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Abstract

Ultrasound images are acquired before and after the resection of brain tumors to help the surgeon to localize the tumor and its
extent and to minimize the amount of residual tumor after the resection. Since the brain undergoes large deformation between
these two acquisitions, deformable image-based registration of these datasets is of substantial clinical importance. In this work,
we present an algorithm for nonrigid REgistration of ultraSOUND images (RESOUND) that models the deformation with free-
form cubic B-splines. We formulate a regularized cost function that uses normalized cross correlation as the similarity metric. To
optimize the cost function, we calculate its analytic derivative and utilize the stochastic gradient descent technique (Klein et al.,
2007) to achieve near real-time performance. We further propose a robust technique to minimize the effect of non-corresponding
regions such as the resected tumor and possible hemorrhage in the post-resection image. Using manually labeled corresponding
landmarks in the pre- and post-resection ultrasound volumes, we show that our registration algorithm reduces the mean target
registration error from an initial value of 3.7 mm to 1.5 mm. We also compare RESOUND to the previous work of (Mercier et al.,
2013) and show that it has three important advantages: (1) it is fully automatic and does not require a manual segmentation of the
tumor, (2) it produces smaller registration errors, and (3) it is about 30 times faster. The clinical dataset is available online on the
BITE database website.

Keywords: Ultrasound registration, Non-rigid registration, Robust estimation, Normalized cross correlation, NCC, Brain surgery,
Image guided neuro-surgery, IGNS

Introduction

Not all pathological tissue is removed during surgery. In
some cases, residual tumor is left behind when it involves elo-
quent cortex and its removal will result in a functional or cog-
nitive deficit in the patient. In other cases, the extent of brain
tumors is difficult to define during neurosurgery. As a result,
different studies report that the surgeons leave residual tumor in
64% (Stummer et al., 2006) and 54% (Knauth et al., 1999) of
patients. Therefore, most neurosurgical systems are based on
neuro-navigation and pre-operative images. In these systems,
the pre-operative images, usually magnetic resonance (MR), act
as “GPS road maps”, and an optical or electromagnetic tracking
device, which tracks the tools, acts as the GPS location signal.
This provides the surgeon with the guidance to locate the tu-
mor and its extents in the operating room. Unfortunately, these
neuro-navigation systems do not usually provide the required
accuracy for three main reasons. First the brain deforms after
craniotomy and opening of the dura, and therefore, the maps are
no longer accurate. This deformation is referred to brain shift
in the literature (Hill et al., 1998; Roberts et al., 1998). Second,
image-to-patient registration is performed by selecting homolo-
gous landmarks on the skin and in the MR image, which is sub-
ject to error. And third, the tracking devices have errors, which
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further reduce the navigation accuracy. As a result, guidance
with intra-operative imaging is becoming more widespread.

MR imaging has been used during or after the operation
(Nabavi et al., 2001; Hartkens et al., 2003; Nimsky et al., 2004;
Claus et al., 2005; Hatiboglu et al., 2009). However, intra-
operative MR is expensive and is only available at a very lim-
ited number of centers. Tracked intra-operative ultrasound, on
the other hand, is affordable and not cumbersome and has been
successfully used in neurosurgery (Bucholz et al., 1997; Un-
sgaard et al., 2002b,a; Lunn et al., 2003; Keles et al., 2003;
Letteboer et al., 2005; Tirakotai et al., 2006; Rygh et al., 2005).
In terms of accuracy, intra-operative ultrasound has been shown
to be as good as intra-operative MR (Unsgaard et al., 2005) and
Gerganov et al. (2009). Our group has also focused on inte-
grating ultrasound with neurosurgery, either using B-mode ul-
trasound (Arbel et al., 2004; Mercier et al., 2012, 2013; Nigris
et al., 2012; Rivaz and Collins, 2012) or power Doppler (Rein-
ertsen et al., 2007). In our institute, surgeons acquire ultrasound
images before the resection, and after performing the resection,
they collect a second ultrasound mainly to look for residual tu-
mor by comparing the pre- and post-resection images. As the
surgery goes on, the brain shift increases (Nabavi et al., 2001)
and therefore the two sets of images will be misaligned. Fig-
ure 1 shows an example for rigid alignment of the two ultra-
sound images using the tracking data. In the superimposed im-
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Figure 1: Pre- and post-resection ultrasound images. The misalignment in the superimposed images in (c) and (d) is mainly caused by the brain shift. Structures (1)
and (2) are respectively the septum and ventricles. The tumor and the resection cavity are not present in these ultrasound slices.

age, some areas have more than 7 mm of misalignment.
The registration of the two ultrasound volumes, one acquired

before and another at end of the tumor resection, is challenging
due to three main reasons. First, the tissue deforms during the
resection, which requires the registration to be non-rigid. Sec-
ond, the intensity and contrast of two ultrasound images of the
same tissue target can change depending on the imaging angle,
time gain control (TGC) settings, resection of some tissue in the
path of the ultrasound wave, and depth of the tissue in the ul-
trasound image. And third, there are some regions, such as the
tumor and the resection site, that do not have correspondence in
the other image.

Previous work that register ultrasound images include the fol-
lowing: Rohling et al. (1997, 1998) and Gee et al. (2003) per-
formed rigid registration of two volumes using cross correla-
tion. Krucher et al. (2000) performed 3D non-rigid registration
using mutual information. Poon and Rohling (2006) divided
the image volumes into sub-volumes and performed rigid reg-
istration over these sub-volumes using cross correlation. Grau
et al. (2007) and Rajpoot et al. (2009) used local orientation and
phase differences as the similarity measure to perform rigid reg-
istration between volumetric echocardiograms. Foroughi et al.
(2006) used attribute vectors (Shen and Davatzikos, 2002) to
automatically select a set of leading points in the first volume.
The correspondences of these points are found in the second
volume and the volumes are warped accordingly. This algo-
rithm was adapted in Leung et al. (2009) to perform non-rigid
registration of 2D ultrasound images in real-time, and was also
extensively validated in Khallaghi et al. (2012).

To the best of our knowledge, the recent work of Mercier
et al. (2013) was the first attempt to register ultrasound im-
ages acquired before and at the end of the neurosurgery. To
reduce the effect of missing data, they manually segmented
the tumor and masked it out of the data. They then used
the cross-correlation-based non-rigid registration algorithm of
ANIMAL+INSECT (Collins et al., 1999). Manual segmenta-
tion in 3D is challenging and time consuming and can hinder
widespread clinical application of such method.

In this work, we present a tool for non-rigid REgistration
of ultraSOUND volumes (RESOUND) using a regularized cost
function. Our cost function has an image similarity term based

on the normalized cross correlation (NCC), and a smoothness
constraint. We use free-form cubic B-splines to model the de-
formation field. To optimize the cost function, we use the an-
alytic derivative of NCC and exploit the computationally effi-
cient stochastic gradient descent algorithm (Klein et al., 2007).
We also perform hierarchical registration in three levels to
speed the computations and prevent the algorithm from getting
trapped in local minima. In the coarse levels, an approximate
transformation is found, which is used as a starting point for
the finer levels. Three features of RESOUND make it com-
putationally efficient: stochastic gradient descent optimization,
analytic estimation of the gradient of the cost function, and hi-
erarchical search. As a result, our basic implementation takes
5 sec to perform non-rigid registration of volumetric data on
a single core of a 3.6 GHz processor. To minimize the effect
of missing correspondences, we propose a technique based on
standard deviation (std) of NCC gradients. We provide results
on simulation and clinical data to validate our technique. The
ultrasound data along with the landmarks that we use for valida-
tion are available on the BITE database (Mercier et al., 2012).

Methods

We first set up image registration as an optimization problem
and show how it can be efficiently optimized using a gradient
descent method. An outline of our algorithm is shown in Fig-
ure 2. We then present a robust technique for efficiently sup-
pressing the effect of missing correspondences.

Image Registration

Let Im(x) and I f (x): Ω ⊂ Rd → R be respectively the moving
and fixed images. Here d is the dimension of the images; it is 2
for 2D and 3 for 3D images. Registration of these two images
can be formulated as (see Figure 2)

C = D(I f (x), Im(Tµ(x)) +
ωR

2
‖∇µ‖2 (1)

µ̂ = arg min
µ

C (2)

where D is a dissimilarity metric, ωR is a regularization penalty
weight, ∇ is the gradient operator and Tµ is the transformation
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Registration of two images If (x), Im(x): Ω ⊂ Rd → R can be formulated as

µ̂ = arg min
µ

C, C = D(If (x), Im(T(x; µ)) +
ωR

2
�∇µ�2 (1)

where If (x) and Im(x) are respectively the fixed and moving images, D is a dissimilarity
metric, ωR is a regularization penalty weight, ∇ is the gradient operator and T(·; µ) is
the transformation modeled by µ. We choose a free-form transformation parameterized
by the location of cubic B-spline nodes. Therefore, µ is a vector of the coordinates of
all the nodes. The dissimilarity metric D is the focus of this work; a popular choice is
LMI, which is elaborated below.

Local Mutual Information (LMI). Let pf and pm be the marginal intensity
probabilities of If and Im respectively, and pfm be their joint intensity probability. We
estimate pfm in this work using Gaussian Parzen windows. MI is then computed as
[1, 2]:

MI(If , Im;Ω) =
�

k

�

m

pfm(k, m)log
pfm(k, m)

pf (k)pm(m)
. (2)

The probabilities are estimated using samples x from the image domain Ω. A limitation
of MI is that it assumes the intensity probabilities do not vary over Ω, an assumption
that can be violated for various reasons such as spatial inhomogeneity. To take spa-
tial information into account, a popular approach is to consider spatial location as an
additional channel and multiply intensities with spatial kernels when calculating the
MI; examples are regional MI [15], localized MI (LMI) [17], conditional MI [16] and
spatially encoded MI [20]. For comparison, we implement the LMI method [17] where
these spatial kernels are box filters. In the other words, LMI is computed by summing
MI over multiple local neighborhoods:

LMI(If , Im;Ω) =
1

N

�

i

MI(If , Im; Ni) (3)

where Ni ⊂ Ω are spatial neighborhoods and N is the number of these neighboorhoods.
Each neighborrhood should be large enough to contain enough information for MI esti-
mation, and small enough to allow local estimation of MI [17]. Similar to [17], we first
randomly select a point in Ω and then select samples from a neighborhood around that
point, and repeat this for N points.

3 Methods
CoCoMI estimates the dissimilarity metric of Eq. 1 in two steps: an offline pre-
processing and an online registration steps. The offline step only requires one of the
volumes, and analyses pixels by considering small spherical patches of size 53 pixels
around them to find similar structures. The offline step is described below, followed by
the online step.
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(2006) divided the image volumes into sub-volumes and performed rigid registration over these sub-
volumes using cross correlation. Foroughi et al. (2006) used attribute vectors Shen and Davatzikos
(2002) to automatically select a set of leading points in the first volume. The correspondences
of these points are found in the second volume and the volumes are warped accordingly. This
algorithm is adopted in Leung et al. (2009) to perform non-rigid registration of 2D ultrasound
images in real-time, and is also extensively validated in Khallaghi et al. (2012).

To the best of our knowledge, the recent work of Mercier et al. (2013) is the first attempt to
register ultrasound images acquired before and at the end of the neurosurgery. To reduce the effect
of missing data, they manually segmented the tumor and masked it out of the data. They then
used the cross-correlation-based non-rigid registration algorithm of Collins et al. (1999). Manual
segmentation in 3D is challenging and time consuming and can hinder widespread clinical application
of this method.

In this work, we present a tool for non-rigid REgistration of ultraSOUND volumes (RESOUND)
using a regularized cost function. Our cost function has an image similarity term based on the
normalized cross correlation (NCC), and a smoothness constraint. We use free-form cubic B-splines
to model the deformation field. To optimize the cost function, we use the analytic derivative of NCC
and exploit the computationally efficient stochastic gradient decent algorithm. We also perform
hierarchical registration in three levels to speed the computations and prevent the algorithm from
getting trapped in local minima. In the coarse levels, an approximate transformation is found, which
is used as a starting point for the fine level. Our registration algorithm is therefore computationally
very efficient; our basic implementation takes 1 sec for registering volumetric data on a single core
of a 3.8GHz processor. To minimize the effect of outliers, we propose a technique based on standard
deviation (std) of NCC gradients. We provide results on simulation and clinical data to validate
our technique. Both the data and a basic implementation of our algorithm in MATLAB R� mex
functions is available on the BITE database online at http://www.bic.mni.mcgill.ca/BITE.

2. Methods

We first set up image registration as an optimization problem and show how it can be efficiently
optimized using a gradient decent method. We then present a robust technique for efficiently
suppressing the effect of outliers.

2.1. Image Registration
Let Im(x) and If (x): Ω ⊂ Rd → R be respectively the moving and fixed images. Here d is the

dimension of the images; it is 2 for 2D and 3 for 3D images. Registration of these two images can
be formulated as

C = D(If (x), Im(Tµ(x)) +
ωR

2
�∇µ�2 (1)

µ̂ = arg min
µ

C (2)

where D is a dissimilarity metric, ωR is a regularization penalty weight, ∇ is the gradient operator
and Tµ is the transformation modeled by µ. We choose a free-form transformation parameterized
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Figure 2: Iterative registration algorithm.

modeled by µ. We choose a free-form transformation param-
eterized by the location of cubic B-spline nodes. Therefore,
µ determines the 3D displacement of all B-spline nodes. The
regularization term is proportional to the norm of ∇µ, which
is the difference between the translation of adjacent B-spline
nodes. Therefore, this term is simply trying to produce a defor-
mation field where neighboring B-spline nodes translate simi-
larly. In this work, we use −NCC2 as the dissimilarity metric.
The negative sign is to transform the similarity metric NCC into
a dissimilarity metric, and the power 2 is to make the derivative
easier to compute. NCC works well for registering images of
the same modality, i.e. ultrasound to ultrasound. Its value is
1 if the intensity relationship between the two images is linear
and close to 0 if there is no intensity relationship (it can also be
negative if the intensities in two images are flipped or inverted).
We compute the NCC over N small cubic patches and average
the results to calculate D:

D = −
1
N

N∑
i=1

ρ2
i , (3)

ρ2
i =

(
Σn

j=1( f j − f̄i)(m j − m̄i)
)2

Σn
j=1( f j − f̄i)2 · Σn

j=1(m j − m̄i)2
(4)

f j = I f (x j), m j = Im(Tµ(x j))

where f̄ and m̄ are the mean values of I f and Im over the cubic
boxes. The numerator of ρ is the covariance of I f and Im, and
the denominator is the product of standard deviation of I f and
Im. To further simplify the notation of Eq. 4, we set f 0

j = f j − f̄i
and m0

j = m j − m̄i, and the column vectors f = { f 0
1 · · · f 0

n }

and m = {m0
1 · · ·m

0
n} contain all the intensities inside the cubic

patches. Using the new vector notation, Eq. 4 becomes:

ρ2
i =

(
f T m

)2

( f T f )(mT m)
(5)

where superscript T denotes transpose. Being compact, this
equation is easier to handle for derivative computations in the
next section.

Optimization
Given the current transformation parameter µ, a typical itera-

tive optimization technique will seek an incremental ∆µ so that
µ + ∆µ reduces the cost function. Neglecting the regularization
term of Eq. 1 to avoid clutter, the dissimilarity term

D(I f (x), Im(T(x;µ + ∆µ)) (6)

should decrease. The gradient-based methods are faster than
simplex and non-gradient based optimizations for finding ∆µ
especially if an analytic derivative can be obtained. For our
D defined by Eqs. 3 and 5, the derivative is straightforward to
compute as follows. We first apply the chain rule

∇∆µD =
∂D
∂∆µ

=
∂x
∂∆µ

·
∂Im

∂x
·
∂D
∂Im

(7)

where ∂x
∂∆µ is simply the transformation Jacobian, ∂Im

∂x is the im-
age gradient, and ∂D

∂Im
is the derivative with respect to the inten-

sity of all pixels. To compute ∂D
∂Im

, we have to differentiate Eq. 5
with respect to the intensity of the pixels of the moving image,
i.e. m. After some manipulations, we have:

∂D
∂m

= −
1
N

N∑
i=1

∂ρ2
i

∂m
(8)

∂ρ2

∂m
= 2

f T m
( f T f )(mT m)

(
f −

f T m
(mT m)

m
)

(9)

Note that here, ∂m is the intensity of different pixels/voxels of
Im and is independent of the transformation T (x;µ).

We illustrate in Figure 3 different steps of computing ∂D
∂∆µ

using Eqs. 7 and 9. Here, I f and Im are images from Brain-
Web (Collins et al., 1998), and the transformation T (x;µ) is
simply a rigid body translation in the y direction by 1 pixel. We
compute NCC and its derivatives on patches of size 21 × 21
pixels. In the first step, we use Eq. 9 to compute the derivative
of the NCC with respect to the intensity of each pixel (see part
(c)). If we multiply this term by image gradients in the x and y
directions, we get (d), which tells us the gradient descent direc-
tion for each pixel. Note that most pixels are moving upward,
which is the ground truth transformation. Finally, multiplying
the result of (d) by the transformation Jacobian ∂x

∂∆µ , we get (e)
which predicts the descent direction for each B-spline node. In
cubic B-splines, if we denote the distance between the nodes as
d and the size of the image in a direction as m, the number of
nodes in that direction is dm/de+ 3. In this illustrative example,
we have set the spacing between two adjacent nodes to d = 7
pixels. Therefore, the number of nodes for the cubic B-spline is
(21/7 + 3)× (21/7 + 3) = 6× 6, as shown in (e). This translates
to 2 × 36 = 72 unknowns (2 because of the 2D image here) to
solve for in the optimization problem of Eq. 1. Note that most
nodes are moving upward in this example, which is the ground
truth transformation.
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(a) Patch in I f , size 21×
21 pixels

(b) Patch in Im, size 21×
21 pixels

(c) ∂D
∂Im

(d) ∂Im
∂x ·

∂D
∂Im

(e) ∂D
∂∆µ = ∂x

∂∆µ ·
∂Im
∂x ·

∂D
∂Im

Figure 3: Computing the derivatives using the chain rule of Eq. 7. Im is similar
to I f , except that it is moved 1 pixel down. Please see the text for details.

In our volumetric data, we compute NCC in small cubic
patches, which can cover the entire image or can even have
overlap. Such densely selected boxes, however, increases the
computation time. Instead, we use a method similar to the
stochastic gradient descent optimization method of Klein et al.
(2007, 2009). In this method, the dissimilarity term is simply
calculated only on a random subset of image samples x in each
iteration, and therefore it is computationally efficient. Since the
pixel/voxel selection is random in each iteration, the result is
not biased towards a subset of image samples and it converges
to the same result as selecting all image samples in a fraction of
the time (Klein et al., 2007, 2009). Our stochastic optimization
implementation is as follows. In every iteration, we randomly
select N cubic patches i = 1 · · ·N and compute the derivative of
our cost function with respect to the B-spline nodes according
to Eqs. 7 and 9. Note that these N patches are selected randomly
throughout the volumes and are not necessarily centered on the
B-spline nodes. Letting ∇∆µC be the gradient of C in Eq. 1 with
respect to ∆µ, the update equation is

µt+1 = µt + at∇∆µC. (10)

The step size is a decaying function of the iteration number t:

at =
a

(A + t)τ
(11)

with a > 0, A ≥ 0 and 0 < τ ≤ 1 user-defined constants (Klein
et al., 2007). In the next section, we present our criteria for
limiting the effect of missing correspondences.

Missing Correspondences
The sources of missing correspondences are abundant in our

application. The tumor is replaced by the resection cavity, and

(a) Patch in I f , size 21×
21 pixels

(b) Patch in Im, size 21×
21 pixels

(c) ∂D
∂Im

(d) ∂Im
∂x ·

∂D
∂Im

(e) ∂D
∂∆µ = ∂x

∂∆µ ·
∂Im
∂x ·

∂D
∂Im

Figure 4: Computing the derivatives using the chain rule of Eq. 7 for two
patches that do not correspond. Compare with Figure 3. See the text for details.

the areas around the resection are enhanced due to Surgicel
(Ethicon, Somerville, NJ), a hemostatic (i.e. blood-clotting)
agent that is placed around the edges of the resection. Possible
ruptured blood vessels are an additional source of missing cor-
respondences. To minimize the adverse effect of missing data,
we use the following approach, which is based on our chain rule
estimation of the NCC derivative.

Assuming that the cubic patches are small enough, the de-
formation inside each patch is negligible. Therefore, the image
derivatives inside the patch must have some agreement in terms
of the direction of motion of the patch. Figure 3 (d) is an inlier
example where the displacements for most voxels are pointing
upwards, and not in random directions. Formally, let the vector
∂D
∂x be ∂Im

∂x ·
∂D
∂Im

(see also Figure 3 (d)). To keep or discard a
patch, we compute the unitless metric r:

r = min

var( ∂D
∂x )〈

∂D
∂x

〉2 ,
var( ∂D

∂y )〈
∂D
∂y

〉2 ,
var( ∂D

∂z )〈
∂D
∂z

〉2

 (12)

where 〈·〉 denotes mean and var is the variance. The numerator
shows the variance in the orientation of the gradients of dif-
ferent voxels, and the denominator normalizes this value by the
amplitude of the average of the gradient over the patch. A small
ratio for each of the three values shows an agreement in terms
of the orientation of the translation of the patch in the three x y z
directions. Picking the minimum value means the patch voxels
agree on the translation orientation in at least one of the three
directions. We illustrate in Figure 4 two patches that do not
match. There is no agreement among the patch pixels in the
descent direction of the translation; in part (d) the arrows for
different pixels span almost 360◦. We exploit this disagreement
to find non-corresponding patches and discard patches that have
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(a) I f (b) Im (c) NCC (d) r from Eq.12

Figure 5: Comparison of average NCC values and the standard deviation of gradient orientations in simulated images. The edge structures in I f and Im is enclosed
with respectively red and green squares. The edge is moved up by 2 pixels in Im, as can be seen from the red and green squares. Most of the images, except for
inside the red and green boxes, do not correspond. The value of NCC inside the box can be low, as shown in (c), and therefore a low NCC value does not necessary
mean the data should be suppressed. However, the std of the gradient orientations in (d) is low inside the squares where the data can be trusted, and therefore can be
used to suppress non-corresponding patches.

r values larger than a threshold T . Using one of our patient data,
we found that a threshold value of T = 0.2 produces good re-
sults. We use this value for all of our patient data.

Experiments and Results

We first demonstrate the performance of our algorithm for
finding non-corresponding patches on simulated data. We then
present the results of RESOUND for registering pre-resection
and post-resection ultrasound volumes.

Simulated Data
We simulate two simple 2D images I f and Im as shown in

Figure 5. The purpose of this experiment is to only show
whether RESOUND can find regions that do not correspond,
and no registration is performed. Except for the parts inside the
red (for I f ) and green (for Im) rectangles, the images consist
of uncorrelated strong noise. The parts inside the rectangles
are identical, but are displaced in the vertical direction by 2
pixels. The goal is to consider the parts inside the rectangles
as corresponding patches, and the rest of the image as non-
corresponding patches. We simulate 400 different images I f

and Im similar to the ones shown, with different instances of
noise. We then compute NCC for all patches of size 5 × 5 pix-
els inside the images. Part (c) shows the average NCC values
over the entire 400 pairs of images. Although the pixels inside
the rectangle correspond to each other, they have a low average
NCC. Part (d) shows that the r value, however, has lower val-
ues inside the rectangle and therefore can be used for finding
non-corresponding patches.

Clinical Data
Data Description

The clinical data from 13 patients are acquired at the Mon-
treal Neurological Institute, and are part of the BITE database
available online (Mercier et al., 2012). The intra-operative US
images are obtained using an HDI 5000 (Philips, Bothell, WA)
with a P7-4 MHz phased array transducer. The pre-resection
images were acquired before opening the dura, except for the

patients who had underwent a previous brain surgery and the
dura was not used to close the cavity. For these patients, the im-
ages were taken directly on the cortex or the dura repair patch
(Dura-Guard, Synovis, St. Paul, MN). After the resection, the
surgeon acquired the post-resection ultrasound and used it to
find any residual tumor. The study was approved by the Mon-
treal Neurological Institute and Hospital Review Ethics Board,
and informed consent from each participant was received.

The pixel size of 2D ultrasound images is 0.3 mm. The
ultrasound probe is tracked with a Polaris tracking system
(NDI, Waterloo, Canada), which provides the three locations
and angles (6 DOF) of each image. Image acquisition, track-
ing, and synchronization of the tracking and imaging data
are performed using the Intra-operative Brain Imaging Sys-
tem (IBIS) program, developed by Simon Drouin and Anka
Kochanowska (Mercier et al., 2011). Figure 6 shows the 2D ul-
trasound images acquired before and after the resection. Each
sweep contains between 200 and 500 2D images.

We reconstruct 3D volumetric data with an isotropic voxel
size of 1 mm using a pixel based method (Solberg et al., 2007).
This relatively large voxel size minimizes the effect of speckles,
because, for every voxel, multiple measurements from different
images are available (Rohling et al., 1997; Rivaz et al., 2011,
2007). We therefore do not perform any post-processing, such
as median filtering or Gaussian blurring of the volumes. The
depth, the area of the sweep and the number of 2D ultrasound
images in each sweep is different. Therefore, different volumes
have different sizes from 1003 to 2003 voxels. Figure 7 shows
2D slices from volumetric ultrasound data of four patients. The
large tumor in the pre-resection and the resection cavity in the
post-resection images do not correspond. In addition, the en-
hanced areas around the tumor are caused by Surgicel (Ethicon,
Somerville, NJ), a blood-clotting agent that is placed around the
edges of the resection, and do not have correspondences in the
pre-resection images.

Evaluation Using mTRE Between Corresponding Landmarks
To validate the results, a neuro-radiologist has selected 10

corresponding anatomical landmarks in each of the 13 patients,
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(1) (2) 

(a) Pre-resection (b) Post-resection (c) Superimposed

Figure 6: The ultrasound 2D images acquired before and after the resection of the tumor. (1) and (2) are respectively the longitudinal cerebral fissure and the skull.
More than 200 images are acquired in each sweep; we are showing just a few here for improved visualization.

which are also available in BITE. The landmarks are anatom-
ical structure visible in ultrasound such as sulci bifurcations,
vessels, choroid plexus and septa. Figure 8 shows four such
landmarks on the reconstructed 3D data for one patient. These
landmarks are used to calculate mean target registration errors
(mTRE) to assess the accuracy of the registration (Jannin et al.,
2002). The mTRE of n corresponding marks at locations x and
x′ in the two images is calculated according to

mTRE =
1
n

n∑
i

‖T(xi) − x′i‖ (13)

where T is the transformation (see Eq. 1) and ‖v‖ is the Euclid-
ian length of the vector v. The initial mTRE values are shown
in Table 1; the mean initial mTRE over 13 patients is 3.7 mm.

To measure the accuracy of the manual landmark selection,
the landmarks on the post-resection images were selected a sec-
ond time. The mean distance between the two sets of landmarks
in the post-resection images is 1.58 mm with a std of 0.60 mm.
Using the two sets of landmarks in the post-resection images,
two measurements for mTRE were calculated between the pre-
and post-resection images, giving a mTRE mean absolute dif-
ference of 0.27 mm with a std of 0.25 mm. Comparing these
numbers to the mean initial mTRE of 3.7 mm, the landmarks
are accurate for validation purposes.

Parameter Selection
Larger values of N in Eq. 3 generally improve the results,

as averaging is performed over more patches. This improve-
ment, however, plateaus for very large values of N and also
comes at the cost of increased computational cost. We found
that N = 100 gives good results for our volumetric patient data.
The size of the small cubic patches determines n; Larger val-
ues of n increase the accuracy of NCC computation, but require
larger patches which make the NCC values less local. We al-
ways set it to n = 53 = 125 pixels in our patient data.

The recommended values for optimization parameters of Eq.
11 are provided in Klein et al. (2007): A should be around 0.1
of the maximum number of iterations or less and τ should be

more than 0.6. The value of a is user-defined and is critical
as it determines the step-size. If a is too small more iterations
are required and it is also more likely that the optimization gets
trapped in a local minima. On the other hand, the registration
can diverge if a is too large. Fortunately, for large enough num-
ber of iterations the final registration result varies negligibly if
a is varied by as much as 100%. a also depends on the similar-
ity metric. We used one of our patient data and set it to values
between 1 and 104 by multiplying it by 10 each time and evalu-
ated the deformation at each iteration. After we found its order
of magnitude, we varied it by smaller steps and finally set it to
100.

We perform the optimization hierarchically in three levels.
The input volumes, which we use at the third (i.e. last) level,
have a voxel size of 1 mm in all three directions. We downsam-
ple the input volumes by factor of two in all three directions
twice, so that the voxel sizes in the second and first levels are
2 mm and 4 mm respectively. We set the distance between the
B-spline nodes in x y z directions to 32 voxels in all three lev-
els, which translates to physical distances of 128 mm, 64 mm
and 32 mm respectively in the first, second and third levels.
Since the volumes have fewer voxels in the coarse levels, there
are fewer B-spline nodes at these levels. The registration starts
from the first level, and proceeds to the second and third lev-
els. This multi-level optimization increases the capture range,
reduces the chance of getting trapped in a local minimum.

Registration Results
We first show the displacement field, i.e. the brain shift, com-

puted by RESOUND for patient 13 in Figure 9 (c). The mag-
nitude of the displacements is between 0.5 mm and 2.9 mm.
Note that the 2.9 mm is the maximum displacement in the
slice shown; the maximum displacement in the entire volume
is 4.1 mm. This value is close to the maximum initial TRE
distance of 4.0 mm reported in Table 1. Also, note that the
maximum deformation is located close to the cortex where the
ultrasound probe is positioned. This is in accordance with the
intuition that the highest displacement should happen around
the cortex where the brain tissue is the least constrained.
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Figure 7: Pre- and post-resection US images from four patients are shown re-
spectively in the first and second columns. The third column shows the images
superimposed. The white arrows in the first column point to the longitudinal
cerebral fissure. The dashed red and solid green arrows respectively point to
tumor cavity and Surgicel enhancement respectively.

Figure 10 shows the substantial improvement in the align-
ment of the pre- and post-resection ultrasound images using
RESOUND throughout the image, as identified by the arrows.
The red contours are automatically calculated from the image
in (a) using a Canny edge detector, and are overlaid on the ul-
trasound images in (b) and (c) to allow an assessment of the im-
age alignments. Note that the initial alignment in (b) suggests
a complete resection of the tumor, but (c) clearly shows (the
black arrows) that residual tumor exists in the post-resection ul-
trasound. Therefore, deformable registration using RESOUND
may result in greatly reduced residual tumor after the resection.

The final mTRE results for all patients are shown in Ta-
ble 1. These results demonstrate that RESOUND produces
small mTRE values even for patient 1 where the tumor size
is 79.2 cm3, approximately equivalent to a cubic patch with
43 voxels in every dimension (each voxel is 1 mm). These areas
do not correspond, and must be suppressed for accurate regis-
tration. Furthermore, RESOUND performs hierarchical multi-
level registration to speed the computations, increase the con-
vergence range and prevent the algorithm from getting trapped
in local minima. Therefore, it converges even for patient 11
which has a large initial mTRE of 10.5 mm. The last three rows
show a summary of results over the 13 patients:

(a) Landmark 1, pre-res (b) Landmark 1, post-res

(c) Landmark 2, pre-res (d) Landmark 2, post-res

(e) Landmark 3, pre-res (f) Landmark 3, post-res

(g) Landmark 4, pre-res (h) Landmark 4, post-res

Figure 8: Four corresponding homologous landmarks shown in the pre- and
post-resection ultrasound slices of patient P8. There are 10 corresponding land-
marks in this patient’s data.

• The average initial mTRE value over the 13 patients is
3.7 mm, which is reduced to 1.9 mm in Mercier et al.
(2013) and 1.5 mm in RESOUND.

• The initial standard deviation in mTRE is 2.4 mm, which
is reduced to 1.0 mm in Mercier et al. (2013) and 0.5 mm
in RESOUND.

• The reduction in the mTRE values of both Mercier
et al. (2013) and RESOUND are statistically significant:
Mercier et al. (2013) and RESOUND give p-values of
0.002 using a paired t-test.

We also plot the distribution of maximum TRE values for all pa-
tients in Figure 11. We see that while both Mercier et al. (2013)
and RESOUND reduce the maximum TRE values, this reduc-
tion is smaller for RESOUND at just 5.3 mm. The reduction
of maximum TRE values from the initial values is statistically
significant with both Mercier et al. (2013) and RESOUND: the
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Table 1: The mTRE (mm) in initial alignment (obtained by rigidly registering US and MR using tracking information) and after registration. LGG and HGG
respectively stand for low and high grade glioma. The smallest number in every row is in bold. The p-values in the last row show the statistical significance of
improvement over the initial mTRE. The fifth column are the results from Mercier et al. (2013).

Patient Tumor type Tumor size (cm3) Initial Mercier et al. RESOUND

P1 LGG 79.2 2.3 (0.6-5.4) 1.3 (0.2-3.7) 1.8 (0.5-4.0)
P2 HGG 53.7 3.9 (2.8-5.1) 1.0 (0.5-1.9) 1.4 (0.7-2.3)
P3 HGG 31.6 4.6 (3.0-5.9) 3.7 (0.9-6.6) 1.4 (0.7-2.2)
P4 HGG 0.2 4.1 (2.6-5.5) 1.3 (0.5-2.8) 1.2 (0.3-2.4)
P5 HGG 32.3 2.3 (1.4-3.1) 1.1 (0.5-1.6) 1.0 (0.2-1.7)
P6 HGG 13.9 4.4 (3.0-5.4) 2.2 (1.1-4.8) 1.0 (0.4-1.7)
P7 HGG 63.1 2.7 (1.7-4.1) 1.4 (0.5-3.2) 1.7 (0.9-3.6)
P8 HGG 4.8 2.2 (1.0-4.6) 1.4 (0.3-3.9) 1.4 (0.6-3.2)
P9 HGG 10.4 3.9 (1.0-6.7) 2.9 (0.9-5.8) 1.9 (0.7-4.1)

P10 LGG 39.7 2.9 (0.8-9.0) 2.2 (0.2-9.5) 2.2 (0.6-5.3)
P11 LGG 49.1 10.5 (7.8-13.0) 3.7 (0.4-9.3) 2.5 (1.1-4.2)
P12 HGG 31.9 1.6 (1.3-2.2) 0.7 (0.4-2.0) 0.7 (0.2-1.6)
P13 LGG 37.3 2.2 (0.6-4.0) 1.4 (0.5-4.4) 1.3 (0.2-2.8)

mean - 34.4 3.7 (2.1-5.7) 1.9 (0.5-4.6) 1.5 (0.5-3.0)
std - 23.3 2.4 (1.9-2.8) 1.0 (0.3-2.6) 0.5 (0.3-1.1)

p-value - - - 0.002 0.002

(1) (2) (2) 

(a) Pre-resection (b) Post-resection

4.0935

 

 

1

1.5

2

2.5

(c) Brain shift

(d) Initial alignment (e) RESOUND alingment

Figure 9: The brain shift in mm, along with the overlaid images before and
after registration. Structures (1) and (2) in (a) are respectively the septum and
ventricles. Note the misalignment in (d) pointed to by an arrow, which is cor-
rected in (e). The results correspond to patient 13 in Table 1. The tumor and the
resection cavity are not present in the shown ultrasound slices. The registration
is performed in 3D.

p values are respectively 0.01 and 0.0008. The maximum TRE
values of RESOUND are also smaller than that of Mercier et al.
(2013) by a statistically significant amount with a p-value of
0.01.

Discussions

The importance of automatic registration of the pre- and post-
resection ultrasound is twofold. First, it can help the surgeon
find residual tumor tissue after the resection, and minimize the
resection of the healthy and critical brain tissue. Second, it
can be used to register pre-operative MR to post-resection ul-
trasound. Direct registration of these two images is challeng-
ing due to the large amount of the brain shift, tumor resection
and missing data, and the inherit challenge in registering MRI
and ultrasound. The pre-operative ultrasound can break up this
hard registration problems into two simpler ones: registration
of the MRI and the pre-resection ultrasound, and registration of
the pre- and post-resection ultrasound. A disadvantage of such
approach (compared to direct registration of the MR and post-
resection US) is that composing these two simpler registrations
accumulates errors. We will study the level of error accumula-
tion in a future work.

The advantages of RESOUND over the method of Mercier
et al. (2013) are threefold. First, it does not require manual seg-
mentation of the tumor, which is a challenging and time con-
suming task. It rather incorporates a novel robust technique for
finding missing correspondences. Second, RESOUND limits
the effect of other sources of outliers such as bleeding in the tis-
sue and shadowing in the US images. While the missing tumor
correspondence is manually segmented in Mercier et al. (2013),
the effect of other outliers may degrade the quality of those reg-
istration results. And third, Mercier et al. (2013) used the op-
timized implementation of ANIMAL+INSECT (Collins et al.,
1999) which takes few minutes to non-rigidly register two vol-
umes. Our basic implementation of RESOUND in MATLAB R©

MEX functions registers the two volumetric data in about 5 sec
using a single core of a 3.6 GHz processor. This is mainly due to
the multi-resolution pyramid approach and the efficient stochas-
tic gradient descent optimization.

RESOUND can be integrated into the IBIS neuro-navigation
system (Mercier et al., 2011). Our implementation is a basic
implementation in MATLAB MEX, which can be improved to
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(a) Pre-resection, Canny edges overaild (b) Post-resection, initial alignment (c) Post-resection, RESOUND

Figure 10: The poor initial alignment is improved after registration with RESOUND. The red contour is automatically calculated in (a) using a Canny edge detector
and is overlaid on (b) and (c) to allow easy inspection of the alignment. The Canny edges are only used for visualization and not in image registration. The arrows
point to the structures whose alignments are corrected in (c). The blue and black arrows point to the tumor boundary. The black arrows show residual tumor after
resection, which is only visible after the registration in (c). The registration is performed in 3D.

achieve shorter run-time. Finally, the calculation of the cost
function in Eq. 3 and its derivative in Eq. 7 are easily paralleliz-
able over the N = 100 patches, allowing RESOUND to run in
real-time.

RESOUND suppresses patches which have a large variation
in the descent direction for each voxel. There is recent work
that tries to match the orientation of image gradients (Karaçali,
2007; Nigris et al., 2012), i.e. aligns image edges, to register
them. This line of work is fundamentally different from RE-
SOUND outlier suppression mechanism in that it looks directly
at image gradients, while RESOUND considers the gradient of
the similarity metric.

In this work, we mainly focused on US registration in neuro-
surgery. Another interesting application for RESOUND is 2D
(Rivaz et al., 2014) and 3D (Rivaz et al., 2008) elastography. In
basic elastography, two images (2D or 3D) are acquired from
the tissue before and after applying a deformation to the tis-
sue. The goal is to recover the tissue deformation to get clues
about tissue mechanical properties because parts of the tissue
that compress less are likely tumors. Even state of the art elas-
tography techniques can have problems recovering large tissue
deformations in the presence of outliers. RESOUND can esti-
mate an approximate deformation field, which can then be used
as an initial solution for an elastography algorithm to estimate
accurate deformations.

Conclusions

We presented RESOUND, a nonrigid registration algorithm
that uses normalized cross correlation as the similarity metric
and cubic B-splines as the deformation model. We efficiently
optimized the cost function using stochastic gradient descent
and multi-level hierarchical optimization. Therefore, we can
registers volumetric data in 5 sec. We further proposed a ro-
bust technique to minimize the effect of missing correspon-
dences such as the resected tumor and possible hemorrhage,
and therefore does not need manual segmentation of the tumor.
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Figure 11: The boxplot of maximum TRE values from Table 1. RESOUND
gives the smallest maximum TRE value of 5.3 mm.

We showed that our registration algorithm reduces the mean tar-
get registration error from an initial value of 3.7 mm to 1.5 mm.
The tumor appearance in pre-resection ultrasound is more clear
compared to the appearance of any residual tumor in the post-
resection ultrasound. RESOUND allows registering these two
volumes and therefore renders detecting tumor residuals sub-
stantially more likely, ultimately leading to a lower cancer re-
currence rate.
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