used in [21]. In the semi THAT-CRF, only new
enhancing voxels at time compared to timepoint are
considered, and therefore its mathematical expression is the
same as that of the HAT-CRF model. The only difference is
that instead of starting with all of the enhancements at time
[as in Fig. 1(d)], only new enhancements compared to
are considered. In other words, all voxels that are enhanced
in both Fig. 1(d) and (i) are removed in the semi-temporal
analysis. Comparison to the semi THAT-CRF is performed to
highlight the necessity of the temporal patch based comparison
as apposed to easier alternative of removing common enhance-
ments between the two timepoints. The very local voxel-wise
comparison performed by the semi THAT-CRF model makes
it more sensitive to slight temporal misregistrations while the
patch based comparisons carried in the THAT-CRF model
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Fig. 10. Sensitivity versus false discovery rate for the proposed THAT-CRF,
semi THAT-CRF (S. THAT-CRF), and HAT-CRF. Individual points on
the curve were generated by varying the acceptance threshold on the final
classification results at each voxel.

TABLE I
Mean sensitivity standard deviation AT TWO FALSE DISCOVERY
RATES FOR THE THAT-CRF ALONG WITH THE SEMI THAT-CRF

(S. THAT-CRF) AND HAT-CRF CLASSIFIERS

provide robustness to slight mis alignments between the two
timepoints. As such the proposed THAT-CRF model yields
higher sensitivities.
Several experiments are conducted for comparing the afore-

mentioned models:
1) Evaluating the Effect of Temporal Information:

Fig. 10 shows a plot of sensitivity versus false discovery rate for
the final output of the the proposed temporal model (in green),
the semi-temporal model (in red), and the single timepoint
classifier (in black) using dataset . Different points on the
curve were generated by varying the target sensitivity for the
final result. Points on each curve show the mean classification
sensitivity along with its standard deviation as a function of the
false discovery rate for the three learned models. Curves have
been extrapolated (as a straight line at maximum achievable
sensitivity for each classifier) to cover the whole range of
false discovery rates even if in practice these false discovery
rates are not achievable.2 Sensitivity at the final operating
points of interest are shown in Table I. The results show that
the semi THAT-CRF slightly improves the results over the
single-time timepoint classifier. The THAT-CRF technique
further improves the performance by incorporating patch-based
stationary and temporal higher order features. It should be
noted that even though only one voxel overlap with the ground
truth is required for a TP detection, on average more than 95%
of the lesion area is captured in all three classifiers.

2This is mainly performed to facilitate computing the mean curve for re-
porting the mean performance of the three trained models. Also, it facilities
comparing different curves present in each plot.

TABLE II
MEAN SENSITIVITY SENSITIVITY FOR THE A FIXED THRESHOLD OF 0.88

While Table I compares the performance of the three models
for a fixed sensitivity (which translates into a different accep-
tance threshold for the three methods), it is also informative to
compare their performance for a fixed acceptance threshold.
The optimal threshold can be found by choosing the desired
operating point along the curves. For instance, in the context
of pathology detection, it is usually desirable to achieve high
sensitivities ( or 95%) while keeping the false discovery
rate as low as possible. The threshold yielding this result for
the three models is 0.88. Results are summarized in Table II.
A fixed threshold would result in various sensitivities and
false discovery rates for the three models. However, still the
THAT-CRF model yields the highest sensitivity, in expenses of
a slightly higher false discovery rate .
2) Evaluating the Effect of Different Potential Functions

in CRF: Experiments were performed to evaluate the effect
of each term in the HAT-CRF [Fig. 11(a)], semi THAT-CRF
[Fig. 11(b)], and THAT-CRF [Fig. 11(c)] classifiers using
dataset . Results are shown in the form of plots of the
sensitivity as a function of the false discovery rate. Similar to
the previous section, each curve shows the mean performance
over the three learned models. For readability, the standard
deviations are not shown.
Several conclusions can be drawn from the results. 1) In

the voxel-level, incorporating cliques of up to size three im-
proves the sensitivity of the results (which is the main goal of
the voxel-level) compared to cliques of up to size two3 [see
the dashed lines in Fig. 11(a)–(c)]. 2) Exploiting stationary
texture features in the second level improves the results of
the voxel-level [compare all the solid lines versus the dashed
lines in Fig. 11(a) and (b)]. 3) Embedding the combination
of all three stationary texture features (RIFT, spin image and
LBP) leads to the best performance [see Fig. 11(a) and (b)].
4) The proposed THAT-CRF technique gives the best results
compared to both the HAT-CRF and semi THAT-CRF [all three
stationary texture features are used in models in Fig. 11(c)]. 5)
Similar to the case of stationary features, using the combination
of temporal RIFT, spin image and LBP texture features results
in the best performance. It should be noted that the highest
achievable sensitivity of the final result in all three models is
determined based on the working point of their corresponding
voxel-level CRF; this is 0.95 in our experiments and point of
saturation of the curves.
Curves with the best performance in Fig. 11(a) to (c) (marked

in black) were shown together in a single plot in Fig. 10 for the
ease of comparison.

3It should be noted that in computing the statistics of the voxel-level CRF,
thresholds resulting in acceptance of all of the voxels in a given MRI volume
were excluded because based on our TP and FP definitions they will be counted
as one TP resulting in overall sensitivity of one and FDR of zero. For this reason
the maximum achievable sensitivity for the voxel-level curves is not one.
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Fig. 11. Plot of sensitivity versus false discovery rates for (a) HAT-CRF, (b) semi THAT-CRF (S. THAT-CRF), and (c) THAT-CRF models. (a) and (b) Compare
performance of the voxel wise CRF ( ) with unary, pairwise and triplet cliques (U., P., and T.) as well as the final classification results with combinations of
RIFT, spin image and LBP features (R., S., and R.). In (c), aside from the voxel-wise comparisons, the performance of THAT-CRF with temporal textures namely
temporal RIFT, spin image and LBP features (T.R., T.S., and T.L.) is shown. All the curves in (a) to (c) show the mean performance of the three learned models on
the test subset . Individual points on each curve show the mean value over the three learned models and are generated by varying the acceptance threshold on
the final probability at each voxel. (d) Plot of sensitivity versus false discovery rates of the THAT-CRF model for different testing time intervals. Model is trained
with and is tested with varying intervals ( ). Performance of the HAT-CRF model is also shown for comparison.

TABLE III
PERFORMANCE OF THE THAT-CRF MODEL FOR DIFFERENT LESION SIZES
AT TARGET SENSITIVITY OF 95%. TP = TRUE POSITIVE COUNTS, SENS =

SENSITIVITY, FP = FALSE POSITIVE COUNTS, FDR = FALSE DISCOVERY RATE,
#LES = NUMBER OF LESIONS

3) Evaluating the Effect of Lesion Size: Large gad lesions
that span over multiple slices are much easier to capture than
the ones with only a few voxels in a single slice. In this section
we examine the performance of the THAT-CRF algorithm as
a function of lesion size. Table III shows sensitivity and false
discovery rates for different lesion sizes from very small (3–5
voxels) to very large (101+ voxels) when operating at overall
target sensitivities of 0.95. Sensitivities for different lesion sizes
range from 89% for very small lesions to 100% for very large
lesions.
4) Evaluating the Effect of Timepoint Interval: So far, we

limited our studies to pairs of scans acquired six months apart.
While the scan interval in phase I of clinical trials is typically six

Fig. 12. Separation of two treatment arms [patients on the drug (blue) and those
on placebos (red)] based on gad lesion counts for fully manual labeling and
automatic labeling corrected only for false detections (auto-corrected labeling).
Effect size quantifies the difference between two groups and is evaluated as:
mean of group mean of group standard deviation. It is observed that
auto corrected labeling leads to a better separation of the two groups.

months or more, in phase II, more frequent scans are common.
Therefore, it is of great interest to measure the sensitivity of
our model to the acquisition interval between the two scans.
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Fig. 13. Plots of sensitivity vs average false positive count. (a)–(c) Single timepoint (HAT-CRF), semi-temporal (S. THAT-CRF), and the proposed temporal
classifier (THAT-CRF). (d) Corresponds to applying the temporal model learned for on pairs of scans with different intervals.

In other words, we would like to explore the performance of
our detection framework at different ranges of scanning inter-
vals, when the model is learned with a fixed acquisition interval
(currently set at six months). This will help to determine the
intervals for which retraining is required. To this end, we test
the model learned for six month intervals on pairs of scans of
the same patients with variable scanning intervals attained from
dataset . Specifically, we classify the gad lesions at the base-
line where the second timepoint being used is selected at one,
three, four, five, and six months intervals. The plots of the sen-
sitivity as a function of the false discovery rate are shown in
Fig. 11(d). As expected, the best performance corresponds to

. However, for months the THAT-CRF
model still works well and in fact outperforms the single time-
point HAT-CRF model.
5) Sensitivity Versus Average False Positive Count: It is in-

formative to plot the sensitivity versus the average false pos-
itive count per patient. Fig. 13 shows these curves for all the
plots shown in Fig. 11. It is observed that the proposed temporal
model yields less than 0.5 false positive count on average per
patient at the sensitivity of 95% (the highest achievable sense-
tivity among all models). This indicates that further review of
the automatic labelings by a human expert, if required, can be
accomplished very quickly.
6) Evaluating theDiscriminatory Power of the Automatic La-

beling in Differentiating Treatment Arms: One of the important
goals of clinical trials is to assess the efficacy of a new drug. This
is commonly performed in phase II trials for MS by measuring

changes in the gad lesion count in response to therapy for groups
of subjects on the drug under investigation and a comparator
treatment, either placebo or active. Accordingly, we performed
an experiment to assess the effectiveness of the automatic la-
beling in separating these two treatment arms in a clinical trial.
Following clinical convention [38], we studied the MRI of 69
patients at months 3, 4, 5, and 6. Only scans at month 6 were
analyzed by the THAT-CRF using the baseline scan as a refer-
ence. For the other timepoints the HAT-CRF model was used.
Fully manual labeling of the scans performed by trained ex-
perts using the protocol described in Section III-C were avail-
able. The results of the automatic labeling of all scans were pro-
vided to the trained experts asking them to correct only false
positives. We call this new set the auto-corrected labels. The
mean gad lesion count for both the placebo and treated groups
was computed using the fully manual labels and again with the
auto-corrected labels. Fig. 12 summarizes the results. The ef-
fect size measure is used to quantify the separation obtained by
each method. Higher effect sizes indicate better separations. It
appears that the two treatment arms are more effectively sepa-
rated by using the auto-corrected labels than the fully manual
ones. This is because the automatic method has captured some
lesions that were missed in the fully manual labeling (two ex-
amples of such lesions are shown in the last two rows of Fig. 7)4.
It should be noted that manually finding missing lesions (false
negatives) is very challenging and much more time-consuming

4The fully automatic labeling without manual correction yields the effect size
of 0.33.
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Fig. 14. Examples of two false negatives. Each row shows an example image
from a different patient. First column shows the post-contrast T1w images.
Second column shows the enhancement map. Enhanced regions corresponding
to the missed lesions are marked with green rectangles. Last two columns show
the zoomed view of the false negatives without and with manual labeling.

than correcting false detections, and thus not feasible in practice.
Due to the high sensitivity of the proposed technique, we only
investigated the effect of a human rater removing false detec-
tions (which are very few) in this experiment. Note that the low
false negative rate of the automatic method does not affect the
discriminatory power of the algorithm in separating the treat-
ment arms.
We also measured the total processing time that is saved by

applying the automatic technique. The required time by the
readers to perform fully manual labelling of gad-enhancing
lesions for each MRI volume ranges from 10 minutes to several
hours depending on the number of lesions in the volume.
However, it takes only 53.75 and 58.10 s on average (on a 2.66
GHz CPU) for the HAT-CRF and THAT-CRF, respectively.
Moreover, our analysis showed that correcting the results of the
automatic labeling takes on average less than half of the time
required for the fully manual labeling. It should be noted that
this was the first time this type of experiment was conducted.
It is expected that by repeating this experiment a few more
times, readers would gain expertise in correcting the automatic
labeling, which would result in further reductions in the total
required time.
7) Some Examples of the False Negatives: As it is observed

from Fig. 11(c), all curves saturate at sensitivity of 95%. This
is because there are a few lesions that are hardly detectable and
hence are missed at the voxel-level analysis. Two examples of
these false negatives are shown in Fig. 14. These false negatives
are mainly caused due to the lack of accurate priors for these
locations. The example in the first row depicts a lesion very
close to the gray matter. The second example shows a lesion at
the base of the ventricular horn. In both cases the white matter
prior yields low values resulting in the poor performance of the
classification algorithm.

IV. CONCLUSION

In this paper, we proposed a THAT-CRF classifier to detect
and segment Multiple Sclerosis gad-enhancing lesions in brain
MRI. The small size (mostly 3–5 voxels) and various shapes of

these lesions make the problem more challenging than the typ-
ical segmentation problems.We showed how to integrate higher
order descriptors and spatio-temporal features at different scales
in order to discriminate between the true enhanced lesions and
the pool of all other nonlesional enhancements. The model is
learned on a very large multi-center clinical trial consisting of
2380 scans and the effect of different components of the model
is extensively evaluated. Results show that the proposed model
achieves a very high sensitivity (95%) along with a low false
discovery rate (20%) and very few average false positive counts
(0.5) per patient. The sensitivity of the temporal method to the
chosen time interval is further investigated on five different in-
tervals of 69 patients. Finally, when applied to the context of
separating different treatment arms (the final goal in many of
the clinical trials), superior performance is achieved by the re-
viewed labelings of our model (corrected only for the false de-
tections) compared to the fully manual labeling. In conclusion,
the high sensitivity along with the few false positive counts of
our THAT-CRF model offer a fast and accurate solution to be
employed in real clinical trials where final review of the auto-
matic results is routinely performed.
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