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Nonrigid Registration of Ultrasound and MRI Using
Contextual Conditioned Mutual Information
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Abstract—Mutual Information (MI) quantifies the information
that is shared between two random variables and has been
widely used as a similarity metric for multi-modal and uni-modal
image registration. A drawback of MI is that it only takes into
account the intensity values of corresponding pixels and not of
neighborhoods. Therefore, it treats images as ‘“bag of words”
and the contextual information is lost. In this work, we present
Contextual Conditioned Mutual Information (CoCoMI), which
conditions MI estimation on similar structures. Qur rationale is
that it is more likely for similar structures to undergo similar
intensity transformations. The contextual analysis is performed
on one of the images offline. Therefore, CoCoMI does not
significantly change the registration time. We use CoCoMI
as the similarity measure in a regularized cost function with
a B-spline deformation field and efficiently optimize the cost
function using a stochastic gradient descent method. We show
that compared to the state of the art local MI based similarity
metrics, CoCoMI does not distort images to enforce erroneous
identical intensity transformations for different image structures.
We further present the results on non-rigid registration of
ultrasound (US) and magnetic resonance (MR) patient data from
image-guided neurosurgery trials performed in our institute and
publicly available in the BITE dataset. We show that CoCoMI
performs significantly better than the state of the art similarity
metrics in US to MR registration. It reduces the average mTRE
over 13 patients from 4.12 mm to 2.35 mm, and the maximum
mTRE from 9.38 mm to 3.22 mm.

Index Terms—Registration, Surgical guidance, Mutual infor-
mation, Ultrasound, Magnetic resonance

I. INTRODUCTION

Image registration involves transforming different sets of
images of the same (possibly deformed) object that are ac-
quired from different coordinate systems into one coordinate
system. It has numerous medical applications in diagnosis
and in image guided surgery/therapy. Mutual Information (MI)
of two random variables quantifies the degree by which one
variable can be predicted by knowing the other. When two
images are aligned, their MI is usually high [[1], [2]], [3], and
therefore image registration can be performed by maximization
of MI. At the heart of the MI, a joint histogram of intensity
values of the two images is estimated, from which, a measure
of dependence between the intensities is calculated. A major
problem of MI is that it does not take contextual information
into account and only enforces a compact joint histogram.
Therefore, deformable image registration, which has many
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unknown parameters, is challenging with standard MI. We list
three lines of previous work that tackle this problem. Note that
these lines have many theoretical and practical similarities and
we are not suggesting that they are categorically different.

The first approach to bring local contextual information into
consideration is through local features: incorporating gradients
and their orientations into MI [4], [S]], [6], estimating local
entropies and registering the resulting entropy images instead
of the intensity images [7] and assigning patch similarities
to voxels [8]] are three examples. We will further elaborate
the latter two techniques in the Background Section. Recently,
Wachinger and Navab [9]] proposed a probabilistic framework
that can model a variety of feature based similarity metrics.
An entropic measure related to MI is a-MI, which can be
estimated from graphs such as the minimum spanning tree
or the k-nearest neighbors instead of the joint histogram
[10}, [IL1], [12]]. Since the joint histogram need not to be
computed, it has been suggested that these techniques are
less affected by the “curse of dimensionality”. Therefore,
multiple local features such as intensities, gradients and higher
order derivatives are commonly used with this metric. In a
recent work [13]], we proposed self-similarity weighted o-MI
(SeSaMI) where we incorporated patch similarities into a-
MI as graph weights. We showed that SeSaMI is an effective
method of incorporating contextual information into MI using
experiments on simulation and patient data.

The second approach is to generate joint intensity distri-
bution for higher order image structures, such as patches.
The issue here is the “curse of dimensionality”: the joint
histogram for small 3 x 3 patches is 18D; too many data
samples are required to populate an 18D space. Rueckert ef
al. [14] therefore propose an extension of MI into higher
dimensions by considering only one neighbour of every pixel.
Russakoff et al. [15] calculate the joint entropy for 5 x 5
patches, but assume normal distributions and decouple the
joint entropy estimations into 25 independent distributions,
instead of estimating a 50D joint histogram. Yi and Soatto
[16] propose performing dimensionality reduction on image
patches so that low dimensional labels can be assigned to
patches. MI can then be performed on the low dimensional
labels.

The third approach is to condition MI on spatial loca-
tion. Studholme et al. [17] and Loeckx et al. [18] propose
respectively regional MI and conditional MI where spatial
information is used as an extra channel for conditioning
MI. This essentially leads to summing MI calculated for
regions of the images, instead of globally estimating MI. Klein
et al. [[19] propose localized MI (LMI) where samples are
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Fig. 1. Different parts of the images can have different intensity relations in multi-modal images. (a) and (b) are aligned T1 and T2 images, and (c) is their
joint histogram. (d) and (e) show how the brain anatomy relates to the joint histogram.

randomly selected from local neighborhoods in every iteration
and convergence is achieved by using stochastic optimization
[20]. Zhuang et al. [21]] propose spatially encoded MI, which
instead of giving equal weights to all pixels in a region,
hierarchically weights pixel contributions based on their spatial
location. These methods significantly outperform global MI in
the presence of spatially varying intensity bias.

In this work, we use contextual information to condition MI.
Our rationale is that it is more likely for similar structures in
one image to follow the same intensity transformations in the
second image. For example, an edge pixel and a pixel from a
homogeneous region, which both have the same intensity, can
have very different intensities in the second image. Figure [I|
shows two corresponding slices of T1 and T2 images from
BrainWeb [22]. Although the images are aligned, their joint
histogram has two relatively close segments, pointed to by red
arrows. In (d) and (e), we are showing the anatomical parts
that contribute to the two segments. These segments decrease
the level of confidence with which the intensity of a pixel
in one image can be predicted knowing its intensity in the
other image, therefore decreasing MI. We will see that in non-
rigid registration, MI will generate erroneous deformations to
force these two segments into one. However, if we condition
MI on similar contextual regions, these segments are treated
separately and are not forced to collapse into one segment.
This situation is most common in US-MR registration. Here,
a popular line of previous work [23]], [24], [25] simulates US
images from the MR data by assigning different intensities to
different tissue structures. These techniques requires the two
steps of first registering the MR volume to a segmented MR
atlas, which provides with an MR segmentation, and second,
simulating a pseudo-US from the segmented MR using look-
up tables. The first step is challenging in clinical images due
to the potential variety of possible pathologies that the brain
tissue might have, such as different grade gliomas, cysts and
cavernomas. The second step is also complex for two main
reasons: first, the appearance of these pathologies in US is
highly variable [24], [26], and second, changing the time gain
compensation (TGC) settings of the US affect the look-up
tables. The TGC settings are routinely varied in practice to
enhance and reduce the intensity of different parts of the US
image. Our proposed algorithm is inherently similar to this
line of work, but does not require any of the two challenging
steps.

In many surgical planning/guidance and radiation therapy
procedures where image registration is required, one of the
images (the pre-operative/planning image) is available in ad-
vance. We exploit this by performing contextual analysis,
which is computationally expensive, on this image only. Our
contextual analysis consists of calculating patch similarities
in a neighborhood and recording the location of most similar
patches. Buades et al. [27] first proposed exploiting repetitive
regions (or patches) in the form of non local means (NLM)
for image denoising. NLM and a similar concept, called self-
similarity, have recently been used in image segmentation [28]],
object detection and image retrieval [29] and image registra-
tion [7], [8].

In our previous work [13], we incorporated self-similarities
into a graph-based multi-feature similarity metric. The method
was however computationally expensive and requires complex
implementations for optimization of the similarity metric. In
this work, we propose a significantly simpler and faster method
to exploit the contextual information of the patches, which we
call Contextual Conditioned Mutual Information (CoCoMI).
We apply CoCoMI to register pre-operative magnetic reso-
nance (MR) images to intra-operative ultrasound (US) images
in the context of image-guided neurosurgery (IGNS).

In IGNS, an optical or electromagnetic device tracks the
US probe, which allows registering US images to the pre-
operative MRI. Unfortunately, the brain deforms significantly
after the craniotomy for biochemical and physical reasons,
a phenomenon known as brain shift. The errors in tracking
and US calibration add to the registration inaccuracies. As
a result, current surgical neuronavigation systems can have
errors of more than 20 mm, which is not accurate enough to
properly locate blood vessels or critical brain structures with
the neuronavigation system during the surgical resection of
the tumor. Therefore, an accurate registration technique that
performs deformable registration of the US and MR images is
highly desired in neurosurgery.

Previous work that registers US and MR include the fol-
lowing. Roche et al. [30] used the correlation ratio (CR)
between US and MR and MR gradient. Arbel et al. [23] and
Mercier et al. [24] registered the MR volume to a probabilistic
atlas, segmented the MR using the atlas and assigned different
intensity transformations to different MR regions to generate a
pseudo-US. They then registered the pseudo-US to US using
the ANIMAL uni-modal registration of Collins er al. [31].
Similarly, Kuklisova-Murgasova et al. [25] generated a US-
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like volume from the MR volume, and then registered it with
the US volume using a uni-modal block-matching technique.
Penney et al. [32] generated blood vessels probability maps
from from US and MR and registered these maps using cross
correlation. Ji et al. [33] used normalized MI of US and MR.
Zhang et al. [34]] used MI of local phase information. De
Nigris et al. [6] used MI of gradient orientations of US and
MR as a similarity metric. Recently, Heinrich et al. [35] used
self-similarity context, and Wein et al. [36] used correlation of
US intensities and the intensity and gradient of MR. CoCoMI
is similar to the previous work that generates pseudo-US
from MR in that it treats different structures separately by
examining their intensity and gradient content. The advantages
are that CoCoMI does not require registering MR to an atlas or
simulating pseudo-US from MR, both challenging in clinical
applications.

Figure [2] shows an example of the registered US and MR
images. Although the volumes are aligned, the joint histogram
is very spread. This is mainly due to the high level of spatial
bias in the US volume, which is caused by multitude of
reasons. First, even though US machines compensate for signal
attenuation as it penetrates the tissue, this compensation is
only nominal and does not account for different attenuation
in different tissue types. Second, wave transmission at tissue
boundaries is not compensated, which causes the shadowing
artifact behind a strong reflection. Third, US wave varies
significantly with depth, adding more to spatial inhomogene-
ity [37], [38]. And forth, the TGC settings allow the user to
vary the intensity gain of a area of interest. Therefore, for
registering MR and US we compare CoCoMI against LMI
[19], which is robust to intensity bias compared to MI.

In the next section, we first set up image registration as an
optimization problem and provide some details for three state-
of-the-art similarity metrics that we use for comparing against
CoCoMLI. These three similarity metrics are sum of square
differences (SSD) of entropy representations (eSSD), Modality
Independent Neighborhood Descriptor (MIND) and LMI. We
then provide a detailed explanation of CoCoMI, and demon-
strate using simulated images how CoCoMI outperforms LMI,
which conditions MI on spatial locations. For the first time,
we show the performance of eSSD and MIND on US to MR
registration, and compare the results with LMI and CoCoMI.
We end with discussions of the results and conclusions.

II. BACKGROUND

Registration of two images I¢(x), I, (z): @ C RY — R
can be formulated as
fr=argminC, C = D(I;(w).Lu(T(w: ) + 5 |Vull
(D
where I;(x) and I,,(x) are respectively the fixed and moving
images, D is a dissimilarity metric, wg is a regularization
penalty weight, V is the gradient operator and T(-;pu) is
the transformation parameterized by p. For similarity metrics
such as MI or cross correlation that maximize when the
images align, negative of the similarity metric is used as the
dissimilarity metric. We choose a free-form transformation
parameterized by the location of cubic B-spline nodes, which

are shown to be more efficient than other alternatives [39]].
Therefore, p is a vector of the coordinates of all the nodes. In
Sections and we elaborate two different approaches
of defining the dissimilarity metric, which are respectively
based on local contextual representations and information
theoretic measures.

A. Structural Representation

An early use of example of structural representation is the
use of orientation of gradients [4]]. Recently, two structural
representation techniques have been proposed that transform
multi-modal registration into uni-modal registration. These two
techniques are described below.

1) Entropy Images: Wachinger and Navab [7] proposed
calculating the entropy of local patches around every voxel,
and generating a new image where intensity of every voxel is
the entropy of its local patch. They showed that although the
local intensity appearance of images of different modalities
is usually different, the local entropy values are similar.
They therefore introduced SSD of the entropy images as a
similarity function, which they called eSSD. Using entropy
representation, they successfully performed nonrigid registra-
tion on multi-modal images with high accuracy. The size of
the local patches and number of the histogram bins are two
important parameters here. Smaller local patches allow more
local entropy estimation, and higher number of bins allow
more discrimination power against small intensity changes.
These two parameters should be selected together, since local
patches have to be large enough to populate the intensity bins.
Wachinger and Navab [7] therefore use the Parzen window
method to estimate the local intensity distributions as it allows
robust histogram estimation with fewer samples.

2) Modality  Independent  Neighborhood  Descriptor
(MIND): Heinrich et al. [8], [40] used the similarity of an
image patch to its neighbors, in the same image, as features
for multi-modal registration. For every voxel, they computed
the self-similarity of a small patch around that voxel to
the neighboring patches using SSD. They then used an
exponential function to transform SSD distances to similarity
weight that are in the [0 1] range, which they called Modality
Independent Neighborhood Descriptor (MIND). They showed
that although image intensities are different in multi-modal
images, the similarity weights are similar. For volumetric
images, they demonstrated that comparing every voxels to its
6 neighbors (2 in every dimension) provides with 6 features
for every voxel that can be used to compute the dissimilarity
metric. They successfully performed nonrigid multi-modal
registration of CT and MR images with high accuracy.

B. Local Mutual Information (LMI)

Assume we have the intensities of Iy and I, at M
overlapping pixels. Let py and p,, be the marginal intensity
probabilities of Iy and I,,, respectively, and p,, be their joint
intensity probability. All of these distributions are estimated
from the overlapping M pixels. We estimate p,, in this work
using Gaussian Parzen windows. MI is then computed as [1]],
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Fig. 2. Corresponding MR and US images of neurosurgery. The ventricles are shown in the axial view, and the sulci, the corpus callosum and the
interhemispheric fissure are shown in the sagittal and coronal views. The joint histogram is on the right.

[2]:

. _ No pfm(kai)
MI(If, In; Q) = ;;pfm(k, ) gpif(k)pm(i). )

The probabilities are estimated using samples x from the
image domain ). A limitation of MI is that it assumes the
intensity probabilities do not vary over €2, an assumption that
can be violated for various reasons such as spatial inhomo-
geneity. To take spatial information into account, a popular
approach is to consider spatial location as an additional
channel and multiply intensities with spatial kernels when
calculating the MI; examples are regional MI [17]], localized
MI (LMI) [19], conditional MI [18]] and spatially encoded
MI [21]]. For comparison, we implement the LMI method
[19] where these spatial kernels are box filters. In the other
words, LMI is computed by summing MI over multiple local
neighborhoods:

N
IMI(Ty, 1 9) = - SOMII L) ()
=1

where \; C € are spatial neighborhoods and [V is the number
of these neighborhoods. Each neighborhood should be large
enough to contain enough information for MI estimation, and
small enough to allow local estimation of MI [19]. Similar
to [19], we first randomly select a pixel z; in €2, take a
cubic neighborhood N centered at z;, and randomly select
M samples from N (see Figure E| left). We repeat this for NV
pixels ¢ = 1--- N and average the results to estimate LMI.

III. METHODS

CoCoMI estimates the dissimilarity metric of Eq.[I]in two
steps: an offline pre-processing and an online registration
steps. The offline step performs contextual analysis and only
requires one of the volumes. The online registration step is
described in Section [[II-A] followed by offline contextual
analysis step in Section [[II-B] The optimization of the cost
function is detailed in Section [I=Cl

LMI CoCoMI

Fig. 3. Computing LMI and CoCoMI using neighborhood N7 with M = 5
pixels. M is usually on the order of 1000. In LMI, M pixels are selected
randomly in N. In CoCoMI, M pixels similar to the central pixel, i.e. Si,
are selected.

A. CoCoMI formulation

It is more likely for similar structures to cluster close to
each other in the joint histogram when the two images are
aligned. An example is two pixels with the same intensity in
MR where one is on an edge and the other is in a homogeneous
region. These pixels can have very different intensities in US.
Therefore, we condition MI to pixels that belong to similar
structures. CoCoMI is:

1N

CoCoMI(y, I;n; Q) = ;MI(IJc, L;iS;) @)
where S; is the set of pixels whose small neighboring patches
are similar to the patch around j. For each pixel j, the location
of similar pixels is recorded in S;. One of the volumes is
sufficient to find S;, i.e. S; is a self-similarity map. We will
elaborate in Section [[II-B| on how we compute it using patch
similarities and spatial distance between patches. This equation
is very similar to Eq. 3] except that the local neighborhood N
is replaced with the similar pixels S. To compute CoCoMI,
a random pixel indexed with j is first selected. The M
similar pixels in S; are then used to estimate ML In the
other words, MI is only computed from the similar pixels S;.
The process is repeated for N random pixels and the results
are averaged to estimate CoCoMI (see Figure [3). To select
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N, a tradeoff between running time and performance should
be made: Increasing N usually gives better results, with the
improvement plateauing for large N. We always set IV to
50 for both LMI and CoCoMI, which provides robust and
accurate registration in a practical time.

B. Contextual Analysis

The contextual analysis is performed to find S; , the set
of pixels with similar structure to the pixel j. The idea
is to consider small patches around pixels and calculate a
similarity metric between the patches. We compute these
similarities within the same image, and therefore, the similarity
metric can simply be SSD. A problem with SSD is that it
is not rotationally invariant. Grewenig et al. [41]] proposed
to calculate rotation angles and subsequently rotating patches
using interpolation to achieve rotation invariance. This method
is however computationally expensive and sensitive due to
errors in computation of the rotation angle and interpolations
involved. We develop a measure that is invariant to rotation
and to small image deformations. We elaborate the measure
for 2D images; its extension to 3D is trivial.

We compute two histogram descriptors for each patch,
one based on intensities and the other based on gradient
orientations. The intensity histogram is similar to the spin
image proposed in [42]]; we denote it with H*P™". It has two
axes: the distance from the patch center and the normalized
intensity, which is obtained by linearly mapping the intensities
of patch pixels to the [0 1] range. Figure E] (b) illustrates the
construction of the spin image. A pixel in the patch with
distance to the center of d and normalized intensity of @
contributes to bin (dp, %) according to the Gaussian weight:

cxp ( (i —ip)? _(d- db)2> ' 5)

2 2
20; 203

We always set 04 = 0; = 0.5, and use 4 x 4 histograms as
illustrated.

The second histogram in Figure [] (c) is based on the
histogram of orientations. For every pixel in the patch, we
compute the gradient vector g and compute its radial angle 6
using the dot product. This is similar to the rotation invariant
feature descriptor (RIFT) of [42] except that here we use the
dot product to calculate an angle between O to 7, while in
[42] an angle between O to 27 is estimated. Our dot product
readily translates to vectors in 3D, while the extension of
RIFT in [42] to 3D is not straightforward. Nevertheless, we
denote this histogram with HRFT Every pixel inside the
patch contributes to the histogram proportional to its gradient
magnitude and according to a Gaussian weight similar to Eq[3]
We use 4 x 6 histograms as illustrated. The spin image and
the RIFT encode complementary kinds of information: the
former uses intensity values, while the latter uses the gradient
orientations.

We then compare the spin and gradient orientation his-
tograms to obtain two complementary similarity measures.
Most histogram comparison metrics are bin-by-bin based, such
as sum of L; or Lo norms of differences, Kullback-Leibler
(KL) divergence or x? test. A problem with such metrics is

TABLE I
THE OUTLINE OF THE CONTEXTUAL ANALYSIS ALGORITHM.

1) Find P; whose surrounding patches contain structure (Eq. .
2) Select image pixels P2 C P71 such that in a neighborhood
those pixels there is at least M pixels with structure.

3) For all pixels in P2, compare the histograms to that of pixels in Py.
4) For each pixel j in P2, find the location of M most similar pixels Sj.

around

that they can give results that are counter intuitive, and also
are sensitive to binning and quantization [43]. Therefore, we
use the Earth Mover’s Distance (EMD) [43]], [44]] which finds
the minimum cost required to transform one histogram into
another. The cost is the multiplication of the moved mass of the
bins and a weight, which depends on the bin indices. We use
EMD-L1 [44], an efficient implementation of EMD where the
weight between two bins is their L1 distance. The similarity
between two patches ¢ and j is therefore

S(i,j) = w,- (EMD(H}, HY) + wyr - EMD(H}', H})) (6)

where w, and wpy are two weights and H S and H® are
respectively spin and RIFT histograms. To set wy, we have to
first calculate the range of the EMD between two histograms.
The minimum EMD value is trivially 0. The maximum EMD-
L1 value between histograms of size m xn is m~+n—2. For the
spin and RIFT histograms this translates to respectively 4+4-
2=6 and 4+6-2 = 8, and therefore we set wy = 6/8 = 0.75.
This weight balances the effect of the two descriptors. The
second weigh is w, = exp(z?/0?), an exponential weight
with z as the Euclidean distance between the patch centers.
This penalizes pixels that are spatially distant. We always set
o to the width of the N.

We now propose a four step algorithm (see Table[I) to find
the similar structures. The first two steps are pre-processing,
where we mask out part of the image that contain no structure
from our computations. These two steps are elaborated in the
next two paragraphs. The third step computes the similarities
according to Eq. [0| In the forth step, the M pixels with
the smallest EMD distance to the central pixel j are located
and are marked as S;. These M pixels will be used to
compute MI. Although these steps are offline preprocessing,
we downsample the image volume by a factor of 2 to speed
the computations. All steps of computing self-similarities for
a volume of size 100® and neighborhoods of size ' = 213
take less than 20 minutes on a 3GHz processor.

Details of step 1: We calculate autocorrelation inside all
patches using the Moran’s I coefficient [45], [13]. For an
image patch with intensities {i;,j = 1--- N} and the mean
value E(i) = i, Moran’s [ is

N X Newin(i; — i) (i — 1)

) - @)
SN Wik SN (i — )2

where W = w;;, matrix represents the connectivity weights. It
can be a binary map or a decaying map based on the distance
between j and k. I varies between -1 to 1; values close to
0 translate to random patterns and values close to 1 or -1

I=
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(a) NV inside the image

(b) Construction of the spin histogram

(c) Construction of the RIFT histogram

Fig. 4. Construction of the spin and RIFT histograms H5PI™ and HRIFT () is a slice from BrainWeb. The x axis of HSPI™ in (b) and HRIFT in (c) are
distance from the patch center. In (b) and (c), the y axes are respectively intensity and radial gradient angle.

(a) Vinside the image

(b) Moran’s [ selection

7o

(c) EMD of the RIFT

(d) EMD of the spin image

Fig. 5. The similarity weights. (a) is a slice from BrainWeb. In (b), the union of red and blue is the pixels with structure, i.e. P;. Blue is P2. Yellow regions
are masked out by Moran’s I. (c) and (d) show the self-similarity of different pixels with respect to the central pixel. Black indicates more similarity.

indicate presence of structure. Let d(j,k) be the Euclidian
distance between j and k. We simply set W to

iy = { Y6

We set P; to pixels whose patch have a |I| (|.| denotes
the absolute value) larger than a threshold, which we set to
std(|Z])/2. In Figure [5] (b), Py is the union of the red and
blue regions, and the yellow region represents the parts that
have low Moran’s I. Moran’s [ eliminates uniform patches
and in our experience is robust to noise, compared to simply
calculating gradient and discarding parts with low gradient.
Some pixels that are in 7P; might not have enough pixels
in their neighborhood which are also in P;. An example is
the pixels in the right top corner of Figure [3] (b). Since we
only compute the descriptive histograms for pixels in P, not
enough similar pixels can be found in neighborhood N of
these pixels, and therefore step 2 is necessary.
Details of step 2: P is found as:

ik
ay ®)

Py=(P1*B)>M )

where B is the box kernel, which is zero everywhere except in
N, and * denotes the convolution. Pixels in P» are guaranteed
to have at least M pixels in their N© which are in P;. In
Figure [3] (b), P» is shown in blue.

Figure 5 (c) and (d) shows the resulting EMD values. Pixels
that are from a similar neighborhood have a smaller EMD
distance to the central pixel. These two similarity maps are
combined according to Eq. |§|, and S; is found as the set of

most similar pixels to the pixel j. We now show how we
optimize the cost function.

C. Optimization

Given the current transformation parameter p, a typical
iterative optimization technique will seek an incremental Ap
so that g + Ap, on average, reduces the cost function.
Neglecting the regularization term of Eq. [I] to avoid clutter,
the dissimilarity

D(Iy(x), I;n(T(z; p + Ap)) (10)

should decrease. We use a method similar to the stochastic
gradient descent optimization method of [20]. Therefore, the
gradient of D w.r.t. Ap must be computed. Using the chain
rule,

oD or 0l, 0D
VauD = = : : 11
AT T 9An - 0Ap 9T oI, (i
where a"z['“ is simply the transformation Jacobian, %LTC" is the

image gradient, and (f?% is the derivative w.r.t. the intensity of
all pixels. We see that the derivatives are applied to the moving
image I,,. In many multi-modal registration applications, the
resolution and signal to noise ratio of the two images can be
different. On one hand, it makes more sense to use the higher
quality image to perform contextual analysis and find similar
patches S;. Also, in image-guided surgical applications, the
pre-operative image usually has a higher quality, making it
more desirable to perform contextual analysis on this image
to find S;. One the other hand, it makes more sense to set

the image with higher quality as I,,, since both ‘96{13 and 33%




IEEE TRANS. MEDICAL IMAGING

image intensity
image intensity

estimating Ay using 7, gradient  estimating Ay using /, gradient

Fig. 6. Two options to find the incremental transformation Ap for simple
1D images.

will be more accurate. This means that the self-similarity maps
need to deform with I,,, in every iteration of the registration.
Also, the image gradients % have to be recomputed in every
iteration. Therefore, we use an alternative approach to Eq. [T0]
which solves the aforementioned problems and speeds up the
computations as follows. We virtually deform the fixed image,
and apply the inverse of the deformations to the moving image

(4611, [47), [48], [49], i.e. equation [I0] changes to
D(Iy(T(x; Ap)), I (T (a; 1))

Note that here, we are applying the incremental deformation to
Iy. Figure |§| shows the difference between the two approaches.
Here, the transformation update A is a simple translation of
the moving image I,,,. The derivative of D is now

(12)

oD
VapyD=—=—" —
AT 9An T 0Ap 0T Ol
where the derivatives are applied w.r.t. the fixed image. The
updated transformation is

oT  9I; 8D

13)

T(a; ) o T(a; Ap) ™" = T(T(z; Ap) ). (14)

Intuitively, the new formulation assumes we want to transform
the fixed image, calculates an incremental transformation by
minimizing D, and applies the inverse of the incremental
transformation to the moving image. Finally, we prove that
T(x; Ap)~! = T(x; —Ap) up to the first order approxima-
tion. Using the Taylor expansion:

oT oT
T(x; Ap) = T(x;0) + —Ap = —Ap.
(z; Ap) = T(a; )+8u p=zt g Ap
Therefore,
T(x; Ap)oT(x; —Ap) =z + Z%AM - Z—ZAM =z (15)

In summary, we use equation [12] to estimate Ay, and update
the current transformation parameter g to g — Apu. Please
note that, in general, the combination of two B-spline trans-
formations is not a B-spline transformation and the inverse of
a B-spline transformation may not exist. In the other words,
B-spline transformations do not form a group. However, for
small incremental updates we showed that the inverse can be
easily obtained. We can now set the image with higher quality
as the fixed image, and do not need to transform the similarity
maps S;.

Our implementation is as follows. In every iteration, we
randomly select N pixels ¢ = 1--- N. The random selection

intensity + const.

same intensity
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Fig. 7. MI values with deforming I, by rigidly moving its top segment by d.
In the top three rows, the intensity profile of each segment is plotted in blue
(with circles overlaid) for I; and red for Ip,: the intensities of the bottom
segments are the same, and the intensities of the top segments are drifted by
a constant value. We crop the left d columns of I,,, and fas d increases and
compute MI for the overlap between the ¢ and Ip,. The third row shows the
intensity profiles of the images for 2 different values of d = 0 and 60 pixels
(the width of the images is 300 pixels). The joint histograms are shown in
forth row. The last row’s plot shows that while the images are registered at
d = 0, -MI (note the negative sign) reaches its minimum at d = 72.

generally picks different pixels in every iteration. For every
pixel i, we use the M similar pixels in &; to calculate
MI, and average the MI results for ¢ = 1--- N to compute
CoCoMI and its partial derivatives w.r.t. the location of the
B-spline nodes. Letting VA, C' be the gradient of C'in Eq. [T]
w.r.t. Ap (with D as in equation [12), the update equation is
pir1 = pr —a:Va,C. The step size is a decaying function
of the iteration number ¢: a; = a/(A+1t)7, witha > 0,4 >0
and 0 < 7 < 1 user-defined constants [20]. The recommended
values for these parameters are provided in [20]]: A should be
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Fig. 8. CoCoMI pixel selection. The green and magenta segments of the joint histogram belong to the top and bottom image segments. In the bottom row,
selected pixels for the two zoomed neighborhoods are shown with black dots. Since the intensity profiles of the top and bottom segments of I are different
(piecewise linear and parabolic as shown), they are not contextually similar, and hence S1 and S are entirely in the top or bottom segment. The -CoCoMI

plot shows the global minimum at d = 0.

around 0.1 of the maximum number of iterations or less and
7 should be more than 0.6. The value of a is user-defined
and is critical as it determines the step-size. If a is too small
more iterations are required and it is also more likely that
the optimization gets trapped in a local minima. On the other
hand, the registration can diverge if a is too large. Fortunately,
for large enough number of iterations the final registration
result varies negligibly if a is varied by as much as 100%.
a also depends on the similarity metric; we set it to values
between 1 and 10* by multiplying it by 10 each time and
evaluated the deformation at each iteration. After we found
its order of magnitude, we varied it by smaller steps and
finally set it to 100 for both LMI and CoCoMI. We elaborate
our implementation for computing similar patches in the next
section.

IV. RESULTS

For LMI and CoCoMI, we use our implementation which
models deformations with free-form B-splines. We limit the
self-similarity comparisons to local neighborhoods of sizes
N = 812 in 2D and N' = 213 in 3D. The neighborhood
N of LMI is of the same size, unless otherwise noted.

We use 2D simulated data and 3D US and MR patient data
for validation. In the simulation experiments, we compare only
LMI and CoCoMI for two reasons. First, LMI and CoCoMI are
similar except for the use of contextual information. Detailed
comparison of these two methods provides insight into the
importance of exploiting contextual information. Second, in
the simulation data we introduce known deformations and
study different methods by comparing the deformation they
recover with the ground truth. On one hand, if the ground
truth deformation is a displacement field which is defined for

every pixel, entropy images and MIND have an advantage
since they model the deformation in a similar manner. On the
other hand, if the ground truth deformation is generated with
B-splines, LMI and CoCoMI have an advantage since they
model the deformation similarly. Therefore, we use B-spline
deformations in the simulation experiments and compare LMI
and CoCoMI. In the US to MR patient data, however, we
compare all four of the similarity metrics.

A. Simulated Images

We first show how MI can force similar intensity relations
between different image parts. Figure [7]top shows two images
Iy and I,,,, each with two segments. The intensity values of
I and I, are superimposed on the images with respectively
blue and red lines. The bottom segments of Iy and I,, have
the same intensities, while the intensities of the top segments
are similar up to a constant value. We now deform I, by
simply moving the top segment by d. For d = 0 and d = 60,
we show the intensity profiles of both images in the third row.
Note that the red and blue curves that represent the intensity of
the bottom segments are identical for both d = 0 and d = 60.
Also, notice that at d = 60, the intensity relation of the top
segments gets closer to identity (i.e. the constant intensity
difference gets close to zero), which means that the top and
bottom segments follow the similar intensity transformations
(see also Table [M). Forth row shows the joint histograms at
d = 0 and d = 60. Note that at d = 60, the histogram is
more compact, indicating that MI is higher. The bottom plot
shows that while the two images are aligned at d = 0, the
-MI curve is minimized around d = 72. This is because as d
increases from zero, the constant intensity difference between
the top parts becomes smaller. Also note that there is a gradient



IEEE TRANS. MEDICAL IMAGING

before deform.

CoCoMI

CoCoMI

)\ s

S U -

GT LMII

LMI2 CoCoMI

Fig. 9. Deformable registration of two simulated images. The ground truth joint histogram before deforming I,, has two branches as shown. The second
row shows a detailed view of the middle of the histograms. The deformable MI and LMI both try to bring these two closer as shown by the arrows. This

results in the large erroneous deformation as shown in the third row.

TABLE 11
THE INTENSITY RELATIONS OF [ ¢ AND Iy, OF FIGURE AT d = 60
PIXELS, C2 &~ 0 < (1, AND THEREFORE THE INTENSITY RELATIONSHIPS
OF THE TOP AND BOTTOM SEGMENTS ARE SIMILAR.

segment d = 0 pixels d = 60 pixels
top Im=If+Cl Im:If+CQ
bottom L, = Iy Im = Iy

discontinuity at d = 0, which is caused by the two vertical
stripes aligning at d = 0. Treating the two segments separately,
as in our similarity measure based on contextual information,
significantly mitigates this problem, as shown in Figure [§]
Since the top and bottom segments of I; have different
intensity profiles (respectively piecewise linear and parabolic),
CoCoMI either selects pixels from the top (as in N7) or bottom
(as in N>) segments. The CoCoMI cost function predicts the
correct alignment at d = 0. The slight fluctuations in the
CoCoMI plot are due to its random neighborhood selection
for every d. We use N = 50 neighborhoods according to
Eq. @] Increasing N decreases these fluctuations.

As a second example, Figure@] shows two images /¢ and I,
of size 40 x 40 before deformation, and their joint histogram.
We deform I,,, using a B-spline mesh with node spacing of 4
pixels, with the middle node moved by 2 pixels in the right
and down directions as shown in the ground truth deformation.
LMI1 and LMI2 are computed respectively using all the pixels
in the neighborhoods N of size 292 and 212. Note that the
size of A cannot be very small because it has to contain at

Fig. 11. Spatial locations corresponding to the joint histogram for aligned Iy
and I,. The solid blue and dashed red rectangles respectively correspond to
the blue dots and red asterisks as marked.

least M samples for reliable estimation of MI; 212 gives us
M = 441 samples. N (see Eq. [3) is set to 10; increasing it
to 50 did improve the results. For CoCoMI, we similarly set
N to 10 and M to 400. LMI produces incorrect deformations
which can be observed from both the joint histograms and the
deformation fields.

We then deform the images of Figure [9] by 400 random
deformations generated using B-spline nodes that have a 10
pixel spacing between adjacent nodes. In each deformation,
every node is displaced by a uniform random number in the
+1.5 pixels range in both directions. The registration problem
is solved using the same B-spline spacing, i.e. 10 pixels. The
intensity sum of square differences at every pixel between the
un-deformed and deformed I,,, is shown in Figure [I0] The ini-
tial difference is large as expected. The ground truth difference
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Fig. 10. The I,, in Figure E] is deformed with 400 random deformations and is registered to If. (a) to (g) show the intensity sum of square difference (iSSD)
of the deformed I,, and original I,,, averaged over the 400 cases. Deforming I, back using the ground truth deformation (image in the second row and
column) does not give zero iSSD, as shown, because of smoothing induced by two forward and backward interpolations. All images have the same intensity

scale.

in (g) is obtained by deforming the I,,, back using the ground
truth deformation. It is not zero because of the errors incurred
in the two interpolations (the random deformation and its
inverse). Using the same instance of random deformation, we
recover the deformation using LMI with 4 different parameter
settings: LMI1 to LMI4 respectively uses neighborhoods A/ of
sizes 372, 292, 232 and 192. The sum of square of differences
for CoCoMI in (f) is the most similar to the ground truth in
(g) computed over the 400 deformations. The warping index,
which is the root mean square (RMS) of the registration error
in each pixel, is also significantly smaller in CoCoMI. This
example show that LMI with different neighborhood sizes N
cannot achieve the same results of CoCoMI. The results of (b)
to (e) show that the error is high at the right bottom corner, and
is relatively low at the top right and bottom left corners. To
explain this, we plot the spatial correspondence with the joint
histogram of aligned fixed and moving images in Figure [T1]
Here, we see that the bottom right corner corresponds to areas
with low density in the joint histogram, which are also close
to the high-density areas. This causes these points to be pulled
towards the high-density areas and results in the large error. In
contrast, the corners at top right and bottom left correspond to
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Fig. 12. The effect of mesh size (the distance between adjacent nodes) on
different methods using 400 random deformation of images of Figure E] The
error-bars are divided by 5 to aid visualization.

the high-density areas and therefore have lower deformation
error.
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Fig. 13. Non-rigid registration of the BrainWeb images. (a) and (b) are respectively T1 and T2. (c) shows the two red and blue regions that construct the two
branches in the joint histogram. (d) and (e) are respectively the joint histograms before and after deforming T2. In (f) and (g) the joint histograms are shown
using the deformations found with respectively LMI and CoCoMI. Both methods correct the spread in the joint histogram marked by the green arrow. LMI
also brings the two branches closer as marked with the red arrows. (h) is the ground truth random deformation. (i) and (j) are the errors in the deformations
recovered by LMI and CoCoMI respectively. The deformation vectors are scaled, and the nodes are downsampled by a factor of 2 to ease visualization.

To show the effect of the mesh size, i.e. T, (x) in Eq. |1} we
vary the spacing between B-spline nodes from 5 to 40 pixels.
The 400 random deformations are the same as the previous
experiment: node spacing is 10 pixels and the range for each
node is £2 pixels in each dimension. Figure shows the
results. LMI1 to LMI4 are using neighborhoods of sizes 372 to
192 similar to the previous experiment. Here, again, CoCoMI
significantly outperforms LMI. As the mesh size increases to
40 pixels, all methods perform similarly. The difference is
greatest at smaller mesh sizes where deformations can be more
arbitrary. An interesting observation is that CoCoMI and LMI1
give the smallest warping index at the 10 pixel mesh spacing
because the random deformation field is also generated with
the 10 pixel mesh spacing (i.e. the ground truth deformation
and the deformation model T of Eq. [l| are identical). This,
however, is not the case for LMI2 to LMI4 where increasing
the mesh spacing to 20 pixels, and therefore limiting spurious
deformations, generates the best results. A final observation
from this figure is that CoCoMI is more robust to allowing
a mesh size that is actually finer than the actual deformation
(i.e. node distance of 5 pixels for a ground truth deformation
with node distance of 10 pixels). In practice, obviously the
scale of the actual deformation is unknown, and CoCoMI thus
probably will not stray too much from the correct deformation
if the mesh size is chosen too small.

In the next experiment, we use T1 and T2 images from
BrainWeb [22] at 1% noise and 20% non-uniformity. The

N]

Fig. 14. Pixel selection in CoCoMI. In N7 and N, the center pixel (the
violet circle) is respectively on the red and blue anatomy (see also Figure[T]).
The selected pixels are marked with green dots in N7 and N2. Note than in
N1 and Na, very few pixels from respectively blue and red are selected.

images are of size 160 x 180 and the spacing between the
nodes is 10 pixels. Figure [I3] (a) and (b) show the images, and
(c) shows the blue and red anatomical regions that constitute
the two branches in the joint histogram. (d) shows the joint
histogram. We then deform the T2 image by randomly moving
all nodes in the range of -1 pixel in both dimensions, as shown
in (h). Please note that to keep the size of the figure small, we
are showing every other node (i.e. at 20 pixel spacing) and are
also scaling up the deformation vectors. The joint histogram
of the images before registration is shown in (e) and after
registration with LMI and CoCoMI in (f) and (g). Focusing
on the green arrows, we see that both LMI and CoCoMI reduce
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Fig. 15. The average registration error of LMI and CoCoMI. In the bottom,
the images are shown with superimposed contours (automatically computed
from I,,,). The skin, pointed to by the red arrows, has significantly more error
in LMI. The warping index boxplot also shows lower error for CoCoMI.

the spread of the joint histogram, compared to (e). However,
the parts marked by the red arrow have been mistakenly made
compact. We computed the global MI between T1 and T2 after
registration with LMI and CoCoMI, and, interestingly, found
out that LMI produces higher global MI. However, as this
example shows, higher global MI and compact joint histogram
does not always translate to higher deformation fidelity, as the
error vectors in (i) and (j) show.

To better see why CoCoMI keeps the two histogram
branches separate and produces smaller errors, we show the
results of CoCoMI pixel selection in Figure[T4] Neighborhoods
N1 and N are respectively centered on a red and blue pixels.
Selected pixels are shown in green. CoCoMI selects pixels
similar to the center, and as a result, we see that very few blue
pixels are selected in Af7. Similarly, very few red pixels are
selected in NV5. When the blue and red pixels are not mixed for
MI computations, they are not forced to move closer together
in the joint histogram in the optimization process, which is
visible from joint histogram (g) in Figure [I3]

Finally, we deform the T2 image by moving each node
of the B-spline mesh by a uniformly distributed random
number in the range of +4 pixel in both zy directions.
We generate 100 of these deformation instances and recover
the motion using LMI and CoCoMI. Figure [I3] shows the
results of the average deformation error. A common pattern
with both LMI and CoCoMI is the high error in the white
matter area, where there is not enough texture to track the
motion. Comparing the results around the skin, we see that
LMI produces much larger errors because it treats the skin
region similar to the gray matter, and tries to push the two
branches of the two histogram into one as we showed before.
This example illustrates how conditioning the MI estimation
on similar structures can improve the registration results for
images of modalities other than US.

Fig. 16. US and MR images in the BITE database. Left shows the US
slices before 3D reconstruction. Right shows the MR volume as well as the
landmarks, which are used for assessing the registration accuracy.

B. US-MR Images of Image-Guided Neurosurgery

The clinical data from 14 patients are acquired at the
Montreal Neurological Institute, and are part of the BITE
database available online at http://www.bic.mni.mcgill.ca/
BITE! The pre-operative MR images are gadolinium-enhanced
T1 weighted and are acquired approximately 2 weeks before
the surgery. The intra-operative US images are obtained using
an HDI 5000 (Philips, Bothell, WA) with a P7-4 MHz phased
array transducer. The pixel size of 2D ultrasound images is
0.3 mm. The ultrasound probe is tracked with a Polaris camera
(NDI, Waterloo, Canada), which provides the three locations
and angles (6 DOF) of each image. Figure [I6] shows the US
slices which are placed in 3D using the tracking information.
To perform image registration, we reconstruct US volumes
with a voxel size of 1 mm in the z y z directions from 2D US
slices [50]]. This relatively large voxel size means that for every
voxel, multiple US measurements from different images and
insonification angles are available. Therefore, the effect of US
speckle noise is minimized, since US speckles look different
when imaged from different locations or angles [51]], [52],
[53]. Each volume has a different size because the depths and
sweeping areas are different; the typical size is on the order
of 1003 voxels of size 13 mm.

The MRI volume has a voxel size of 0.5 mm in the imaging
plane and 1 mm slice thickness. We resample the volume to the
isotropic 1 mm voxel size, same as the reconstructed US voxel
size. To find the transformation between the patient and the
MR, landmarks are identified on the MR and the patient’s skin.
This transformation, along with the US tracking information
and US calibration matrix are all provided in BITE, which we
use to perform the initial rigid registration of MR to US and
crop the MR volume to the same size as the US volume. The
intensity of the US images is not reliable at the top and bottom
of the images. We exclude the boundaries of the US volume
from our computations to take this into account. Therefore,
the cropped MR volume is larger than the useful US volume
and always covers it.

To validate the results, three experts have selected corre-
sponding anatomical landmarks in the US and MR images,
which is available in BITE. Figure [T6] shows these landmarks
on the MR data. These landmarks are used to calculate
mean target registration errors (mTRE). The mTRE of n
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Fig. 17. Three different corresponding slices of US, MR, and their entropy images. The entropy images are calculated using patches of size 53 with 32 bins.
At tissue boundaries, both US and MR have high values in the entropy images. However, the low intensity areas of the MR entropy images, mostly in the
white matter, do not have corresponding low intensities in the US entropy images.

corresponding marks at locations @ and x’ in the two images
is calculated according to

(16)

1 o ,

wTRE = — Z |T () —
where T is the transformation (see Eq. [l) and ||v]| is the
Euclidian length of the vector v. BITE contains data from
14 patients. We have carefully inspected all landmarks in all
patients and noticed that the landmarks in one of the patients
do not match in the US and MR volumes. We are including
a picture of this case as a supplementary material. We have
also asked a neuro-radiologist to check the accuracy of the
landmarks in two randomly selected patients, who confirmed
their accuracy. Therefore we analyze 13 patients in this study.
The initial mTRE values are shown in Table [l Patient P10
in this table has a small initial mTRE of 1.52 mm. We use
the MR and US images of this patient as a bronze standard
registered data to plot different similarity metrics as a function
of the rigid translation of the MR.

C. Implementation Details

SSD of entropy images, eSSD: For computing entropy
images, the patch size and number of intensity bins are two im-
portant parameters. Smaller patches give a more local estimate
of the entropy, while larger patches generate smoother entropy
images. More bins give the entropy image more discrimination
power against intensity changes, while they need larger patches
for populating the bins. Similar to Wachinger and Navab [[7],
we varied the number of bins from 8 to 128 and the patch size
from 53 to 133 to analyze and optimize the results. Figure

shows three different corresponding slices of MR, US, entropy
of MR and entropy of US. Note that the US entropy images are
invariant to the large spatial bias in the US images. We see that
while the US and MR entropy images share substantial similar-
ities, they have different intensities in some regions especially
in the white matter. Therefore, a robust similarity metric is
necessary to limit the effect of these outliers. Using P10 in
Table[[Tl] as a bronze standard registered data, we plot the eSSD
cost function by rigidly moving the MR entropy image in the
x y directions by +5 pixels in Figure[I8]. The minimum cost
is expected to be at zero displacement. The results of Figures
[I7] and [T8] show that the eSSD is not an optimal similarity
metric for US to MR registration. We exploited US speckle
denoising algorithms and also reconstructed US volumes with
larger voxel size (up to 2 mm) to minimize possible adverse
effect of US speckle on entropy images, but the problem
persisted. We also used two mono-modal registration methods
for deformable registration of the entropy images: the block
matching algorithm of ANIMAL+INSECT [31]], and the cross
correlation similarity metric with symmetric diffeomorphic
deformation of [34]. The registration did not improve the
alignments or reduce the mTRE values, and therefore we do
not present them here.

MIND: For the MIND descriptors, the number of neighbors
for patch similarity can be tuned from 6 (2 neighboring voxels
in every dimension) to d® — 1 for considering all voxels in
a cube of size d®. The number of neighbors is equal to the
number of similarity features that are assigned to every voxel.
More neighbors provide every voxel with more features, but
also makes the MIND descriptor sensitive to deformations. We
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Fig. 19. Gradient magnitude and radial gradient of MR versus US. (a) is a slice of MRI, with a zoomed view in (b). Longitudinal fissure, ventricles and
hippocampus are respectively marked by L, V and H. (c) is the magnitude of the MR gradient. (d) is the MR radial gradient. (e) is the corresponding US. (f)
and (g) are the LMI values obtained by rigidly moving the MR gradient of respectively (c) and (d) in the x y directions by £5 pixels. The minimum cost is

expected to be at the zero displacement. Black represents smaller dissimilarity.

(b) eSSD, MR gradient

(a) eSSD, MR intensity

Fig. 18. Qualitative eSSD similarity metric versus rigid translation of the MR
in the = y directions by £5 pixels. The minimum cost is expected to be at
the zero displacement. Black represents smaller dissimilarity.

found that 6 neighbors give substantially the best results. We
use the implementation provided in [8] for deformable registra-
tion, which computes symmetric diffeomorphic deformations.
We tested different pixel spacings and numbers of iterations
and found that the following values give the optimal results
for our data: 3 hierarchical levels at spacings of 4, 2 and 1
pixels, with the number of iterations at each level respectively
set to 8, 128 and 4. At these settings, the running time is
approximately 5 min.

LMI and CoCoMI For LMI and CoCoMI, we set N
(number of neighborhoods) to 50 and M (number of voxels)
to 1000. More neighborhoods increases the accuracy and
robustness of both methods, but also increases the computation
time. We use the MRI for self-similarity estimation since it has
a higher quality and is also available in advance. Hence, the
running time of LMI and CoCoMI is similar. Our registration
has 3 hierarchical levels at 80, 40 and 20 pixel spacing between
the B-spline nodes. Note that since our deformation model is
different from that of MIND, our pixel spacings are different.
The running time is approximately 10 min for both LMI and

Fig. 20. US images acquired from different locations or different probe
orientations have different US insonification angles, i.e. the radial directions
are not aligned.

CoCoMI.

Since US echoes are strong at tissue interfaces, they gen-
erally show high correlation with the gradient of MR. As a
result, previous work [23]], have registered the magnitude
of the MR gradient to US. In this work, we present results of
US registration to both MR intensity and MR gradient. When
using MR gradients, we compute the descriptive histograms
from the original MR intensity and not the MR gradient.
Regarding SeSaMI, we do not provide the results for both MR
intensity and gradients, because SeSaMI utilizes intensities
and gradient features for registration. Both qualitative and
quantitative results are presented.

D. Qualitative Analysis

Radial gradient versus magnitude of the gradient of the
MR. The US probe used in most IGNS systems, including
the one used in the BITE database, is a phased-array probe. A
phased-array probe has a small head and generates US waves
in the radial direction. Therefore, its advantage compared to
linear probes is that it can produce a fan-shaped image (see
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Fig. 21. Qualitative comparison of different similarity metrics by rigidly
translating the MR image in the horizontal and vertical directions by £5
pixels. In the top and bottom rows, MR intensity and MR gradient magnitude
are respectively utilized. The minimum cost is expected to be at the zero
displacement. Black represents smaller dissimilarity. All the figures are
normalized to [0 1] range to enhance visualization.

Figure [T9] (¢) and from a small opening. It seems natural
to calculate the MR gradient also in the same radial direction.
Calculating the radial gradient of the MR is more difficult
compared to simply calculating the magnitude of the gradient
because it depends on the alignment of the US and MR. To
compare the correlations of the radial gradient and gradient
magnitude with US, we perform the following experiment.

Using P10 in Table [Tl as a bronze standard registered data,
we plot LMI as a function of the rigid translation of the MR
in the = y directions by +5 pixels (see Figure [I9). Here,
the radial gradient of the MR can be simply computed since
MR and US are registered: we perform a dot product between
the gradient vector and the vector that connects that point to
the US probe. The results in (f) and (g) show that both the
magnitude of the gradient, and the radial component of the
gradient can be used to perform image registration. In fact,
the gradient magnitude seems to generate a sharper minimum
at 0 displacement. The reason, in our opinion, lies in the fact
that the 3D US volume is generated from many 2D US images.
Both unparalleled imaging planes, and in-plane translation or
rotation of the probe cause the radial directions to be different;
see Figure [20] for an example of two US images with in-plane
probe translation. In fact, this type of averaging reduces the
dependence of image on the US insonification angle and is
used to improve the quality of US image [52]. We therefore
use the magnitude of the MR gradient, which does not need
to be recomputed after every iteration.

Cost functions of MIND, LMI and CoCoMI. Using P10
in Table [, we now compare LMI and CoCoMI by looking
at their values as a function of rigid translation of the MR in
the = y directions. The minimum dissimilarity is expected to
be at 0 displacement. The results are shown in Figure 21} We
see that MIND performs better using MR gradients, where it
gives the smallest dissimilarity at 0. LMI works significantly
better with the MR gradient. CoCoMI predicts O as the correct
alignment with both MR intensity and MR gradient.
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Fig. 22. The alignment quality before and after registration. The underlying
MR image is always the same. The US slice is reformatted according the the
recovered 3D transformation by the named technique. The edges (in green)
are from US. The think blue and thin red arrows respectively point to correct
and incorrect alignments.

Visual assessment of the registration results. The next
experiment provides visual comparison of the registration
results (see Figure 22). The left column is the same MR
slice, and the right column is the corresponding US slice
after registration. Note that the registration is done in 3D. The
thick blue and thin red arrows respectively point to correct
and incorrect alignments. The green edge contour is found
automatically from the US images, and is overlaid on the MR
images to aid assessing the alignment quality. Here, we see



IEEE TRANS. MEDICAL IMAGING

the alignment accuracy improves significantly from initial to
LMI, and further from LMI to CoCoMI.

E. Quantitative Analysis

Finally, the mTRE results for all the 13 patients are shown
in Table The SeSaMI results are from [13|]. They show
that either MR intensity or MR gradient can be used to drive
the non-rigid registration. The last two rows show that both
the mean and standard deviation of the mTRE are decreased
with non-rigid registration. The average mTRE of MIND with
MR intensity and MR gradient (the last two rows of the
table) are respectively 3.77 mm and 3.68 mm, showing that
MIND significantly reduces the initial mTRE. The p-value of
statistical significance of the improvement of CoCoMI over
LMI using a paired student t-test are: p = 0.0004 for intensity
of MR and p = 0.002 for gradient of MR. This shows that the
CoCoMI is consistently outperforming LMI in terms of mTRE
results. While the average mTRE of CoCoMI is similar to that
of SeSaMI (2.36 mm versus 2.30 mm) and the difference in the
results is not statistically significant, CoCoMI runs 10 times
faster. The 10*" and 90" percentile values also show that the
reduction in the high TRE values is the greatest in CoCoMI:
in average, it reduces the 90% value from the initial value
of 6.0 mm to 3.9 mm and 3.8 mm using respectively MR
intensity and MR gradient. In addition, the results of the last
row show that the maximum 90% value for LMI and CoCoMI
are 7.1 mm and 4.9 mm respectively, while the initial value is
11.8 mm. This significant reduction indicates the robustness
of CoCoMI compared to LMI.

V. DISCUSSIONS

Many important anatomical references that are well visu-
alized in the pre-operative MR are not visible in the intra-
operative US, and therefore fusing MR and US images is of
significant clinical value. CoCoMI performs automatic regis-
tration of MR and US, while accounting for brain shift. As a
result, it reduces the maximum initial mTRE value of 9.38 mm
in Table to 3.22 mm. Without such intra-operative re-
registration, surgeons cannot rely on the images presented by
standard neuronavigation systems when brain shift is present.
CoCoMI significantly improves the alignment between US
and MR images, which results in improved confidence in the
neuronavigation system, and can potentially reduce surgical
time and complications.

We used two complementary histogram descriptors for con-
textual analysis: the spin image, which is based on intensities,
and RIFT, which is based on gradient orientations. We then
used the contextual information to constrain the shape of the
joint histogram. Richa et al. [55] also proposed a similar
strategy for tracking surgical tools, where they impose weights
on the contribution of different pixels to prevent optimality of
undesirable shapes for the joint histogram.

The offline pre-processing step allows us to use local his-
tograms to encode the rich structural self-similarities between
two voxel locations to a single number, the EMD distance.
Wachinger and Navab [7] generate entropy images also using
local histograms. Similar to our work, these features are

obtained in two steps: first by constructing a histogram, and
second, by inferring the features from the histogram. Our
approach is different in both steps. In the first step, our his-
togram descriptors explicitly contain both intensity and spatial
location, while the entropy images, in their standard form,
contain only intensities. Wachinger and Navab [7] proposed
a spatial weighting map to differentiate different patches that
have identical histograms. However, in order to completely
discriminate different patches, the weight map should contain
numbers in a very large dynamic range, which leads to
locations that become negligible in the entropy calculation as
discussed in [[7]. In the second step, the entropy images directly
map the histograms into scalar entropy values, where different
histograms can generate the same entropy. Our approach
however utilizes all the histogram bins and performs pair-wise
comparisons using EMD to map differences between patches
into a scalar value. Our asymmetric algorithm, which only
requires these contextual analysis on one of the images, allows
us to perform them offline on the pre-operative image.

Wachinger and Navab [7] showed that the entropy images
can be used to transform multi-modal registration of TI,
T2, PD, computed tomography (CT) and positron emission
tomography (PET) to uni-modal registration. In this work,
we showed that entropy images of US and MR have many
similarities, but SSD is not enough for registering them.
Our experiments showed that US entropy images have many
desirable features, such as eliminating the large spatial bias in
the US image. In the future, we will explore incorporating
speckle statistics in estimation of US entropy images. We
will also use robust similarity metrics for registering entropy
images of US to entropy images of other modalities.

We successfully used the MIND technique for the first
time for registration of US and MR images, and showed that
the cost function generated by MIND is generally smooth
(Figure [21I)) even with the high level of noise and attenuation
bias in the US volume. The results of Table show that
the initial mTRE values are also significantly reduced with
deformable registration using MIND. Comparing the MIND
and CoCoMI results, one should also keep in mind that they
use different transformation models: MIND uses symmetric
diffeomorphic while CoCoMI uses free-form B-splines.

Contextual analysis allowed us to group similar pixels
together for MI estimation. This is, to some extent, similar
to the popular line of work [23], [24], [25] which segments
the MR to simulate a pseudo-US from MR. In another work,
Zhuang et al. [21]] showed that performing Parzen window
weighting on the spatial distances is superior to using a box
kernel, which is 1 or O for respectively spatially close or far
pixels. Therefore, an avenue for future work is to further utilize
contextual information as follows. We will add self-similarities
to image intensities as a third channel of the joint histogram
and consider Parzen window weighting in the third channel as
well as the first two channels (i.e. the image intensities). This is
in contrast with this work where we used box kernel (i.e. value
1 for the most similar, and O for others) for the third channel
(i.e. the self-similarities) and Parzen windows for the first two
channels. Incorporation of tracked US elastography [56] into
IGNS is also an area of future work.
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TABLE III
TRE AND MTRE RESULTS OF MR/US REGISTRATION. EACH ENTRY IS MEAN + STD, FOLLOWED BY 10" AND 90*" PERCENTILES IN THE BRACKET.
ALL NUMBERS IN MM. THE SMALLEST VALUES USING MR INTENSITY OR GRADIENT ARE IN BOLD.

MR intensity

MR gradient

case  tags initial SeSaMI MIND LMI CoCoMI MIND LMI CoCoMI
pP1 35 6.30£1.5  1.82£13 459418  4.05+15 3.224+1.0 442413  461+15 347411
(4.2,8.2) (1.1,5.8) (2.0,6.5) (2.9,7.1) (2.6,4.6) (2.7,5.9) (1.5,6.0) (2.7,4.4)

P2 40 9.38+1.9 2.54+£1.8 4.55£2.3 3.74%2.1 3.03£1.6 4.65£2.4  3.86x2.0 3.27+1.6
(6.7,11.8)  (2.0,5.4) (1.9,7.5) (2.1,7.0) (2.2,4.9) (2.2,7.4) (1.9,7.0) (2.1,4.8)

P 3 393£1.1  1.96£1.0 248+1.2  2.49+1.1 2.17£1.0 251+1.3 294411 2.81+1.2
(2.8,5.3) (1.0,3.5) (1.1,4.2) (1.0,4.1) (1.2,3.9) (0.9,4.3) (0.9,4.0) 0.84.1)

P4 31 2.62+14  259+1.1  234+1.1 272413 2.18+1.1 231£12 2.58+1.0 2.47+1.0
(1.0,4.0) (1.0,2.9) (1.1,3.6) (0.9.4.0) (0.9,2.9) (1.4,3.3) (1.4,3.0) (143.1)

P5 37 230£1.0 1.73£09 4.17£1.6 223 £1.1  2.20£0.9 4.85+1.8  2.44£1.0 2.11+0.9
(0.8,3.4) (0.8,3.1) (2.6,7.0) 0.7,3.2) (0.9,3.2) (2.7,7.6) (0.8,3.3) 0.7.2.8)

P6 19 3.04£1.6 1.94+1.2 234+1.1  251%1.2 2.13£1.0 2.65£1.2 234 £1.0 1.70+£1.0
(1.2,5.3) (1.2,3.9) (1.2,4.3) (1.1,4.4) (1.1,3.6) (1.1,4.2) (1.2,3.8) (1.3,3.8)

P7 23 3.75+2 291+13  535+2.2 2.56£1.7 2.00 £1.0 546+2.1  2.11+14 2.24+1.3
(1.2,5.9) (1.3,4.5) (2.6,8.4) (1.4,4.9) (1.6,3.6) (2.8,8.8) (1.2,4.0) (1.2,3.7)

P8 21 5.09£1.4  252+1.1  5.55£19 249 £1.1 218 £1.1 486+19  241%1.0 2.05£1.0
(3.1,6.9) (1.6,4.9) (3.1,8.1) (2.1,5.0) (2.2,4.1) (2.4,7.6) (29,49 (1.5,4.4)

P9 25 3.00£14 2.74+£14 356+2.1  2.84+14 2.04£1.6 296+£2.2 291+ 19 2.41+1.6
(1.4,5.0) (1.9,5.4) (1.6,6.4) (1.3,4.7) (1.3,4.9) (0.7,6.5) (1.0,5.0) (1.1,4.6)

P10 25 1.52+0.7 1.35+0.8 245+1.1 394+1.4  2.48+1.0 248409 219+ 09 212409
(0.8,2.9) (0.9,3.3) (1.1,4.2) (1.0,3.9) (1.0,2.9) (1.1,3.6) (0.9,2.8) (1.0,2.8)

P11 ) 370£1.9 278%1.6 2.73%£1.6  2.29+1.1 2.16£1.3 2.69£14  245+1.2 1.90+1.1
(1.1,6.3) (1.1,5.0) (1.2,4.3) (1.2,2.9) (0.9,3.0) (1.1,4.3) (12,4.2) (1.1,2.9)

P12 23 5.154+2.8  291£19 441420 2.67+17  2.64 £1.7 421£19  231%1.6 2.10+1.0
(2.0,8.6) (1.9,4.8) (2.3,6.8) (2.1,5.0) (2.2,5.0) (2.3,6.2) (2.0,5.0) (2.0,3.9)

PI3 23 378£1.2  2.16£1.1 453+1.4 290+13  2.07 £1.0 38513 225+1.4 2.03£0.9
) (2.0,5.0) (2.14.1) (3.1,6.6) (29,5.1) (2.1,4.2) (2.6,5.7) (2.1,5.1) (2.0,3.9)
mean 27 4.12+15 23013 3.77+1.6  2.88+14 2.35+£1.2 3.68+£1.8 2.72£13 2.36+1.1
(2.2,6.0) (14,4.4) (1.9,6.0) (1.6,4.7) (1.5,3.9) (1.8,5.8) (1.5,4.5) (1.5,3.8)

std 6.9 2.03£0.5 0.52+0.3 1.18£04  0.62£0.3 0.39+0.3 1.12£0.5  0.73+0.4 0.53+0.3
’ (1.7,2.4) (0.4,1.0) (0.7,1.6) (0.7,1.2) (0.6,0.9) (0.8,1.5) (0.6,1.2) (0.5,0.9)

max 40 9.38+£2.8 291+1.8 5.55+23  4.05£2.1 3.224+1.7 5.46£22  4.61£2.0 3.47+1.6
(6.7,11.8)  (2.5,54) (3.1,8.4) (29,1.1) (2.6,4.9) (2.7,8.8) (2.9,7.0) (2.7,4.7)

VI. CONCLUSION

We presented CoCoMI, a similarity metric that conditions
MI estimation on contextual information. We utilized ideas
from pattern recognition to develop a robust contextual anal-
ysis technique, and used it as an offline step so that the
on-line registration time changes negligibly. Using simula-
tion and patient data, we showed that CoCoMI significantly
outperforms state of the art non-rigid registration methods.
CoCoMI is easily parallelizable; we will investigate its GPU
implementation in the future. We will also add the contextual
information as a third channel to joint intensity histogram and
use Parzen windowing in all three dimensions to estimate the
joint probabilities. Finally, we plan to apply CoCoMI to other
problems such as MR to CT and CT to US image registration.
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